2.7A Inverses

A. Definition of Inverses

Two functions ξ and ${}_{\vartheta}$ are called **inverses** if two conditions are met:

1.
$$(f \circ g)(x) = x$$

$$2. (g \circ f)(x) = x$$

Thus f and g undo each other!

B. Examples

Example 1: Are ξ and θ inverses, where $\xi(x) = x^3 + 1$ and $\theta(x) = \sqrt[3]{x-1}$?

Solution

Check the two conditions!

1.
$$(\xi \circ g)(x) = \xi(g(x)) = \xi(\sqrt[3]{x-1}) = (\sqrt[3]{x-1})^3 + 1 = x - 1 + 1 = x$$

2.
$$(g \circ f)(x) = g(f(x)) = g(x^3 + 1) = \sqrt[3]{(x^3 + 1) - 1} = \sqrt[3]{x^3} = x$$

Ans YES, f and g are inverses

Example 2: Are ξ and θ inverses, where $\xi(x) = x^2$ and $\theta(x) = \sqrt{x}$?

Solution

Check the two conditions!

1.
$$(\xi \circ g)(x) = \xi(g(x)) = \xi(\sqrt{x}) = (\sqrt{x})^2 = x$$

2.
$$(g \circ f)(x) = g(f(x)) = g(x^2) = \sqrt{x^2} = |x|$$

Both conditions are not met, so . . .

Ans f and g are NOT inverses