
Math 425, Homework #1 Solutions

(1) (1.9)
(a) Use complex algebra to show that for any four integers a, b, c, and d there are integers u and v

so that
(a2 + b2)(c2 + d2) = u2 + v2

Proof. If we let z1 = a+ ib and z2 = c+ id then we have that

(a2 + b2)(c2 + d2) = |z1|2 |z2|2

= z1z̄1z2z̄2

= z1z2z1z2 = |z1z2|2 = Re(z1z2)2 + Im(z1z2)2

= z1z̄2(z̄1z2) = z1z̄2(z1z̄2) = |z1z̄2|2 = Re(z1z̄2)2 + Im(z1z̄2)2.

Since z1z2 = (ac− bd) + i(ad+ bc) and z1z̄2 = (ac+ bd) + i(bc− ad) appropriate values of u and
v would be given by

u = ac− bd and v = ad+ bc

or
u = ac+ bd and v = bc− ad.

Note that these choices of u and v are integers because products of integers are integers and
sums/differences of integers are integers. �

(b) Assume that the integers a, b, c, and d are all nonzero and that a2 6= b2. Show that we can find
integers u and v satisfying the above equation with both u and v nonzero.

Proof. We need to show that under the assumptions given that one of the choices of u and v
from part (a) have both u and v nonzero. We rename our answers to part (a) as

u1 = ac− bd and v1 = ad+ bc

and
u2 = ac+ bd and v2 = bc− ad

and we compute

u1v1 = (ac− bd)(ad+ bc)

= a2cd+ abc2 − abd2 − b2cd
= cd(a2 − b2) + ab(c2 − d2)

and

u2v2 = (ac+ bd)(bc− ad)

= abc2 + b2cd− a2cd− abd2

= −cd(a2 − b2) + ab(c2 − d2).

Subtracting, we have that

u1v1 − u2v2 = 2cd(a2 − b2)

which is nonzero because c 6= 0, d 6= 0, and a2 6= b2. But if u1v1 − u2v2 6= 0 then at least one
of u1v1 and u2v2 is nonzero, which in turn means that either u1 and v1 are both nonzero or u2
and v2 are both nonzero. �



(c) Assume that the integers a, b, c, and d are all nonzero, that a2 6= b2 and that c2 6= d2. Show
that we can find two different sets

{
u2, v2

}
and

{
s2, t2

}
(with u, v, s, and t integers) so that

(a2 + b2)(c2 + d2) = u2 + v2 = s2 + t2

Proof. Labeling our answers from part (a) by

u = ac− bd and v = ad+ bc

and
s = ac+ bd and t = bc− ad

we seek to show that
{
u2, v2

}
and

{
s2, t2

}
are distinct sets. First we compute

u2 − s2 = (u− s)(u+ s)

= (−2bd)(2ac)

= −4abcd

which is nonzero by the assumption that a, b, c, and d are all nonzero. Therefore u2 6= s2.
Meanwhile computing

u2 − t2 = (u− t)(u+ t)

= (ac− bd− bc+ ad)(ac− bd+ bc− ad)

= [(a− b)(c+ d)][(a+ b)(c− d)]

= [(a− b)(a+ b)][(c− d)(c+ d)]

= (a2 − b2)(c2 − d2)

which is nonzero by the assumptions that a2 6= b2 and c2 6= d2. Therefore u2 6= t2. This
moreover allows us to conclude that v2 6= s2 and v2 6= t2 since otherwise we could use that

u2 + v2 = s2 + t2

to conclude that either u2 = s2 or u2 = t2. Therefore the sets
{
u2, v2

}
and

{
s2, t2

}
are

different. �



(d) Give a geometric interpretation and proof of the results in (b) and (c) above.

