Use applicable theorems to compute

$$\int_C \frac{2z}{z^2 + 1} \, dz$$

where C is the curve given by:

(1)
$$z(t) = i + e^{it}$$
 for $t \in [0, 2\pi]$

(2)
$$z(t) = -i + e^{it}$$
 for $t \in [0, 2\pi]$

(3)
$$z(t) = -1 + e^{it}$$
 for $t \in [0, 2\pi]$.

(4)
$$z(t) = 1 + i + 2e^{it}$$
 for $t \in [0, 2\pi]$

(5)
$$z(t) = 1 + i + 2e^{-it}$$
 for $t \in [0, 4\pi]$

(6)
$$z(t)=3e^{it}$$
 for $t\in[0,2\pi]$ (Hint: use a partial fraction decomposition of $\frac{z}{z^2+1}$.)

(Answers on the next page).

Answers: For each part it is convenient to rewrite the integral as $\int_C \frac{2z}{(z+i)(z-i)} dz$.

- (1) $2\pi i$ (Apply Cauchy Integral Formula with a=i and $f(z)=\frac{2z}{z+i}$.)
- (2) $2\pi i$ (Apply CIF with a = -i and $f(z) = \frac{2z}{z-i}$.)
- (3) 0 (Apply the closed curve theorem to $f(z) = \frac{2z}{z^2+1}$.)
- (4) $2\pi i$ (Apply CIF with a=i and $f(z)=\frac{2z}{z+i}.$)
- (5) $-4\pi i$ (Use problem (4) with Proposition 4.7.)
- (6) $4\pi i$ (Rewrite $\int_C \frac{2z}{(z+i)(z-i)} dz = \int_C \frac{1}{z+i} dz + \int_C \frac{1}{z-i} dz$. Apply CIF with f(z) = 1 and a = -i to the first integral on the right and apply CIF with f(z) = 1 and a = i to the second integral on the right.)