
Math 425 Test II Solutions April 11, 2011

1. Evaluate the following line integrals.

(a)
∫
C z̄ dz, where C is the straight-line segment connecting 0 to 2 + 2i.

Answer. The curve C can be parametrized as

z(t) = t(2 + 2i) t ∈ [0, 1].

We note that z′(t) = 2 + 2i. Using the definition of line integral, we then find that∫
C
z̄ dz :=

∫ 1

0
z̄(t)z′(t) dt

=

∫ 1

0
t(2− 2i)(2 + 2i) dt

=

∫ 1

0
8t dt

=
[
4t2
]1
t=0

= 4.

(b)
∫
C z cos2 z dz, where C is the boundary of the triangle with vertices 0, i, and 1 + i

traversed once around in the counter-clockwise direction.

Answer. The function f(z) = z cos2 z is an entire function (since cos z and z are entire
and products of entire functions are entire). Since the curve is closed, the closed curve
theorem implies that ∫

C
z cos2 z dz = 0.



2. (a) State the Cauchy Integral Formula. In your statement, use complete sentences to
explain all notation and any assumptions which are necessary for the Cauchy Integral
Formula to be true.

Answer. Let D be a closed disk, C the boundary circle of the disk traversed once in the
counterclockwise direction, g an analytic function on the disk D, and a a point in the
interior of D. Then the Cauchy Integral Formula says that

g(a) =
1

2πi

∫
C

g(z)

z − a
dz.

(b) Let f(z) = z2

z2+2z+2
. Evaluate the line integral

∫
C f(z) dz where C is the smooth curve

defined by:

Before answering the individual questions, we rewrite the function f by factoring the
denominator. Using the quadratic formula, we find that the zeroes of z2 + 2z + 2 occur
at

z =
−2±

√
4− 4(1)(2)

2
= −1± i

so we find that z2 + 2z + 2 = (z − [−1 + i])(z − [−1− i]), and hence the function f can

be rewritten f(z) = z2

(z−[−1+i])(z−[−1−i]) = z2

(z+1−i)(z+1+i) .

i. z(t) = i+ 2eit t ∈ [0, 2π]

Answer. The curve in question here is a circle of radius 2 centered at i travelled
once in the counterclockwise direction. Computing the distance from −1± i to i we
see that the point −1 + i is in the interior of the disk enclosed by C, and the point
−1− i is outside the disk enclosed by C. Thus the function g(z) = z2

z+1+i is analytic
on the closed disk enclosed by C so we can apply the Cauchy Integral Formula with
a = −1 + i to find that∫

C

z2

z2 + 2z + 2
dz =

∫
C

z2/(z + 1 + i)

z − (−1 + i)
dz =

∫
C

g(z)

z − (−1 + i)
dz

= 2πig(−1 + i) = 2πi
(−1 + i)2

−1 + i+ 1 + i
= π(−1 + i)2

= −2πi.
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ii. z(t) = −1− i+ e−i2t t ∈ [0, 2π]

Answer. The curve is the boundary of a disk or radius 1 centered at −1−i traversed
twice in the clockwise direction. The point −1 − i is clearly in the interior of the
disk (since it’s the center) while the point −1 + i is distance two to the center so

it is outside the disk. Thus the function g(z) = z2

z+1−i is analytic on the closed
disk enclosed by C. We can therefore apply the Cauchy Integral Formula with a =
−1− i and with C ′ the boundary of this disk traversed once in the counterclockwise
direction to find:∫

C′

z2

z2 + 2z + 2
dz =

∫
C′

z2/(z + 1− i)
z − (−1− i)

=

∫
C′

g(z)

z − (−1− i)

= 2πig(−1− i) = 2πi
(−1− i)2

−1− i+ 1− i
= −π(−1− i)2 = −2πi.

Thus for the curve C (which traces C ′ twice in the opposite direction) we need to
multiply the above by −2 to get∫

C

z2

z2 + 2z + 2
dz = 4πi.
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3. Suppose that the power series
∑∞

k=0 ak(z − 4)k satisfies

∞∑
k=0

ak(z − 4)k =
cos z

z2 + 9

for all z in some open set containing z = 4. Find the radius of convergence of this power
series, and explain why you know your answer is correct.