Proof. For part (b) we are assuming that a, b, c and d are nonzero and that a2 6= b2. The
first assumption that a, b, c and d are all nonzero implies that the real and imaginary parts
of z1 = a + ib and z2 = c + id are nonzero, which geometrically means that z1 and z2 do not
point along the direction of one of the axes. Meanwhile the assumption that a2 6= b2 implies
that |a| 6= |b| which implies that a 6= ±b. Geometrically this means that z1 does not point in
the diagonal directions given by the lines x = y and x = −y. We can sum up these facts by
saying that if we write z1 and z2 in polar form

z1 = r1(cos θ1 + i sin θ1)

z2 = r2(cos θ2 + i sin θ2)

that θ1 is not an integer multiple of π/4 and that θ2 is not an integer multiple of π/2.
To show that u and v can be chosen both nonzero, we need to show the real and imaginary

parts of either z1z2 and z1z̄2 are both nonzero, or geometrically that either z1z2 or z1z̄2 does
not point along one of the axes. In polar coordinates we have

z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) (1)

z1z̄2 = r1r2(cos(θ1 − θ2) + i sin(θ1 − θ2)). (2)

If we were to assume that both z1z2 and z1z̄2 point along the axis, we’ll have that

θ1 + θ2 = kπ/2

θ1 − θ2 = lπ/2

for some integers k and l. Adding these equations together, and dividing by 2 we find that

θ1 = (k + l)π/4

so that θ1 is an integer multiple of π/4. This contradicts shows that at least one of z1z2 or z1z̄2
do not point along one of the axes, and therefore has nonzero both real and imaginary parts.

For part (c), we seek to show that
{
u2, v2

}
6=
{
s2, t2

}
. This is equivalent to showing that

(|u| , |v|) 6= (|s| , |t|) and that (|u| , |v|) 6= (|t| , |s|) We can argue geometrically (using similar
triangles) that either of the above equalities holding is equivalent to the argument of z1z2
differing from that of z1z̄2 or that of z1z̄2 = z̄1z2 by an integer multiple of π/2. Using (1)–(2)
if the arguments of z1z2 and z1z̄2 differ by an integer multiple of π/2 we get that

2θ2 = [θ1 + θ2]− [θ1 − θ2] = kπ/2

which implies that θ2 = kπ/4 so θ2 is an integer multiple of π/4. As discussed above, this would
imply that either c2 = d2 or that cd = 0 in contradiction to our assumptions. Similarly, if the
arguments of z1z2 and z̄1z2 differ by an integer multiple of π/2, we use that

z̄1z2 = r1r2(cos(−θ1 + θ2) + i sin(−θ1 + θ2))

to find that
2θ1 = [θ1 + θ2]− [−θ1 + θ2] = kπ/2

so θ1 = kπ/4 and hence θ1 is an integer multiple of π/4 in contradiction to the assumptions
that a2 6= b2 and ab 6= 0. �



(2) (1.10)
(a) Prove that

|z1 + z2|2 + |z1 − z2|2 = 2
(
|z1|2 + |z2|2

)
for any complex numbers z1, z2.

Proof. We compute:

|z1 + z2|2 + |z1 − z2|2

= (z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2) definition of modulus

= (z1 + z2)(z̄1 + z̄2) + (z1 − z2)(z̄1 − z̄2) prob. 7 from ch. 1

= z1z̄1 + z2z̄1 + z1z̄2 + z2z̄2 + z1z̄1 − z2z̄1 − z1z̄2 + z2z̄2

= 2 (z1z̄1 + z2z̄2)

= 2
(
|z1|2 + |z2|2

)
. definition of modulus

�

(b) Give a geometric interpretation of the formula in part (a) (for this part of the problem you may
assume that z1 and z2 are both nonzero and have different arguments).

Answer. If z1 and z2 are both nonzero and have different arguments (i.e. point in different
directions) then the parallelogram with sides z1 and z2 will have diagonals given by z1 + z2 and
z1 − z2:

The identity in part (a) then corresponds to the fact from plane geometry that the sum of the
squares of lengths of the diagonals of a parallelogram are equal to the sum of squares of the
four side lengths of the parallelogram. �



(3) (1.16) In each part, identify the set of points which satisfy the given equation.
(a) |z| = Re(z) + 1

Answer. Writing in terms of x and y with z = x+ iy, the equation becomes√
x2 + y2 = x+ 1. (3)

Squaring both sides yields

x2 + y2 = x2 + 2x+ 1

which simplifies down to

y2 = 2x+ 1 (4)

