
HEAT EQUATION PROOF OF THE HODGE THEOREM

KESHAV SUTRAVE

The following is a talk on proving the Hodge isomorphism

Hk ∼= Hk
dR

by solving the heat equation. Here Hk is the space of harmonic k-forms (solutions to ∆ω = 0), and Hk
dR is

the kth deRham cohomology. A lot of necessary analytic technicalities are glossed over.
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1. Intro

The most basic PDE is Laplace’s equation. For real-valued functions f : U → R defined on some domain
U ⊂ Rn, we want to find solutions to

∆f = 0 (1)

where ∆ is the Laplace operator or Laplacian, (our convention is to include a minus sign)

∆ = −
(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)
= −div ◦ grad

= −Tr

(
∂2f

∂xi∂xj

)
Solutions to (1) are called harmonic functions.

In looking for harmonic functions, one method is to look at solving the heat equation. Here we look for
functions f : [0,∞)× U → R which solve (

∂

∂t
+ ∆

)
f(t, x) = 0 (2)

with some initial condition f(0, x) = f0(x) for a fixed function f0 : U → R.

Both equations (1) and (2) come from physics. Equation (2) is meant to describe the way the temperature
of a physical object (with shape U) redistributes itself over time. Here the value f(t, x) would be the
temperature at the point x at time t. We say that f follows the heat flow, and (2) is also sometimes called
the heat flow equation.

Why would this equation help with Laplace’s equation? Well it turns out to be natural to hope that, if we
can solve this equation for all time t, at t = ∞ we reach some "steady state" ∂tf = 0 (i.e. the heat has
distributed evenly and the temperature has settled into equilibrium), in which case we have ∆f = 0. In
other words we hope that solutions to the heat equation "flow" to harmonic functions in the limit.

What we are interested in is solving Laplace’s equation for differential forms ω ∈ Ω•(M) on a compact
Riemannian manifold (M, g).

∆ω = 0 (3)

We will need the Riemannian structure g to define the new Laplacian ∆ = ∆g on differential forms. Solutions
to (3) are called harmonic forms (or harmonic k-forms if ω ∈ Ωk). Since ∆ is linear, the solution space will
be a vector space. We denote

Hk := {harmonic k-forms}

It will turn out that harmonic forms reveal topological information about M . In particular, we will see that
the space of harmonic k-forms is isomorphic to the kth deRham cohomology. This is the Hodge theorem.

Theorem 1.1 (Hodge). For each k,
Hk ∼= Hk

dR. (4)
Furthermore, each cohomology class has a unique harmonic representative.
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What’s interesting here is that we’ve equated something geometric (the Laplacian ∆ and therefore also Hk
depend on the choice of metric g) to the cohomology which only depends on the topology of M . What’s
even more interesting is revealed in the very constructive heat equation proof below: the isomorphism can
be obtained by just following the heat flow to t =∞.

2. Heat Equation in one dimension

We start by looking at basic examples of heat flow solutions f on some space M .

Example 2.1. Let M = R. The basic behavior of functions under the heat flow is that they smooth out
and dissipate to infinity. That is, we expect something like the following picture.

Note the only harmonic functions on Rn are the constant functions. The only one which is L2 (and hence
must go to 0 at infinity) is the zero function.

Example 2.2. On M = S1 = [0, 2π]/{0, 2π}, the heat equation is

(∂t − ∂2
θ )f(t, θ) = 0.

where θ is the coordinate on S1. We can solve this explicitly using Fourier series.

Let f0(θ) be the initial condition. Every function on S1 has a Fourier expansion,

f0(θ) =

∞∑
n=0

ane
inθ

If f0 has a solution f to the heat flow (i.e. a function f(t, θ) with f(0, θ) = f0(θ)), it must also have a
(time-dependent) Fourier expansion

f(t, θ) =
∑
n

an(t)einθ

which satisfies

0 = (∂t − ∂2
θ )
∑
n

an(t)einθ

=
∑
n

(
a′n(t) + n2an(t)

)
einθ

We are left with the differential equation

a′n(t) = −n2an(t)

which has solutions

an(t) = ane
−n2t
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where the an’s are from the initial condition f0. So

f(t, θ) = ane
inθe−n

2t. (5)

Now we ask, what happens as t → ∞? Because of the exponential, every term in the sum in (5) dies
out except for n = 0. Hence

lim
t→∞

f(t, θ) = a0

Notice that this is the average value of f0.

What happened is that all the other Fourier modes (which have an average value of 0) all distributed
themselves evenly in the circle. So e.g. a sine wave, representing the temperature on the circle, eventually
shrinks to zero as heat flows from the peak to the dip.

