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Math 425, Homework #3 Solutions
(4.11) Let f : D € C — C be an analytic function on D with D an open, convex set. Suppose that
f satisfies | f'(z)] <1 for all z € D. Show that

[f(0) — fla)| < |b—al
for any a, b € D.

Proof. Let C be the straight line segment connecting a to b (more explicitly, we could define C' to
be the curve given by z(t) = (1 — ¢)a + tb for t € [0,1]). By the assumption that D is a convex set,
we know that the curve C' is contained in D so we can integrate f’(z) along this curve and apply
Proposition 4.12 to find

£(b) — f(a) = /C f(2) d=. (1)

Using the assumption that |f/(z)] < 1, we can apply the M L-formula to the above integral to

conclude that
IRCE
c

Using that C' is a straight line-segment connecting a to b (or computing from the arglength formula:
arclength(C) = fol |2/ (t)| dt = fol |b—a| dt = |b— a|) we find that the arclength of C'is |b — al, and
so we can conclude that
RS
c

Combining and then allows us to conclude that
[f(b) = f(a)] < [b—al

as claimed. O

< 1 -arclength(C) = arclength(C).

<I[b—al. (2)

Compute the integral

/ coszdz
c

2(t) =t t€[0,4r].

where C' is the curve defined by

Answer. Using Proposition 4.12 from the course text with the fact that % (sin z) = cos z, we compute

/coszdz:/ i(sinz) dz
C CdZ

= sin z(47) — sin z(0)

4Ty _ sin 0

= sin(4me

= sindnw = 0.



(3) Find a function F : U C C — C satisfying F'(z) = 1/z when:
(a) U is the set {z € C| Re(z) # 0}.
(b) U is the set {z € C| Im(z) # 0}.
(¢) U is the complement of the ray R = {z € C| Im(z) = 0, Re(z) > 0}.
(Hint: recall that the proof that analytic functions satisfy the Cauch-Riemann equations tells us
that if F\(z +iy) = u(z,y) + iv(z,y), then L F(2) = uy(2) + iv,(2)).

Proof. We begin with some preliminary observations that will be applicable to all parts of the
problem. As discussed in the hint, the proof that (complex) differentiable functions satisfy the
Cauch-Riemann equations shows that

d ;
@F(Z) = Uy (2) +ivg(2)

(= vy(2) — iy (2)).
Rewriting 1/z in terms of real and imaginary parts
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we see that to find an F satsifying F’(z) = 1/z we would need to find real functions u and v satisfying
T

Uy (T,y) = m (3)
valw) = 5 (4)

Moreover, to ensure that F(z) is analytic, we should also require that u and v satisfy the Cauchy-
Riemann equations, which in this case amount to requiring that v, = and u, = . If we

define

_z v
24y? z2+y?

1
u(w,y) = 5 log(a® + )

then a straightforward computation using % (log|t]) = 1/t and the chain rule shows that u satisfies
(3) (and we point out that u also satisfies u, = ﬁ) Therefore, in each part of the problem it
remains to find a v satisfying 7 with u and v satisfying the Cauchy-Riemann equations.

As a final preliminary note, we observe that we will be using the functions tan~! and cot™! to
express our answers below. To clear up any ambiguity about the use of these symbols we note that
below we are using tan~!(¢) to denote the number 6 € (—7/2, 7/2) satisfying tan§ = ¢, and we will
be using cot ~1(¢) to denote the number 6 € (0, 7) satisfying cot § = ¢.

(a) We are looking for a function v satisfying @ on the set where = Re(z) # 0. Define v(z,y) =
tan~!(y/x), which has continuous first order partials wherever x # 0. Using the chain rule with
4 (tan~1(t)) = ﬁ, we find that

9 o)) = ———— Ly )

Ox 1+ (y/z)? Oz
1 2
= c—ylz
R
_ —Y
1'2 + y2
and a similar computation shows that also v, = ﬁ Thus is we define

1
F(z+iy) = 5 log(a® +y°) +itan™" (y/x)

F will be analytic on U because it has continuous partial derivatives and satisfies the Cauchy-
Riemann equations (Proposition 3.2 in the course text), and F’'(z) = F,(z) = 1/z on the set of
points where Re(z) # 0.



(b)

Now we are looking for a function v satisfying @) on the set where y = Im(z) # 0. Define
v(z,y) = cot™(x/y), which has continuous first order partial derivatives wherever y # 0. As

above we use the chain rule with < (cot™!(t)) = 1%2" to find that
0 1 -1 -y
- t = - . 1 = —
Ox (cot™ (/) L+ (z/y)? /Y x? + y?
and a similar computation shows that also v, = xnyz Thus is we define

1
F(x +iy) = 5 log(z? + y?) +icot™!(y/z)
then F' will satisfy the Cauchy-Riemann equations on U and F’(z) = F,(z) = 1/z on the set of
points where Im(z) # 0.

Here we will construct a function v satisfying on the set U by defining
cot ™! (y/x) y>0
v(z,y) =< tan " (z/y)+7 =<0
cot™t(y/x) +m y<O.

We will now show that v gives a well-defined function on the set U, i.e. we will show that in the
“overlap regions” there is no ambiguity in the way that we defined v.
We first need to check that if y > 0 and = < 0 that

cot ™ (y/x) = tan~ ! (x/y) + . (5)
From trigonometry we know that
cot™!(y/z) — tan~ (v /y) = k7 for some k € Z

provided x and y are nonzero. Since cot~!(y/x) and tan~!(z/y) are continuous on the set where
y > 0 and z < 0 it suffices to check that holds at a single point in this region. Letting y =1
and z = —1 we have that

cot H(y/z) = cotH(—1)
= 3r/4
=—n/d+m
=tan"'(=1) +7
=tan"!(z/y) +7
0] holds for y = 1 and z = —1 and thus holds on the set where y > 0 and = < 0.
We next check that if y < 0 and x < 0 that
cot Yy/z) +m=tan Y (z/y) + 7
or equivalently
cot (y/x) = tan" " (x/y). (6)
Arguing as above, it suffices to check this at a single point in the region. Let x = y = —1. Then
cot H(y/z) = cot™1(1) = /4 = tan" 1 (1) = tan" ' (z/y)

SO @) holds when x = y = —1 and thus also on the entire region where y < 0 and = < 0.
Now that we’ve checked that v(z,y) as defined above is well-defined, it follows from the same
computations as in parts (a) and (b) that
—y T
dEy) = 5Ly and vy(ny) = 5.
v (J" y) 3,:2 +y2 an ”y(x y) xQ _|_y2
Hence, with v defined as above, the function on U defined by

1 .
Fz,y) =3 log(z” + ) + iv(x,y)



has continuous partial derivatives on U, satisfies the Cauchy-Riemann equations on U, and thus
is analytic on U and satisfies F'(z) = Fy(z) = 1/=.

O

(4) Let a € C be a constant, and let R be a positive real number with R > |a|. Use the definition

of uniform convergence (i.e. give an “e~N" proof) to prove that the series > ;- Z‘,f% converges
uniformly to f(z) = on the circle |z| = R.

z—a

Proof. Let fn(2) => 1 _ Z‘,f% be the n-th partial sum of the series. Using the formula >, _ w* =
n+1
171121: , we can rewrite the partial sum f,(z) as

N 1<~ /a\k

=3 g = 2 ()

11— (a/z)"*!

Tz < 1—a/z )

11— (a/z)mH!
B z—a

Let € > 0. Since |a| /R is assumed to be strictly less than one, we know that the sequence

Zn = (|a| /R)™ converges to 0. We can therefore find an N so that

(;') <(R—la))e ifn>N. (7)

Then for n > N and |z| = R we will have that

1—(a/z)"*t 1
1) - 0] = [P L
_ | (a/z)"
| z—a
B 1 (|a>n+1
|z —al \|7]
1 n+1
= Tl (';) since |z| = R
() triangle inequality |12 o < |2 —
<— (= riangle inequality ||z| — |a|| < |z —a
|z = lall \ R
1 n+1
< Rl <§|> since |z| = R > |a|
1
<R7H(Rf|a\)s:5 by (7) since n+1>n > N.
—la
Since |fn(2) — f(2)| < € for |z| = R and n > N, we conclude that the sequence f, converges

uniformly to f on the set |z| = R. O



