
PARABOLIC MOSER ITERATION

K S

The following is a draft of my presentation demonstrating the Moser iteration technique in a parabolic
setting. The proof follows Peter Li - Geometric Analysis (Lemma 19.1), with a simplification (f ≡ 0)
indirectly recommended by Leo Abbrescia (who also presented this in a seminar). Robert Haslhofer also
posted a (2 page) document online showing the technique in a simple elliptic setting, which was helpful for
my understanding. (Thank you.)

Theorem. Suppose u ≥ 0 satisfies

ut −∆u ≤ fu
weakly on Pρ,T0

= B(ρ)× [T0, T1], where f = f(x, t) is a nonnegative function with sup[T0,T1]‖f‖Lq(B(ρ)) <∞
(where (µ − 1)/µ < q ≤ ∞ for µ defined below). Then for any p > 0, and any (smaller domain scales)
θ ∈ (0, 1), T ∈ [T0, T1], there is a constant C such that

‖u‖L∞(Pθρ,T )
≤ C‖u‖Lp(Pρ,T0 ) (1)

The theorem states that we can control the stronger L∞

norm on any smaller domain by a weaker Lp norm on
the bigger domain. To simplify, we will take f ≡ 0, since
this does not hurt the exposition of the iteration.

The proof consists of two key parts. First we obtain a
stepping stone version of (1). That is, we say that we
can control a slightly stronger norm on a slightly smaller
domain by a slightly weaker norm on a slightly bigger
domain. We also keep track of how the constant depends
on the changes in the domains and norm strength. The
calculation of (2) may be skipped while reading.

Then we set up a sequence of shrinking domains and increasing norm strengths, which starts from the norm
on the right side of (1), and which limits to the norm on the left side. We then apply the inequality from
part 1 repeatedly, and in this iteration we must then show that we can control the compounding constants
(that the infinite product converges).

Part 1 - Stepping stone

We will assume a Sobolev inequality in the following form. For the ρ ball in m-dimensional space, let
µ = m

m−2 (or anything greater than 2 if m = 2). We have a constant CSD such that,

−
ˆ
B(ρ)

|∇φ|2 ≥ CSD
ρ2

(
−
ˆ
B(ρ)

φ2µ

) 1
µ

1
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for any φ ∈ H1
c (B(ρ)). The important thing is that we have µ > 1.

Recall that −́ means the average. Note the inequality is normalized: it has the same form if we scale B(ρ):

1

Vol(ρ)

ˆ
x∈B(ρ)

|∇xφ(x)|2dx ≥ CSD
ρ2

(
1

Vol(ρ)

ˆ
x∈B(ρ)

φ2(x)dx

) 1
µ

1

Vol(ρ)

ˆ
λx∈B(ρ)

|∇λxφ(λx)|2d(λx) ≥ CSD
ρ2

(
1

Vol(ρ)

ˆ
λx∈B(ρ)

φ2(λx)dλx

) 1
µ

1

λmVol(ρ/λ)

ˆ
x∈B(ρ/λ)

∣∣∣∣ 1λ∇xφλ(x)

∣∣∣∣2λmdx ≥ CSD

λ2 (ρ/λ)
2

(
1

λmVol(ρ/λ)

ˆ
x∈B(ρ/λ)

(φλ(x))2λmdx

) 1
µ

1

λ2
−
ˆ
B(ρ/λ)

∣∣∇φλ∣∣2 ≥ 1

λ2
CSD

(ρ/λ)
2

(
−
ˆ
B(ρ/λ)

(φλ)2

) 1
µ

So we can assume that Vol(ρ) = 1 and just use
´

everywhere in the calculation.

For use below we denote C1 := ρ2/CSD and λ := (2µ− 1)/µ > 1.
Let a ≥ 1. The inequality we want to prove is

‖u‖L2aλ(Pτ,s+v)
≤
[(

2

σ2
+

2

v

)
C

1
λ
1

] 1
2a

‖u‖L2a(Pτ+σ,s)
. (2)

The quantities s, v, τ, σ are restricted only by T0 < s < s+ v < T1 and 0 < τ < τ + σ < ρ. In the proof, we
will use the Lipschitz functions ψ(t) (for time) and φ(r) (for space, radially symmetric) defined by

ψ(t) =


0 [T0, s]
t−s
v [s, s+ v]

1 [s+ v, T1]

φ(x) = φ(r) =


0 B(ρ) \B(τ + σ)
τ+σ−r
σ B(τ + σ) \B(τ)

1 B(τ)

(I’ve marked T and θρ just to help visualize part 2.) So we can see that the inequality indeed controls
a stronger (2aλ) norm on a smaller domain B(τ) × [s + v, T1] by a weaker (2a) norm on a larger domain
B(τ + σ)× [s, T1]. Note we use Greek letters σ, τ, θ, ρ for space and Latin letters s, v, T for time.