In contrast with the case of the line R, the heat has nowhere to go, so we are left with the average total
temperature we started with.

3. Differential forms and the Laplacian

In this section we quickly give the set up to explain what the two sides of (4) are.

Let M be a closed (compact with no boundary) smooth manifold.

Recall that we have the exterior derivative operator d on the space of differential forms

Ω0 d−→ Ω1 d−→ Ω2 d−→ · · · d−→ Ωn

which forms a complex (d2 = 0). This gives us

Definition 3.1. The de Rham cohomology of M

Hk
dR :=

ker d ∩ Ωk

im d

DeRham’s theorem says that the deRham cohomology is isomorphic to the singular cohomology, so HdR is
topological. It doesn’t even depend on the smooth structure of M .

We continue on to define the Laplacian

Definition 3.2. A Riemannian metric g on M defines an inner product on each tangent space TxM
which in turn induces one on each exterior cotangent space

∧
kT ∗xM . It also defines a canonical

Riemannian volume form dvolg ∈ Ωn against which we can integrate smooth functions. This data
defines an L2 inner product on the space Ωk of k-forms: For ω, τ ∈ Ωk,

〈ω, τ〉L2 :=

ˆ
x∈M
〈ω(x), τ(x) 〉g dvolg

All this is just to allow us to define
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Definition 3.3. The codifferential operator d∗,

d∗ : Ωk+1 → Ωk,

is the L2-adjoint of d. That is, d∗ is defined by: For ω ∈ Ωk and τ ∈ Ωk+1

〈dω, τ〉L2 = 〈ω,d∗τ〉L2

Notice that, just like d, we have (d∗)2 = 0, because

〈(d∗)2ω, τ〉L2 = 〈ω,d2τ〉L2 = 0

for every ω, τ . Thus we have a double complex

Ω0 Ω1 Ω2 · · · Ωn
d

d∗

d

d∗

d

d∗

d

d∗

Definition 3.4. For each k, we define the Hodge-deRham Laplacian on differential k-forms to be the
operator

∆ = dd∗ + d∗d : Ωk → Ωk

As justification to why we call this a Laplacian, we point out that

(1) This Laplacian generalizes the classical one. For smooth functions f ∈ C∞ = Ω0 on Rn with its
standard Euclidean metric, the Hodge Laplacian reduces to

∆ = d∗d

because d∗ on Ω0 is 0. If we write the operators in coordinates, we would see that d is the gradient,
and d∗ is minus the divergence. Hence

∆ = −div ◦ grad

as before.
(2) If we were to write the general Hodge Laplacian on k-forms in local coordinates on M , we would get

∆ω = ∆
∑
i

ωidx
i =

∑
i

∑
j

∂2ωi
∂x2

j

dxi + (lower order terms)

i.e. the highest order derivative terms look like the standard Laplacian on the component functions
ωi. For PDE’s this highest order term is the most important.

Definition 3.5. We define the space of harmonic k-forms Hk as the kernel of ∆ in Ωk.

Hk = {ω ∈ Ωk : ∆ω = 0}

Note. Suppose ω is a harmonic k-form. Then we have

0 = 〈∆ω, ω〉L2 = 〈dd∗ω, ω〉+ 〈d∗dω, ω〉
= 〈d∗ω,d∗ω〉+ 〈dω,dω〉

= ‖d∗ω‖2L2 + ‖dω‖2L2

which implies that dω = d∗ω = 0, i.e. that ω is closed (dω = 0) and co-closed (d∗ω = 0).
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Conversely, just by definition of ∆ = dd∗ + d∗d, if ω is closed and co-closed then it is harmonic.

This proves

∆ω = 0 ⇐⇒

{
dω = 0

d∗ω = 0
(6)

We can finally write down the heat equation for differential forms on M .

(
∂

∂t
+ ∆

)
ω = 0

4. Proof of the Hodge Theorem using the heat flow

We first ask: Can we solve the heat equation? In short, yes. And we will not go into how.

A more precise statement is

Theorem 4.1. Given any smooth (or even L2) differential form ω0 ∈ Ωk, there exists a unique solution
to the heat equation, i.e. a unique smooth map

ω : [0,∞)→ Ωk

t 7→ ωt

such that (
∂

∂t
+ ∆

)
ωt = 0

with initial condition 0 7→ ω0.

Given this fact, we define the following.

Definition 4.2. For t ∈ [0,∞), let Ht be the time-t-heat-equation-solver operator, which takes a form
ω0 to its solution under the heat flow at time t. So Htω0 = ωt.