This is an equation of a parabola which open rightward.
Note that we need to check that every solution to (4) is also a solution to (3) since squaring

both sides of an equation may introduce new solutions. Note that if a point (x, y) satifies (4)
we must have x ≥ −1/2 since y2 ≥ 0 always. In particular we will always have x > −1 for such
a value of x. Substituting y2 = 2x+ 1 into the left-hand side of (3) we find that√

x2 + y2 =
√
x2 + 2x+ 1

=
√

(x+ 1)2

= |x+ 1|
= x+ 1

where in the last line we’ve used that x > −1. Therefore every solution to (4) is a solution to
(3). �

(b) |z − 1|+ |z + 1| = 4

Answer. Geometrically, this equation says that the sum of the distance from z to 1 and the
distance from z to −1 equals 4. The set of such z form an ellipse with foci (−1, 0) and (1, 0),
and semi-major axis 2. The equation of such an ellipse is given by

x2

4
+
y2

3
= 1.

Analytically we can prove this by substituting z = x+iy and using the definition of modulus
to rewrite the equation as√

(x− 1)2 + y2 +
√

(x+ 1)2 + y2 = 4. (5)

Since both sides are nonnegative, we can square this equation without introducing new solutions
to find

(x− 1)2 + y2 + 2
√

(x− 1)2 + y2
√

(x+ 1)2 + y2 + (x+ 1)2 + y2 = 16

which (after some tedious but straightforward computations) we can simplify to√
x4 + y4 + 2x2y2 + 2y2 − 2x2 + 1 = 7− x2 − y2.

Squaring both sides again leads to

x4 + y4 + 2x2y2 + 2y2 − 2x2 + 1 = (7− x2 − y2)2

= 49− 14x2 − 14y2 + 2x2y2 + x4 + y4

which we can simplfy to

12x2 + 16y2 = 48



or equivalently
x2

4
+
y2

3
= 1. (6)

As in part (a) we need to check that every solution to (6) is also a solution to (5) since we
might have introduced new solutions the second time we squared the equation. We first note
that if (x, y) solves (6) we must have that x ∈ (−2, 2) since we have that

x2

4
− 1 = −y

2

3
≤ 0 ⇒ x2 ≤ 4 ⇒ −2 ≤ x ≤ 2.

Substituting y2 = 3(1− x2/4) into the left-hand-side of (5) then leads to√
(x− 1)2 + y2 +

√
(x+ 1)2 + y2 =

√
(x− 1)2 + 3(1− x2/4) +

√
(x+ 1)2 + 3(1− x2/4)

=

√
x2

4
− 2x+ 4 +

√
x2

4
+ 2x+ 4

=

√(x
2
− 2
)2

+

√(x
2

+ 2
)2

=
∣∣∣x
2
− 2
∣∣∣+
∣∣∣x
2

+ 2
∣∣∣

and using that x ∈ (−2, 2), we conclude that x
2 − 2 < 0 and that x

2 + 2 > 0 so we can continue

= −
(x

2
− 2
)

+
(x

2
+ 2
)

= 4.

Thus every solution to (6) is also a solution to (5). �

(c) zn−1 = z̄ (where n is an integer)

Answer. We consider the equation in the following cases seperately: n = 0, n = 1, n = 2, n ≥ 3,
and n ≤ −1.

We first consider the case that n = 2. In this case the equation reduces to

z = z̄ ⇐⇒ z − z̄ = 0.

Writing z = x+ iy, this becomes

(x+ iy)− (x− iy) = 0 ⇐⇒ 2iy = 0 ⇐⇒ y = 0.

Thus in the case that n = 2 the set of solutions to the equation is the real axis (this should be
geometrically clear from the equation z = z̄).

We next consider the case n = 0. Here the equation becomes 1 = z̄ which is true precisely
when z = 1.

We next consider n = 0, i.e. z−1 = z̄. Here we must have z 6= 0 or else the left-hand side is
not defined. Multiplying both sides by z, turns the equation into 1 = zz̄ = |z|2, so the solution
set is precisely the set of complex numbers with modulus 1. Therefore in the case n = 0, we
find that the solution set the equation is the unit circle.

