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My gap between learning this definition and actually making (at least some) sense of it
was longer than I usually have with situations in analysis. Here's one thing I've come up
with to explain what it's trying to do.

Officially: we start with an outer measure . All of this is defined for the abstract setting,
but you can just picture the story in  if you've heard it. Here the outer measure
approximates the size of any set using something with an easy shape like euclidean
boxes to cover sets and measures the size of those instead. It uses finer boxes to get a
better approximation.

But allowing all sets is bad, there are problematic sets out there. Apparently. Actually, I
don't know so much about the problems/paradoxes that show up, but this is ringing a
Banach-Tarski bell. In any case, they must involve non-measurable sets. We restrict  to
only measure measurable sets. A set  is called measurable if, for every set , it satisfies
the "splitting" equality  above. In fact by subadditivity, one inequality ( ) is always
true. So the nontrivial property for measurable sets is that



Think of  as a "testing" set. We have a fixed set , the measurability of which we want
to test using different sets . If we picked a test set with infinite measure, then the
condition is easily satisfied. So this should suggest that we should be using finite
measure sets, and testing small, local properties of .

So what could go wrong, or rather, where could something go wrong? The criterion
involves both  and . If either of these is empty, then we again have full
equality. So we should be testing the boundary of  And something could go wrong if
the boundary is really bad somewhere.

When something is "really bad" in analysis, it could be blowing up to infinity or possibly
be oscillating like crazy. Consider the latter, a set with really bad "teeth". If we place a
test set right over the teeth, we can see why we might get an inequality when
measuring the split sets.



Remember that we're using an outer measure. If the oscillation is truly terrible, it's hard
to get boxes into the teeth that are able to distinguish the inside of  from the outside.
We are forced to overestimate both regions, which leads to a strict inequality precisely
at the teeth.

Why did it take me so long to figure this out? Well first, I was already in a position of not
liking measure theory. Most people I know don't like measure theory. The counter
examples are weird, and there are so many techniques that are needed to learn, it's
overwhelming and disgusting. So I wasn't about to sit down and daydream (how this
usually works) about which sets we want to label measurable or non-measurable.

It was also good that I waited until after I had seen the concept of "test functions" in
PDE's. These are usually smooth functions with compact (and very concentrated)
support ( ), with which we can examine the properties of other, less regular
functions.

As an example, consider weak derivatives in PDE's. A function  may not be
differentiable, but what if there was a function  which satisfies the integration by parts
formula: For every test function ,



If  was differentiable, then  satisfies this formula by actual integration by parts
(the boundary term disappears because  has compact support). So in general we
call  the weak derivative of  (and we still write ).

There are indeed some weakly-but-not-strongly-differentiable functions, like this angular
function:

But not every function has a weak derivative. Like the step function:

In fact  (weakly), which you might intuit. To show that  has no weak derivative,
we will suppose one exists, and then use test functions to look closely at what happens
around .

Define a sequence of test functions  which "concentrate" around :

One can imagine smoothing out iscoceles triangles, with shrinking widths and constant
height 1, to get a sequence of "narrowing bumps".



The integration by parts equation  then becomes (considering the supports):

The left side is in fact always 1.

Meanwhile on the right side, the integrand is bounded by the constant 1. And because
of their shrinking supports, the test functions are limiting pointwise (almost everywhere)
to the constant 0 function. So by a (bounded or dominated) convergence theorem,
we have

which is a contradiction.

Again, notice how we used the concentrating test functions to focus on the
discontinuity of .
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