In other words, for each t,
Ht : Ωk → Ωk

and for any ω ∈ Ωk(M) we have (
∂

∂t
+ ∆

)
Htω = 0

H0ω = ω

Remark. The operator Ht can also be denoted by e−t∆. This is inspired by the fact that

∂t
(
e−t∆ω0

)
= −∆

(
e−t∆ω0

)
.

looks like it makes sense. This is also closer to being true with rigorous analysis.
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The operator Ht says "flow this differential form for a time t". By uniqueness of the solution, we have for
example, Ht+s = Ht ◦Hs (this looks nice in exponential notation), since these both say: flow for a time s,
then for a time t. We also have some necessary properties which are not so obvious

Lemma 4.3. The operator Ht commutes with both ∆ and d.

We will need one last thing before proving Theorem 1.1.

Lemma 4.4. In Example 2.2, it was quite useful to use the Fourier modes. This is because they form
simultaneous eigen-decompositions of the operators ∆ and Ht:

∆einθ = λne
inθ

Hte
inθ = e−λnteinθ

with λn = n2, for n = 0, 1, 2, . . . .

For closed Riemannian manifolds M , we also have similar eigen-decompositions for ∆ and Ht: There
exist {λn ∈ R} and L2-orthogonal {ζn ∈ Ωk} for n = 0, 1, 2, . . . , with

∆ζn = λnζn

Htζn = e−λntζn

such that every k-form has a unique decomposition into a combination of ζn’s. Furthermore each
eigenvalue satisfies λn ≥ 0 and has finite multiplicity.

Note that λ = 0 corresponds to the kernel of ∆. This spectral decomposition proves that Hk is finite
dimensional.

We finally have all the ingredients for the proof of the Hodge isomorphism theorem.

Proof. Define the linear map I which sends a harmonic form to its cohomology class.

I : Hk ∼−→ Hk
dR

ω 7→ [ω]

This makes sense because ω ∈ Hk is closed by (6).

The map I is injective:
If [ω] = 0, then ω = dτ for some τ . Since ω is co-closed by (6),

0 = 〈d∗ω, τ〉L2 = 〈d∗dτ, τ〉L2 = ‖dτ‖2L2 (7)

which proves ω = dτ = 0. Injectivity says that the harmonic representative of a cohomology class is
unique.

Finally, I is surjective:
Let ω be a closed k-form, a representative of the class [ω]. Then Htω is its solution to the heat flow.
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We already have d ◦Ht = Ht ◦ d, so Ht takes closed forms to closed forms, but more explicitly:

Htω − ω = Htω −H0ω =

ˆ t

0

∂tHtω

= −
ˆ t

0

∆Htω

= −
ˆ t

0

Ht∆ω since Ht commutes with ∆

= −
ˆ t

0

Ht(dd∗ + d∗d)ω

= −
ˆ t

0

Htdd∗ω since ω is closed

= −
ˆ t

0

d Htd
∗ω since Ht commutes with d

= d

[
−
ˆ t

0

Htd
∗ω

]
is an exact form. Thus the heat flow preserves the cohomology class of ω (the flow is cohomologous):
[Htω] = [ω] for all time t.

What happens as t→∞? Using the spectral decomposition of ∆, we have

ω =
∑
n

anζn

so
Htω =

∑
n

anHtζn =
∑
n

ane
−λntζn.

Thus

ω∞ := lim
t→∞

Htω =
∑
n

anζn

(
lim
t→∞

e−λnt
)

=

N∑
n=0

anζn

where ζn, n = 0, 1, . . . , N span the kernel of ∆ (λ = 0), i.e. harmonic.

So the long time limit ω∞ of Htω is harmonic! And since the flow keeps the form within a single
cohomology class, ω∞ is a harmonic representative of [ω]. �

5. Appendix: Proof using Hodge Decomposition

There is another proof of the Hodge theorem, using the following decomposition theorem, one proof of which
comes from applying elliptic theory to the operator D := d + d∗ : Ω• → Ω•. Note that D2 = ∆ and by (6),
kerD = ker ∆.

Theorem 5.1 (Hodge Decomposition). The space of differential forms decomposes L2-orthogonally as

Ω = H⊕ dΩ⊕ d∗Ω

In particular, since Ω =
⊕

k Ωk,
Ωk = Hk ⊕ dΩk−1 ⊕ d∗Ωk+1
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Proof of 1.1. Given a closed form ω ∈ Ωk, ω decomposes uniquely as

ω = h+ db+ d∗c

where h ∈ Hk.

Since ω is closed,
0 = dω = dh+ d2b+ dd∗c = dd∗c.