We next consider the case n ≥ 3. In this case z = 0 is solution. For z 6= 0 we can take the
modulus of each side of the equation to find that

zn−1 = z̄ ⇒
∣∣zn−1∣∣ = |z̄| ⇒ |z|n−1 = |z| ⇒ |z|n = 1 ⇒ |z| = 1

so a nonzero solution must have modulus 1. Multiplying both sides of the original equation
zn−1 = z̄ by z 6= 0, we find that z 6= 0 is a solution precisely when

zn = zz̄ = |z|2 = 1,



i.e. precisely when z is an n-root of unity. Therefore the solutions in this case are z = 0 and
z = cos(2πk/n) + i sin(2πk/n) for k ∈ {0, 1, . . . , n− 1}.

We finally consider the case n ≤ −1. In this case that left hand side of the equation is
not defined so we are therefore free to assume that z 6= 0. Now, arguing as in the previous
paragraph, we have that

zn−1 = z̄ ⇒
∣∣zn−1∣∣ = |z̄| ⇒ |z|n−1 = |z| ⇒ |z|n = 1 ⇒ |z| = 1

so a solution must have modulus 1. Again arguing as in the previous paragraph, we multiply
both sides by z to find that z solves zn−1 = z̄ precisely when it solves

zn = 1

(with z now negative). The solutions to this equation are precisely the |n|-th roots of unity, i.e.
z = cos(2πk/ |n|) + i sin(2πk/ |n|) for k ∈ {0, 1, . . . , |n| − 1}. �



(4) (2.2) Let f be a complex-valued function.
(a) Assume for all purely real z that f(z) is purely real and differentiable. Show that f ′(z) is also

purely real for all purely real z.

Proof. Let z = x with x real. By assumption, f is differentiable at x, so the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists. Using the sequential characterization of limits, this implies that

f ′(x) = lim
n→∞

f(x+ hn)− f(x)

hn

for any sequence hn converging to zero. Letting hn = 1/n, then f(x+ 1/n) is purely real for all
n since x+ 1/n is real. Therefore

f(x+ 1/n)− f(x)

1/n

is purely real for all n ∈ N (since differences and quotients of purely real quantities are purely
real) and hence

f ′(x) = lim
n→∞

f(x+ 1/n)− f(x)

1/n

is purely real since

Im(f ′(x)) = lim
n→∞

Im

(
f(x+ 1/n)− f(x)

1/n

)
= lim
n→∞

0 = 0.

�

(b) Assume for all purely imaginary z that f(z) is purely real and differentiable. Show that f ′(z)
is purely imaginary for all purely imaginary z.

Proof. Let z = iy with y real. By assumption, f is differentiable at iy, so the limit

f ′(iy) = lim
h→0

f(iy + h)− f(iy)

h

exists. Using the sequential characterization of limits, this implies that

f ′(iy) = lim
n→∞

f(iy + hn)− f(iy)

hn

for any sequence hn converging to zero. Letting hn = i/n, then f(iy+ i/n) is purely real for all
n since i(y + 1/n) is purely imaginary. Therefore, using that 1/i = −i, we can see that

f(iy + i/n)− f(iy)

i/n
= −if(iy + i/n)− f(iy)

1/n

is purely imaginary (since it is of the from i · (purely real)) and hence

f ′(iy) = lim
n→∞

f(iy + i/n)− f(iy)

i/n

is purely imaginary since

Re(f ′(iy)) = lim
n→∞

Re

(
f(iy + i/n)− f(iy)

i/n

)
= lim
n→∞

0 = 0.

�



(5) (a) Assume that f : C → C is differentiable everywhere and that f(z)(= f(x + iy)) is purely real
along both of the lines x = a and y = b for some real constants a and b. Prove that f ′(a+ib) = 0.

Proof. First assume that a = b = 0, i.e. that f is purely real along both the real and imaginary
axes. Then problem 4(a) lets us conclude that f ′(0) is purely real, while problem 4(b) lets us
conclude that f ′(0) is purely imaginary. Since 0 is the only number that is both purely real and
purely imaginary, it must be the case that f ′(0) = 0.

Now, to address the general case, we define g(z) = f(z + a + ib). Then g is differentiable
everywhere since

lim
h→0

g(z + h)− g(z)

h
= lim
h→0

f(z + a+ ib+ h)− f(z + a+ ib)

h
(7)

and the limit on the right exists by the assumption that f is differentiable everywhere. Moreover,
g is real along the real axis, since for x real we have g(x) = f(x+a+ ib) and f is assumed to be
real along the line y = b. Similarly g is real along the imaginary axis, since for y real we have
that g(iy) = f(a+ i(b+ y)) and f is assumed to real along the line x = a.

