1.5B Plus/Minus

A. \pm and \mp

- 1. Notation
- \pm plus or minus
- \mp minus or plus

These are a shorthand way of writing two solutions.

- 2. Minus Signs:
 - $-(\pm) = \mp$
 - $-(\mp)=\pm$
- 3. In expressions involving \pm or \mp , we have two solutions. One by taking the "top" sign and one by taking the "bottom" sign.

B. Examples

Example 1: Write the individual expressions for $\frac{8 \mp \sqrt{2}}{4 \pm \sqrt{3}}$ and simplify.

Solution

a. "Top signs":
$$\frac{8 - \sqrt{2}}{4 + \sqrt{3}}$$

Now rationalize:

$$\frac{8 - \sqrt{2}}{4 + \sqrt{3}} \cdot \frac{4 - \sqrt{3}}{4 - \sqrt{3}} = \frac{32 - 8\sqrt{3} - 4\sqrt{2} + \sqrt{6}}{16 - 3} = \boxed{\frac{32 - 8\sqrt{3} - 4\sqrt{2} + \sqrt{6}}{13}}$$

b. "Bottom signs":
$$\frac{8 + \sqrt{2}}{4 - \sqrt{3}}$$

Now rationalize:

$$\frac{8+\sqrt{2}}{4-\sqrt{3}} \cdot \frac{4+\sqrt{3}}{4+\sqrt{3}} = \frac{32+8\sqrt{3}+4\sqrt{2}+\sqrt{6}}{16-3} = \boxed{\frac{32+8\sqrt{3}+4\sqrt{2}+\sqrt{6}}{13}}$$

Example 2: Simplify $6 - (4 \pm \sqrt{5})$ and simplify.

Solution

Use the distributive property and change all signs as required:

$$6 - (4 \pm \sqrt{5}) = 6 - 4 \mp \sqrt{5} = 2 \mp \sqrt{5}$$

C. Comment on Difference

 \pm and \mp are the same provided only one of them is present in an expression:

a. Thus
$$2 \mp \sqrt{5} = 2 \pm \sqrt{5}$$
.

b. However,
$$\frac{8 \mp \sqrt{2}}{4 \pm \sqrt{3}} \neq \frac{8 \pm \sqrt{2}}{4 \pm \sqrt{3}}$$
 (Why?)