But dd∗c = 0 implies that
0 = 〈dd∗c, c〉L2 = ‖d∗c‖L2

so d∗c = 0.

Thus we actually have
ω = h+ db

That is, h is harmonic and represents the same cohomology class as ω. We may define the map
ω 7→ h. �

6. Appendix: Spectral Decomposition

We describe how we arrive at the simultaneous spectral decompositions of ∆ and Ht in Lemma 4.4. We
let L2 denote the space L2(Ωk), the completion of Ωk under the L2 norm. Then ∆ and Ht can both be
considered as operators L2 → L2 (∆ is an unbounded operator on L2).

Recall that in Example 2.1, we said the heat flow smooths functions. This turns out to be generally true.

The operator Ht is defined for all L2 forms using a smooth heat kernel:

(Htω)(x) =

ˆ
y∈M
〈et(x, y), ω(y)〉dvolg

which satisfies et(x, y) = et(y, x). From this symmetry property, one can show that the operator Ht is
self-adjoint.

It is also true that, for all t > 0, the form Htω lies in C∞(Ωk) = Ωk, (derivatives ∂x of Htω(x) apply directly
to et(x, y) within the integral). In particular, Htω ∈ L1,2 which embeds compactly into L2 by Sobolev
embedding.

Thus the map Ht : L2 → L2 is a compact self-adjoint operator. For such operators we have

Theorem 6.1 (Spectral Theorem for Compact Self-Adjoint Operators). Let T : H → H be a compact
self-adjoint operator on an infinite dimensional Hilbert space. Then H decomposes into an orthogonal
countable sum of eigenspaces of T , each of finite dimension. Each eigenvalue γn is real with finite
multiplicity, and we have γn → 0.

H =

∞⊕
n=0

〈vn〉

Tvn = γnvn
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Note that in our case we have a family of compact self-adjoint operators {Ht, t > 0}. This gives us a family
of decompositions of L2 into eigenspaces.

L2 =

∞⊕
n=0

〈ζn(t)〉

Htζn(t) = γn(t)ζn(t).

with γn(t) ∈ R.

However, since HtHs = Ht+s = HsHt, the operators {Ht} are simultaneously diagonalizable. That is, the
eigenvectors ζn and the decomposition of L2 don’t depend on t.

L2 =

∞⊕
n=0

〈ζn〉

Htζn = γn(t)ζn.

Lemma 6.2. The eigenvalues γn(t) of Ht are strictly positive for t > 0.

Proof.
(1) γn(t) ≥ 0:

γn(t) = 〈Htζn, ζn〉L2 = 〈Ht/2ζn, Ht/2ζn〉L2 =
∥∥Ht/2ζn

∥∥2

L2 ≥ 0

(2) γn(t) 6= 0: Suppose Htζ = 0 for some t and ζ. We will show that ζ must be 0. The same trick
as before:

0 = 〈Htζ, ζ〉L2 = 〈Ht/2ζ,Ht/2ζ〉L2 =
∥∥Ht/2ζ

∥∥2

L2

implies that Ht/2ζ = 0 also. We can keep doing this to show that Ht/2m = 0 for all m ∈ N.
Then

0 = lim
m→∞

Ht/2mζ = lim
t→0

Htζ = ζ

Thus Ht is injective for each t > 0. (This last limit follows because the rigorous meaning of
H0ω = ω in the definition of Ht is that limt→0Htω = ω.)

�

The spectral theorem allowed us to diagonalize Ht. It is further true that the ζn’s diagonalize ∆: Because
Htζn = γn(t)ζn solves the heat equation,

0 = (∂t + ∆)γn(t) ζn = γ′n(t) ζn + γn(t) ∆ζn

∆ζn = −γ
′
n(t)

γn(t)
ζn

(We can divide by γn(t) because they are nonzero.) Notice that ∆ζn doesn’t depend on t, which implies
that the right side of the equation doesn’t either. That is,

λn := −γ
′
n(t)

γn(t)
= const.

γ′n(t) = −λnγn(t)

γn(t) = Cne
−λnt



HEAT EQUATION PROOF OF THE HODGE THEOREM 11

But H0 = id means that for each n, we have γn(t)
t→0−−−→ 1 which forces Cn = 1.

γn(t) = e−λnt

In summary we have

∆ζn = λnζn

Htζn = e−λntζn

We note that γn(t)
n→∞−−−−→ 0 implies that λn

n→∞−−−−→ +∞.

We also have from the definition of ∆:

λn = 〈∆ζn, ζn〉 = ‖d∗ζn‖2 + ‖dζn‖2 ≥ 0
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