
Math 425, Homework #3 Solutions

(1) (4.11) Let f : D ⊂ C→ C be an analytic function on D with D an open, convex set. Suppose that
f satisfies |f ′(z)| ≤ 1 for all z ∈ D. Show that

|f(b)− f(a)| ≤ |b− a|
for any a, b ∈ D.

Proof. Let C be the straight line segment connecting a to b (more explicitly, we could define C to
be the curve given by z(t) = (1− t)a+ tb for t ∈ [0, 1]). By the assumption that D is a convex set,
we know that the curve C is contained in D so we can integrate f ′(z) along this curve and apply
Proposition 4.12 to find

f(b)− f(a) =

∫
C

f ′(z) dz. (1)

Using the assumption that |f ′(z)| ≤ 1, we can apply the ML-formula to the above integral to
conclude that ∣∣∣∣∫

C

f ′(z) dz

∣∣∣∣ ≤ 1 · arclength(C) = arclength(C).

Using that C is a straight line-segment connecting a to b (or computing from the arglength formula:

arclength(C) =
∫ 1

0
|z′(t)| dt =

∫ 1

0
|b− a| dt = |b− a|) we find that the arclength of C is |b− a|, and

so we can conclude that ∣∣∣∣∫
C

f ′(z) dz

∣∣∣∣ ≤ |b− a| . (2)

Combining (1) and (2) then allows us to conclude that

|f(b)− f(a)| ≤ |b− a|
as claimed. �

(2) Compute the integral ∫
C

cos z dz

where C is the curve defined by

z(t) = teit t ∈ [0, 4π].

Answer. Using Proposition 4.12 from the course text with the fact that d
dz (sin z) = cos z, we compute∫

C

cos z dz =

∫
C

d

dz
(sin z) dz

= sin z(4π)− sin z(0)

= sin(4πei4π)− sin 0

= sin 4π = 0.

�



(3) Find a function F : U ⊂ C→ C satisfying F ′(z) = 1/z when:
(a) U is the set {z ∈ C | Re(z) 6= 0}.
(b) U is the set {z ∈ C | Im(z) 6= 0}.
(c) U is the complement of the ray R = {z ∈ C | Im(z) = 0, Re(z) ≥ 0}.

(Hint: recall that the proof that analytic functions satisfy the Cauch-Riemann equations tells us
that if F (x+ iy) = u(x, y) + iv(x, y), then d

dzF (z) = ux(z) + ivx(z)).

Proof. We begin with some preliminary observations that will be applicable to all parts of the
problem. As discussed in the hint, the proof that (complex) differentiable functions satisfy the
Cauch-Riemann equations shows that

d

dz
F (z) = ux(z) + ivx(z)

(= vy(z)− iuy(z)).

Rewriting 1/z in terms of real and imaginary parts

1

z
=

1

z
· z̄
z̄

=
z̄

|z|2
=

x

x2 + y2
− i y

x2 + y2

we see that to find an F satsifying F ′(z) = 1/z we would need to find real functions u and v satisfying

ux(x, y) =
x

x2 + y2
(3)

vx(x, y) =
−y

x2 + y2
. (4)

Moreover, to ensure that F (z) is analytic, we should also require that u and v satisfy the Cauchy-
Riemann equations, which in this case amount to requiring that vy = x

x2+y2 and uy = y
x2+y2 . If we

define

u(x, y) =
1

2
log(x2 + y2)

then a straightforward computation using d
dt (log |t|) = 1/t and the chain rule shows that u satisfies

(3) (and we point out that u also satisfies uy = y
x2+y2 ). Therefore, in each part of the problem it

remains to find a v satisfying (4), with u and v satisfying the Cauchy-Riemann equations.
As a final preliminary note, we observe that we will be using the functions tan−1 and cot−1 to

express our answers below. To clear up any ambiguity about the use of these symbols we note that
below we are using tan−1(t) to denote the number θ ∈ (−π/2, π/2) satisfying tan θ = t, and we will
be using cot−1(t) to denote the number θ ∈ (0, π) satisfying cot θ = t.

(a) We are looking for a function v satisfying (4) on the set where x = Re(z) 6= 0. Define v(x, y) =
tan−1(y/x), which has continuous first order partials wherever x 6= 0. Using the chain rule with
d
dt (tan−1(t)) = 1

1+t2 , we find that

∂

∂x

(
tan−1(y/x)

)
=

1

1 + (y/x)2
· ∂
∂x

(y/x)

=
1

1 + (y/x)2
· −y/x2

=
−y

x2 + y2

and a similar computation shows that also vy = x
x2+y2 . Thus is we define

F (x+ iy) =
1

2
log(x2 + y2) + i tan−1(y/x)

F will be analytic on U because it has continuous partial derivatives and satisfies the Cauchy-
Riemann equations (Proposition 3.2 in the course text), and F ′(z) = Fx(z) = 1/z on the set of
points where Re(z) 6= 0.



(b) Now we are looking for a function v satisfying (4) on the set where y = Im(z) 6= 0. Define
v(x, y) = cot−1(x/y), which has continuous first order partial derivatives wherever y 6= 0. As
above we use the chain rule with d

dt (cot−1(t)) = −1
1+t2 , to find that

∂

∂x

(
cot−1(x/y)

)
=

−1

1 + (x/y)2
· 1/y =

−y
x2 + y2

and a similar computation shows that also vy = x
x2+y2 . Thus is we define

F (x+ iy) =
1

2
log(x2 + y2) + i cot−1(y/x)

then F will satisfy the Cauchy-Riemann equations on U and F ′(z) = Fx(z) = 1/z on the set of
points where Im(z) 6= 0.

(c) Here we will construct a function v satisfying (4) on the set U by defining

v(x, y) =


cot−1(y/x) y > 0

tan−1(x/y) + π x < 0

cot−1(y/x) + π y < 0.

We will now show that v gives a well-defined function on the set U , i.e. we will show that in the
“overlap regions” there is no ambiguity in the way that we defined v.

We first need to check that if y > 0 and x < 0 that

cot−1(y/x) = tan−1(x/y) + π. (5)

From trigonometry we know that

cot−1(y/x)− tan−1(x/y) = kπ for some k ∈ Z

provided x and y are nonzero. Since cot−1(y/x) and tan−1(x/y) are continuous on the set where
y > 0 and x < 0 it suffices to check that (5) holds at a single point in this region. Letting y = 1
and x = −1 we have that

cot−1(y/x) = cot−1(−1)

= 3π/4

= −π/4 + π

= tan−1(−1) + π

= tan−1(x/y) + π

so (1) holds for y = 1 and x = −1 and thus holds on the set where y > 0 and x < 0.
We next check that if y < 0 and x < 0 that

cot−1(y/x) + π = tan−1(x/y) + π

or equivalently

cot−1(y/x) = tan−1(x/y). (6)

Arguing as above, it suffices to check this at a single point in the region. Let x = y = −1. Then

cot−1(y/x) = cot−1(1) = π/4 = tan−1(1) = tan−1(x/y)

so (6) holds when x = y = −1 and thus also on the entire region where y < 0 and x < 0.
Now that we’ve checked that v(x, y) as defined above is well-defined, it follows from the same
computations as in parts (a) and (b) that

vx(x, y) =
−y

x2 + y2
and vy(x, y) =

x

x2 + y2
.

Hence, with v defined as above, the function on U defined by

F (x, y) =
1

2
log(x2 + y2) + iv(x, y)



has continuous partial derivatives on U , satisfies the Cauchy-Riemann equations on U , and thus
is analytic on U and satisfies F ′(z) = Fx(z) = 1/z.
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(4) Let a ∈ C be a constant, and let R be a positive real number with R > |a|. Use the definition

of uniform convergence (i.e. give an “ε–N” proof) to prove that the series
∑∞
k=0

ak

zk+1 converges

uniformly to f(z) = 1
z−a on the circle |z| = R.

Proof. Let fn(z) =
∑n
k=0

ak

zk+1 be the n-th partial sum of the series. Using the formula
∑n
k=0 w

k =
1−wn+1

1−w , we can rewrite the partial sum fn(z) as

fn(z) =

n∑
k=0

ak

zk+1
=

1

z

n∑
k=0

(a
z

)k
=

1

z

(
1− (a/z)n+1

1− a/z

)
=

1− (a/z)n+1

z − a
.

Let ε > 0. Since |a| /R is assumed to be strictly less than one, we know that the sequence
xn = (|a| /R)n converges to 0. We can therefore find an N so that(

|a|
R

)n
< (R− |a|)ε if n ≥ N . (7)

Then for n ≥ N and |z| = R we will have that

|fn(z)− f(z)| =
∣∣∣∣1− (a/z)n+1

z − a
− 1

z − a

∣∣∣∣
=

∣∣∣∣ (a/z)n+1

z − a

∣∣∣∣
=

1

|z − a|

(
|a|
|z|

)n+1

=
1

|z − a|

(
|a|
R

)n+1

since |z| = R

≤ 1

||z| − |a||

(
|a|
R

)n+1

triangle inequality ||z| − |a|| ≤ |z − a|

≤ 1

R− |a|

(
|a|
R

)n+1

since |z| = R > |a|

<
1

R− |a|
(R− |a|)ε = ε by (7) since n+ 1 > n ≥ N .

Since |fn(z)− f(z)| < ε for |z| = R and n ≥ N , we conclude that the sequence fn converges
uniformly to f on the set |z| = R. �


