Math 425, Homework #4 Solutions

(1) (8.9) Define a function f analytic in the plane minus the non-positive real axis and such that $f(x) = x^x$ on the positive real axis. Find f(i), and f(-i). Show that $f(\bar{z}) = \overline{f(z)}$ for all z in the domain.

Solution. We define an analytic branch of log z on the complement of the non-positive real axis by

$$\log z = \ln|z| + i\operatorname{Arg}(z)$$

where we require Arg(z) to take values in $(-\pi, \pi)$, or more explicitly we define

$$Arg(x+iy) = \begin{cases} \cot^{-1}(x/y) & y > 0\\ \tan^{-1}(y/x) & x > 0\\ \cot^{-1}(x/y) - \pi & y < 0 \end{cases}$$
 (1)

where $\tan^{-1}(t) \in (-\pi/2, \pi/2)$ and $\cot^{-1}(t) \in (0, \pi)$.

Given this analytic branch of $\log z$, we define $f(z) = e^{z \log z}$. This function is analytic one the complement of the non-positive real axis since z and $\log z$ are, and so $e^{z \log z}$ is a composition of analytic functions. Moreover, for x on the positive real axis, we have

$$f(x) = e^{x \log x}$$

$$= e^{x(\ln|x| + i \operatorname{Arg}(x))}$$

$$= e^{x(\ln x + i0)}$$

$$= e^{x \ln x}$$

$$= e^{\ln x^{x}} = x^{x}.$$

Next, using (1), with

$$\cot^{-1}(-t) = \pi - \cot^{-1}(t)$$

we can verify that $\operatorname{Arg}(\bar{z}) = \operatorname{Arg}(x + iy) = \operatorname{Arg}(x - iy) = -\operatorname{Arg}(x + iy) = -\operatorname{Arg}(z)^1$, and hence the analytic branch of $\log z$ defined above satisfies

$$\begin{split} \log \bar{z} &= \ln |\bar{z}| + i \operatorname{Arg}(\bar{z}) \\ &= \ln |z| - i \operatorname{Arg}(z) \\ &= \overline{\ln |z| + i \operatorname{Arg}(z)} \\ &= \overline{\log(z)}. \end{split}$$

Moreover, using the definition of e^z we have that

$$e^{\overline{z}} = e^{x-iy}$$

$$= e^x(\cos(-y) + i\sin(-y))$$

$$= e^x(\cos y - i\sin y)$$

$$= \overline{e^x(\cos y + i\sin y)}$$

$$= \overline{e^z}.$$

¹ Notice that the fact that $\operatorname{Arg}(\bar{z}) = -\operatorname{Arg}(z)$ depends crucially on our choice (1) of continuous definition of $\operatorname{Arg}(z)$ on the given domain. If we had chosen a different continuous definition of $\operatorname{Arg}(z)$ we could only say that $\operatorname{Arg}(\bar{z}) = 2\pi k(z) - \operatorname{Arg}(z)$ for some integer-valued function k(z).

Consequently

$$f(\bar{z}) = e^{\bar{z} \log \bar{z}}$$

$$= e^{\bar{z} \log z}$$

$$= e^{\bar{z} \log z}$$

$$= \bar{e}^{z \log z}$$

$$= \bar{e}^{z \log z}$$

$$= \bar{f}(z)$$

so $f(\bar{z}) = \overline{f(z)}$ as claimed. Finally, we compute

$$f(i) = e^{i \log i}$$

$$= e^{i(\ln|i|+i \operatorname{Arg}(i))}$$

$$= e^{i(\ln 1 + i\pi/2)}$$

$$= e^{-\pi/2}$$

and using $f(\bar{z}) = \overline{f(z)}$, we have that

$$f(-i) = f(\bar{i}) = \overline{f(i)} = \overline{e^{-\pi/2}} = e^{-\pi/2}.$$

(2) Prove that the function $f(z) = \frac{\cos z - 1}{z^2}$ has a removable singularity at z = 0.