We will now prove equation (2). We have ut −∆u ≤ 0 weakly. Using φ2u2a−1 as a test function, we getˆ
B(ρ)

〈∇u,∇(φ2u2a−1)〉+ φ2utu
2a−1 ≤ 0

=

ˆ
2φu2a−1〈∇u,∇φ〉+ (2a− 1)φ2u2a−2|∇u|2 + φ2utu

2a−1 ≤ 0. (3)
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Since

|∇(φua)|2 =
∣∣(∇φ)ua + φaua−1∇u

∣∣2 = |∇φ|2u2a + 2aφu2a−1〈∇φ,∇u〉+ φ2a2u2a−2|∇u|2,

we can multiply (3) by a and replace the first term.ˆ
|∇(φua)|2 + a(2a− 1)φ2u2a−2|∇u|2 − a2φ2u2a−2|∇u|2 + aφ2utu

2a−1 ≤
ˆ
|∇φ|2u2a

ˆ
|∇(φua)|2 + [a2 − a]

a≥1
φ2u2a−2|∇u|2 +

1

2
φ2(u2a)t ≤

ˆ
|∇φ|2u2a.

The second term is nonnegative so we can drop it and preserve the inequality. Also, we use the Sobolev
inequality on the first term and reduce it by a half

CSD
ρ2

(ˆ
(φua)2µ

) 1
µ

+
1

2

ˆ
φ2(u2a)t ≤

ˆ
|∇φ|2u2a

C−11

(ˆ
(φua)2µ

) 1
µ

+

ˆ
φ2(u2a)t ≤ 2

ˆ
|∇φ|2u2a. (4)

Now multiply by ψ2 and integrate over [T0, t
′]. We also add a nonnegative 2ψψtφ

2u2a term to combine the
derivative. The left side:

C−11

ˆ t′

T0

ψ2

(ˆ
B(ρ)

(φua)2µ

) 1
µ

dt+

ˆ t′

T0

ˆ
B(ρ)

ψ2φ2(u2a)t + 2ψψtφ
2u2a dt

= C−11

ˆ t′

T0

ψ2

(ˆ
B(ρ)

(φua)2µ

) 1
µ

dt+

ˆ t′

T0

∂

∂t

(ˆ
B(ρ)

ψ2φ2u2a

)
dt

= C−11

ˆ t′

T0

ψ2

(ˆ
B(ρ)

(φua)2µ

) 1
µ

dt+ ψ2(t′)

ˆ
B(ρ)

φ2u2a(t′) =: A+B

is bounded by the right side:

≤
ˆ t′

T0

ˆ
B(ρ)

2ψ2|∇φ|2u2a + 2ψψtφ
2u2a dt

≤
ˆ T1

T0

ˆ
B(ρ)

(
2ψ2|∇φ|2 + 2ψψtφ

2
)
u2a dt =: R

Looking at A and B individually,

A(t′=T1) = C−11

ˆ T1

s+v

(ˆ
B(ρ)

(φ2u2a)µ

) 1
µ

≤ R (5)

and sup
[s+v,T1]

[ˆ
B(ρ)

φ2u2a

]
≤ R

We want to get a full time/space Lq-norm from the first term. Using an interpolation inequality (just a
clever Hölder inequality)

ˆ
gλ ≤

(ˆ
gµ
) 1
µ
(ˆ

g

)µ−1
µ

where λ =
2µ− 1

µ
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on the spatial integral in (5),

C−11

ˆ T1

s+v

ˆ
B(ρ)

(φ2u2a)λ ≤ C−11

ˆ T1

s+v

(ˆ
B(ρ)

(φ2u2a)µ

) 1
µ
(ˆ

B(ρ)

φ2u2a

)µ−1
µ

dt

≤ C−11

ˆ T1

s+v

(ˆ
B(ρ)

(φ2u2a)µ

) 1
µ

dt

[ sup
[s+v,T1]

(ˆ
B(ρ)

φ2u2a

)]µ−1
µ

≤ R ·R
µ−1
µ = Rλ

Dropping to the smaller domain on the left,(ˆ T1

s+v

ˆ
B(τ)

(u2a)λ

) 1
λ

≤ C
1
λ
1

ˆ T1

T0

ˆ
B(ρ)

(2ψ2|∇φ|2 + 2ψψtφ
2)u2a.

