2.7D Inverse Functions II: Reflections

A. Introduction

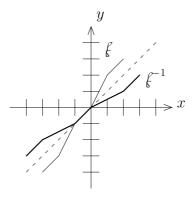
It is sometimes undesirable to examine the inverse function by looking sideways. Thus, for graphical purposes, we can get a "non-sideways" version of the graph of ξ^{-1} by switching the x and y coordinates. Thus to get a "non-sideways" version of the graph of ξ^{-1} , we would take each point on the graph of ξ , say (3,2) for example and plot (2,3).

Note: When we want to consider this alternate version of the graph of ξ^{-1} , we indicate that in our output formula as well. In this case, we switch the letter in the output formula for ξ^{-1} from y to x; that is, if our original output formula was $\xi^{-1}(y) = 3y - 2$, our new output formula is $\xi^{-1}(x) = 3x - 2$.

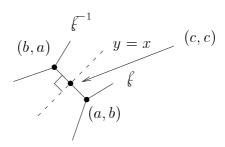
Now let's see what this means geometrically.

B. Graph of the Inverse Function

To get the graph of ξ^{-1} , we switch the coordinates of each point on the graph of ξ . Geometrically, this corresponds to **reflecting the graph about the line** y = x.



C. Justification of Geometric Interpretation of the Inverse



- 1. If (a, b) is on ξ , then (b, a) is on ξ^{-1} .
- 2. Connecting these two points, we cut the line y = x at some point (c, c).
- 3. The slope of the connecting segment is $\frac{a-b}{b-a} = \frac{a-b}{-(a-b)} = -1$.
- 4. Since the slope of the line y = x is 1, we see that the connecting segment is perpendicular to the line y = x.
- 5. To show that ξ^{-1} is a mirror image across y=x, we just need to show that (a,b) is the same distance from (c,c) as the point (b,a) is . . .
- 6. Distance from (a, b) to (c, c): $\sqrt{(c-a)^2 + (c-b)^2}$
- 7. Distance from (b, a) to (c, c): $\sqrt{(c-b)^2 + (c-a)^2} = \sqrt{(c-a)^2 + (c-b)^2}$

Thus (b,a) is the mirror image of (a,b) across the line y=x, so the graph of ξ^{-1} is the reflection of the graph of ξ across the line y=x.