Proof. Using the power series representation of $\cos z$ we have that

$$\cos z = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

 \mathbf{SO}

$$\cos z - 1 = \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

and therefore

$$\frac{\cos z - 1}{z^2} = \frac{1}{z^2} \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$
$$= \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k-2}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+2)!} z^{2k}.$$

Since the Laurent series of $f(z) = \frac{\cos z - 1}{z^2}$ at z = 0 has vanishing principal part, f has a removable singularity at z = 0 according to the theorem explained in class.

(3) (9.10) Find the principal part of the Laurent expansion of

$$f(z) = \frac{1}{(z^2 + 1)^2}$$

about the point z = i.

Solution 1. Define $g(z) = \frac{1}{(z+i)^2}$. Since g(z) is analytic at z=i, the Taylor series

$$g(z) = \sum_{k=0}^{\infty} \frac{g^{(k)}(i)}{k!} (z-i)^k$$

for g centered at i converges to g on some open neighborhood of i (actually on the disk |z - i| < 2). We then have that

$$f(z) = \frac{1}{(z^2 + 1)^2} = \frac{1}{(z - i)^2} \cdot \frac{1}{(z + i)^2}$$

$$= \frac{1}{(z - i)^2} \cdot g(z)$$

$$= \frac{1}{(z - i)^2} \sum_{k=0}^{\infty} \frac{g^{(k)}(i)}{k!} (z - i)^k$$

$$= \sum_{k=0}^{\infty} \frac{g^{(k)}(i)}{k!} (z - i)^{k-2}$$

$$= \frac{g(i)}{(z - i)^2} + \frac{g'(i)}{z - i} + \sum_{k=0}^{\infty} \frac{g^{(k+2)}}{(k+2)!} (z - i)^k,$$

so the principal part of f(z) near z = 1 is

$$\frac{g(i)}{(z-i)^2} + \frac{g'(i)}{z-i}.$$

Computing, we have that $g(i) = 1/(2i)^2 = -1/4$ while $g'(z) = -2/(z+i)^3$ so $g'(i) = -2/(2i)^3 = -2/(-8i) = -i/4$. Thus the principal part of f near z = i is

$$\frac{-1}{4} \left(\frac{1}{(z-i)^2} + \frac{i}{z-i} \right).$$

Solution 2. Using the geometric sum formula, we have for |z-i| < 2 that

$$\frac{-1}{z+i} = \frac{-1}{2i+(z-i)}$$

$$= \frac{-1}{2i} \frac{1}{1-i(z-i)/2}$$

$$= \frac{i}{2} \sum_{k=0}^{\infty} (i/2)^k (z-i)^k$$

$$= \sum_{k=0}^{\infty} (i/2)^{k+1} (z-i)^k.$$

Differentiating this formula, we get that

$$\begin{split} \frac{1}{(z+i)^2} &= \frac{d}{dz} \left(\frac{-1}{z+i} \right) \\ &= \frac{d}{dz} \left(\sum_{k=0}^{\infty} (i/2)^{k+1} (z-i)^k \right) \\ &= \sum_{k=1}^{\infty} k (i/2)^{k+1} (z-i)^{k-1} \\ &= \sum_{k=0}^{\infty} (k+1) (i/2)^{k+2} (z-i)^k \end{split}$$

Thus for 0 < |z - i| < 2 we have that

$$f(z) = \frac{1}{(z-i)^2} \cdot \frac{1}{(z+i)^2}$$

$$= \frac{1}{(z-i)^2} \sum_{k=0}^{\infty} (k+1)(i/2)^{k+2} (z-i)^k$$

$$= \sum_{k=0}^{\infty} (k+1)(i/2)^{k+2} (z-i)^{k-2}$$

$$= \sum_{k=0}^{\infty} (k+3)(i/2)^{k+4} (z-i)^k.$$

Thus the principal part of f near z = i is given by

$$\frac{(-2+3)(i/2)^{-2+4}}{(z-i)^2} + \frac{(-1+3)(i/2)^{-1+4}}{(z-i)} = \frac{(i/2)^2}{(z-i)^2} + \frac{2(i/2)^3}{(z-i)}$$
$$= \frac{-1/4}{(z-i)^2} + \frac{-i/4}{(z-i)}.$$

(4) (9.12) Find the Laurent expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ (in powers of z) for

(a)
$$0 < |z| < 1$$

(b)
$$1 < |z| < 2$$

(c)
$$|z| > 2$$
.

Solution. We use partial fractions to rewrite the function

$$f(z) = \frac{1}{z(z-1)(z-2)} = \frac{1}{z} \left(\frac{1}{z-2} + \frac{-1}{z-1} \right) = \frac{1}{z} \left(\frac{-1}{2-z} + \frac{1}{1-z} \right). \tag{2}$$

In class we saw that

$$\frac{1}{1-z} = \begin{cases} \sum_{k=0}^{\infty} z^k & |z| < 1\\ \sum_{k=-\infty}^{-1} -z^k & |z| > 1. \end{cases}$$
 (3)

We thus find that

$$\begin{split} \frac{1}{2-z} &= \frac{1}{2} \left(\frac{1}{1-(z/2)} \right) \\ &= \begin{cases} \frac{1}{2} \sum_{k=0}^{\infty} (z/2)^k & |z/2| < 1\\ \frac{1}{2} \sum_{k=-\infty}^{-1} -(z/2)^k & |z/2| > 1 \end{cases} \\ &= \begin{cases} \sum_{k=0}^{\infty} \frac{1}{2^{k+1}} z^k & |z| < 2\\ \sum_{k=-\infty}^{-1} -\frac{1}{2^{k+1}} z^k & |z| > 2 \end{cases} \end{split}$$

and hence

$$\frac{-1}{2-z} = \begin{cases} \sum_{k=0}^{\infty} -\frac{1}{2^{k+1}} z^k & |z| < 2\\ \sum_{k=-\infty}^{1} \frac{1}{2^{k+1}} z^k & |z| > 2. \end{cases}$$
(4)

Combining (2)–(4) we then find:

(a) for 0 < |z| < 1, f can be expressed as

$$f(z) = \frac{1}{z} \left(\sum_{k=0}^{\infty} -\frac{1}{2^{k+1}} z^k + \sum_{k=0}^{\infty} z^k \right)$$
$$= \frac{1}{z} \left(\sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+1}} \right) z^k \right)$$
$$= \sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+1}} \right) z^{k-1}$$
$$= \sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+2}} \right) z^k.$$

(b) for 1 < |z| < 2, f can be expressed as

$$f(z) = \frac{1}{z} \left(\sum_{k=0}^{\infty} -\frac{1}{2^{k+1}} z^k + \sum_{k=-\infty}^{-1} -z^k \right)$$
$$= \sum_{k=0}^{\infty} -\frac{1}{2^{k+1}} z^{k-1} + \sum_{k=-\infty}^{-1} -z^{k-1}$$
$$= \sum_{k=-1}^{\infty} -\frac{1}{2^{k+2}} z^k + \sum_{k=-\infty}^{-2} -z^k.$$

(c) for |z| > 2, f can be expressed as

$$f(z) = \frac{1}{z} \left(\sum_{k=-\infty}^{-1} \frac{1}{2^{k+1}} z^k + \sum_{k=-\infty}^{-1} -z^k \right)$$

$$= \frac{1}{z} \left(\sum_{k=-\infty}^{-1} \left(\frac{1}{2^{k+1}} - 1 \right) z^k \right)$$

$$= \sum_{k=-\infty}^{-1} \left(\frac{1}{2^{k+1}} - 1 \right) z^{k-1}$$

$$= \sum_{k=-\infty}^{-2} \left(\frac{1}{2^{k+2}} - 1 \right) z^k.$$