We can now apply the argument of the first paragraph to g and conclude that g′(0) = 0,
using (7), we can conclude that f ′(a+ ib) = g′(0) = 0. �

(b) Assume that f : C → C is differentiable everywhere and that f(z) is purely real for all z ∈ C.
Show that f ′(z) = 0 for all z ∈ C.

Proof. Since f(z) is real everywhere, it is real along the lines x = a and y = b for any real
numbers a and b. Therefore, applying part (a) to f , we can conclude that f(a+ ib) = 0 for all
a and b. �

(c) Assume that f : C → C is differentiable everywhere and that f(z) is purely imaginary for all
z ∈ C. Show that f ′(z) = 0 for all z ∈ C.

Proof. Define g(z) = if(z). Then g(z) is purely for all z ∈ C since f(z) is purely imaginary (f
must be of the form f(z) = iv(z) with v real, so g(z) = if(z) = i2v(z) = −v(z)). Moreover,
since f is differentiable everywhere and

lim
h→0

g(z + h)− g(z)

h
= lim
h→0

if(z + h)− if(z)

h
= i lim

h→0

f(z + h)− f(z)

h

we can conclude that g(z) is differentiable everywhere and g′(z) = if ′(z). Applying part (b) to
g(z), we can conclude that g′(z) = 0 for all z ∈ C, and therefore that f ′(z) = g′(z)/i = 0/i = 0
for all z ∈ C. �



(6) (2.15) Find the radius of convergence of each of the following series.
(a)

∑∞
n=0 sin(n)zn

Proof. We will argue that

lim sup |sin(n)|1/n = 1

in a series of claims. It will then follow from Theorem 2.8 that the radius of convergence of∑∞
n=0 sin(n)zn is 1/1 = 1.

Claim 1. For any x ∈ R, if |sinx| ≤ 1/2, then |sin(x+ 2)| > 1/2.

Proof of Claim 1. If |sinx| ≤ 1/2 then there exists an integer k so that

−π/6 ≤ x− kπ ≤ π/6.
Using that 3 < π, we have that 2 < 2π

3 , and using that π < 4 we have that π
2 < 2, so

π

2
< 2 <

2π

3
.

Adding this inequality to the previous one, we can conclude that

−π/6 + π/2 < x+ 2− kπ < π/6 + 2π/3

or
π/3 < x+ 2− kπ < 5π/6

which implies that |sin(x+ 2)| > 1
2 . �

Claim 2. For any ε > 0, there is an N ∈ N so that for n ≥ N , |sin(n)|1/n < 1 + ε.

Proof of Claim 2. We have for any n ∈ N that 0 ≤ |sinn| ≤ 1, from which it follows that

|sinn|1/n ≤ 11/n = 1 for all n ∈ N, and therefore |sinn|1/n < 1 + ε for n ∈ N and ε > 0. �

Claim 3. For any ε > 0 and any N ∈ N there is an n ≥ N so that |sinn|1/n > 1− ε.

Proof of Claim 3. Let ε > 0 and let N ∈ N. Since limn→∞(1/2)1/n = 1, we can find an M ∈ N
with M ≥ N so that for all n ≥M ,

(1/2)1/n > 1− ε.
But then it follows from Claim 1 that either |sin(M)| > 1/2 or |sin(M + 2)| > 1/2, which in
turn implies that either

|sin(M)|1/M > (1/2)1/M > 1− ε
or

|sin(M + 2)|1/(M+2)
> (1/2)1/(M+2) > 1− ε.

In either case, we have found an n ≥ N so that |sin(n)|1/n > 1− ε. �

To finish the proof, we merely observe that according to a theorem stated in lecture, the

statement lim sup |sin(n)|1/n = 1 is equivalent to both Claims 2 and 3 being true. Therefore

lim sup |sin(n)|1/n = 1 and the radius of convergence of the power series
∑∞
n=0 sin(n)zn is 1. �

(b)
∑∞
n=0 e

−n2

zn

Proof. We compute

lim
n→∞

∣∣∣e−n2
∣∣∣ 1n = lim

n→∞
e−n = 0.

Therefore according to Theorem 2.8, the radius of convergence of the power series is +∞. �


