Math 425, Homework #2 Solutions

(1) Prove that for z, w € C, e* = e if and only if there exists a k € Z so that z = w + i27k.

Proof. We first consider the special case where w = 0. In this case, when we use the definition of
et = e*(cosy + isiny) we find that e* = ¢® = 1 is equivalent to z = x + iy satisfying the system
of real equations
e“cosy =1
e’siny = 0.
Since e” is never zero, the second equation is equivalent to siny = 0 which implies that
y =km for k € Z.

Substituting this in the first equation gives us

e if k is even

1 =¢e"coskm =
—e® if k is odd.

Since e” is always positive, the odd values of k do not lead to any solutions. Meanwhile the even
value of k give us the equation e® = 1 which implies that x = 0. Thus we find that e* = 1 precisely
when z = 0 + ikm with k even, or equivalently z = i2kn with k € Z.

Now, if z and w are any two complex numbers, the equation e* = e* can be multiplied by e~
(which is never zero) to yield

w

eFTW — gWmW — 60 -1

where we have used the properties of the complex exponential from problem 11 in Chapter 3 of the
course text. Applying the result of the first paragraph, we see that

eZ—'lU — 1
precisely when z — w = 27k for some k € Z which is equivalent to

z=w + 127k for k € Z.



(2) (3.19) Find all solutions to the equation
ee) = 1.

Solution. Since 1 can be written 1 = €Y, it follow from problem that
el =1=2¢"
precisely when there is a k € Z so that
e = i2rk. (1)

If k£ = 0, this has no solutions since e* is never 0. We consider the cases k > 0 and k < 0 separately.
If k > 0 we write i27k in polar/exponential form, and find that

|i2nk| = 27 |k| = 2k since k > 0
6]
2k = (2mk) i
_ log(2mk);
_ Glog(2mk) i /2
— olog(2mk)+im/2
Thus if & > 0 the equation (I]) becomes
o7 — log(2mhk)+im/2
which according to problem is equivalent to
z = log(2nk) + i(m/2 4 2mn)
for n € Z.
Meanwhile, if k& < 0 to write i27k in polar/exponential form, we first compute the modulus to
find that
|i2mk| = 27 |k| = =27k since k < 0
SO
i2nk = (—27k) (—1i)
= elog(=2mh) (_;)
— plog(—2wk) ;i3m/2
— plog(—2mk)+i3m/2
Thus if £ < 0 the equation becomes
oF — elog(—2mk)+i3m/2
which according to problem is equivalent to
z = log(—27k) 4+ i(37/2 + 27n)

for n € Z.
In summary then, the solutions to e(¢”) =1 are

B {log(27rk) +i(m/2 4 2mn) forn € Z and k € Z N (0, +00)
log(—27k) +i(37/2 + 27n) forn € Z and k € ZN (—0,0).

We can combine these two into one expression as

z =log(2m |k|) + i(w/2 +nw) forne€Zand ke Z\ {0}.



(3) (a) Show that for complex numbers z, w that
cosz = cosw and sin z = sinw

if and only if z = w + 2k7 for some k € Z.

Proof. We first assume that z = w + 2kx for some k € Z. Using the definition cos z = %(eiz +
e~ ) we then compute that

1 _
cos z = cos(w + 27k) = i(el(w””k) + e_’(“”'%k))

_ }(ei(w+27rk) + efi(w+27rk)) 1(eiw+i27rk + 67iw7i27rk))

2 2
1. . 1 _
_ 5(6211162271'k: + 672’(1)671271']6)) — 5(ezw + efzw) = cOSw

and similarly

1 . .
sin z = sin(w + 27k) = ?(e’(“’+2”k) — e i(w2mh))
i

1 . X 1, . .. .
— 7‘(61(11)-%271'](:) _ e—z(w+27rk)) — *,(BMU-HQTHC _ e—’L?D—lQ‘n’k‘))
2 21
— %(eiweﬂﬂk _ e—iwe—iQﬂ-k)) — 21 (eiw _ e—iw) = sinw.
7 ]

Therefore, if z = w + 2k it follows that cos z = cosw and sin z = sin w.
We next assume that cosz = cosw and sin z = sinw. These two equations, according to
the definitions, are equivalent to

1 . . 1 . . . , , .
5(61,2 + e—lz) — 5(e'L'lU + e—lu)) and ﬂ(elz _ e—’LZ) — Z(elw _ e—zw)

which in turn are equivalent to
eiz + e—iz — eiw + e—iw and eiz _ e—iz — eiw _ e—iw-

Adding these two equations together leads to

eiz _ eiw.
According to problem this will be true precisely when there is a k € Z so that

iz = iw + 27k
which is equivalent to
z=w+ 27k.

Hence cos z = cosw and sin z = sinw implies that z = w + 27k for some k € Z. O



(b) Show that
cos(z + w) = cos z cosw — sin z sinw

for any z, w € C.

Proof. Using the definition of cos z and sin z we have that
o . [ eitqe iz T W G _g—iw
COS Z COS W smzsmwf( 5 ) ( 5 ) ( 5 ) ( 5 )
1 1z —1z Tw —tw 1 1z —1z Tw —tw
=gl +e7)(e™ +e7™) — Z (e — e ) (" — "))

— %[(ezzezw + e*lzelw + 62267’“1) + 67742677/[0)

+ (eizeiw o efizeiw o eizefiwx + efizefiw)]
_ %[2eizeiw 4 2€7izefiw]
— %(ei(z-&-w) + e—i(z+w))
= cos(z + w).

Therefore
cos(z + w) = cos z cos w — sin z sin w.



(4) Compute [, 22z dz where C is the curve defined by
2(t) =t +it* for t € [0,1].

Solution. According to the definition

/szzdz:/olz(t)gz(t)z'(t) dt

We have that
2(t) =1+i2t
and

I
—~
~
~—
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~
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2(t) |2 = (¢ +it?) (12 + 1Y) = (£ +£°) +i(t* +¢°)
2(t)22() 2/ (t) = [(t3 + %) +i(t* + O)][1 + 2¢]

= (83 + 15 — 265 — 27) - i(t* + % 4 2¢* 4 2t5)

= (£ — 15— 2t7) +i(3t* + 3t%).
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(5) Let u, v : C — R be continuous functions and let z, y : [a,b] — U C R be differentiable functions.
Define f(z) = u(z) + iv(z) and define C' to be the curve z(t) = x(t) + iy(t) for t € [a,b]. Find
formulas for the real and imaginary parts of [ o f(z) dz in terms of integrals of expressions involving
u, v, x, and y.

Solution. Since

Z(t) =a'(t) + iy (1)
we use the definition of line integral to compute

b
|z [ e o
b
= [ luta(®).9(6) + iv(a (0. )]’ + i/ (O] e

ab
— [ el y()2'(0) ~ wla(®). 9(0)y/(0) + 1 [u(al0),y(O) O + v(a(0)y(0)a' (1) e
b 1
- / a(a(t), y(1)a' (£) — v(a(t), y(0)y (£) di + i / w(a(t), y(£)y' (1) + v((t), y(t)2' (1) b
We conclude thatE|
b
Re ( /C £(2) dz) - / u(a(t), y(£)2! (t) — v(a (), y(O)y (£) b

and

I ( 1) dz) -/ " (0w () + (e (0), 4 (0) do

1 In multivariable calculus courses (and other contexts) the integrals on the right hand side here are sometimes written in

the notation
Re (/ f(z)dz) = / udr —vdy
C C

Im(/cf(z)dz):/cudy—i-vdx

which also would have been acceptable answers.

and