We have ψ, φ ≤ 1, |∇φ| ≤ 1
σ , ψt ≤

1
v , and restricting to the support of ψ, φ,

≤
(

2

σ2
+

2

v

)
C

1
λ
1

ˆ T1

s

ˆ
B(τ+σ)

u2a

Thus we have the desired estimate(ˆ T1

s+v

ˆ
B(τ)

u2aλ

) 1
2aλ

≤
[(

2

σ2
+

2

v

)
C

1
λ
1

] 1
2a

(ˆ T1

s

ˆ
B(τ+σ)

u2a

) 1
2a

‖u‖L2aλ(s+v,τ) ≤
[(

2

σ2
+

2

v

)
C

1
λ
1

] 1
2a

‖u‖L2a(s,σ+τ).

Part 2 - Iteration

Choose sequences:

σ0 =
(1− θ)ρ

2
, σ1 =

(1− θ)ρ
22

, σ2 =
(1− θ)ρ

23
, · · · , σi =

(1− θ)ρ
21+i

, · · ·

τ0 = ρ, τ1 = ρ− σ0, τ2 = ρ− σ0 − σ1, · · · , τi = ρ−
i−1∑
0

σj −→ θρ

v0 =
T − T0

2
, v1 =

T − T0
22

, v2 =
T − T0

22
, · · · , vi =

T − T0
21+i

, · · ·

s0 = T0, s1 = T0 + v0, s2 = T0 + v0 + v1, · · · , si = T0 +

i−1∑
0

vj −→ T.
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Also set a sequence of norm strengths:

a0 =
p

2
, a1 =

pλ

2
, a2 =

pλ2

2
, · · · , ai =

pλi

2
−→∞, since λ > 1.

Applying (2) to si, vi, τi+1, σi, ai, and using si + vi = si+1, τi+1 + σi = τi, aiλ = ai+1, we have

‖u‖L2ai+1 (si+1,τi+1)
≤
[(

2

σ2
i

+
2

vi

)
C

1
λ
1

] 1
2ai

‖u‖L2ai (si,τi)

(iterating down to 0)

≤

 i∏
j=0

[(
2

σ2
j

+
2

vj

)
C

1
λ
1

] 1
2aj

 ‖u‖Lp(T0,ρ)
.

Meanwhile, when we shrink the domain on the left side and take the limit,

‖u‖L2ai+1 (si+1,τi+1)
≥ ‖u‖L2ai+1 (T,θρ) −→ ‖u‖L∞(T,θρ).

Thus in the limit, we have

‖u‖L∞(T,θρ) ≤

 ∞∏
j=0

[(
2

σ2
j

+
2

vj

)
C

1
λ
1

] 1
2aj

 ‖u‖Lp(T0,ρ)
.

All that remains is to control the constant. (This is the best part!) Writing out the forms of σj , vj and aj ,
the constant is

∞∏
j=0

[(
23+2j

(1− θ)2ρ2
+

22+j

T − T0

)
C

1
λ
1

] 1

pλj

≤
∞∏
j=0

(
4

1
p

)jλ−j [( 23

(1− θ)2ρ2
+

22

T − T0

)
C

1
pλ

1

]λ−j

=
(

4
1
p

)∑ jλ−j
[
· · ·

]∑λ−j

Note that, since λ > 1, the sums in the exponent are finite. In fact
∞∑
0

λ−j =
1

1− 1
λ

<∞

is the geometric series, and taking a derivative gives the other sum (∼
∑
jλ−j). In any case the constant is

a finite number C, and this proves the theorem.

‖u‖L∞(B(θρ)×[T,T1])
≤ C‖u‖Lp(B(ρ)×[T0,T1])