Proof. We saw in class that a function can be written as a convergent power series centered
at z = 4 on the largest disk centered at z = 4 on which the function is analytic. Since cos z
and z2 + 9 are entire functions, cos z

z2+9
will be analytic wherever the denominator is nonzero,

i.e. for all z 6= ±3i. Computing the distance from 4 to ±3i, we find |4−±3i| =
√

42 + 32 = 5
so cos z

z2+9
is analytic on an open disk of radius 5 centered at z = 4. Therefore, there exists a

power series
∑∞

k=0 bk(z − 4)k with radius of convergence equal to 5 and with

cos z

z2 + 9
=
∞∑
k=0

bk(z − 4)k

for all z with |z − 4| < 5. By the assumption that

∞∑
k=0

ak(z − 4)k =
cos z

z2 + 9

on some open set containing z = 4, the uniqueness theorem for power series tells us that
ak = bk for all k. Therefore the radius of convergence of

∑∞
k=0 ak(z − 4)k is 5.
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4. Suppose that f is an entire function satisfying

|f(z)| ≤ |z|5

for all z ∈ C. Show that the k-th derivative f (k)(z) satisfies f (k)(0) = 0 for all k ≥ 6.
(Recall that since f is entire

f (k)(0) =
k!

2πi

∫
C

f(z)

zk+1
dz

where C is a circle centered at 0 traversed once in the counter-clockwise direction. What
happens as the radius of C gets large?)

Proof. Let CR denote the circle of radius R centered at 0. The assumption that |f(z)| ≤ |z|5
for all z implies that |f(z)| ≤ R5 on CR, and hence∣∣∣∣f(z)

zk

∣∣∣∣ ≤ R5

Rk+1
= R4−k

for any z on CR. Using the ML-formula with the fact that the arclength of CR is 2πR, we
then get that∣∣∣f (k)(0)

∣∣∣ =

∣∣∣∣ k!

2πi

∫
CR

f(z)

zk+1
dz

∣∣∣∣ =
k!

2π

∣∣∣∣∫
CR

f(z)

zk+1
dz

∣∣∣∣ ≤ k!

2π
R4−k(2πR) = k!R5−k

If k ≥ 6, then 5− k ≤ −1 < 0 so we find that

0 ≤
∣∣∣f (k)(0)

∣∣∣ = lim
R→∞

∣∣∣f (k)(0)
∣∣∣ ≤ lim

R→∞
k!R5−k = 0

We conclude that
∣∣f (k)(0)

∣∣ = 0 and hence f (k)(0) = 0 for all k ≥ 6.
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5. Let f : C → C be a continuous (but not necessarily analytic) function, and for z ∈ C let Cz

be the smooth curve defined by
z(t) = tz t ∈ [0, 1],

so that Cz is the straight line segment connecting 0 and z. Define a function F : C→ C by

F (z) =

∫
Cz

f(w) dw.

Prove that limz→0
F (z)
z = f(0).

Proof. Let ε > 0. Since f is continuous, there is a δ > 0 so that for 0 < |z| < δ, |f(z)− f(0)| <
ε. Then for |z| < δ, we have that∣∣∣∣F (z)

z
− f(0)

∣∣∣∣ =

∣∣∣∣1z
∫
Cz

f(w) dw − f(0)

∣∣∣∣
=

∣∣∣∣1z
∫
Cz

f(w) dw − f(0)
1

z

∫
Cz

1 dw

∣∣∣∣ since

∫
Cz

1 dw = [w]zw=0 = z

=

∣∣∣∣1z
∫
Cz

f(w)− f(0) dw

∣∣∣∣
=

1

|z|

∣∣∣∣∫
Cz

f(w)− f(0) dw

∣∣∣∣
≤ 1

|z|
ε arclength(Cz) ML-formula with |f(w)− f(0)| < ε on Cz

=
1

|z|
ε |z| = ε.

We conclude that limz→0
F (z)
z = f(0).

Alternate proof. Write f(z) = u(z) + iv(z) with u(z) = Re(f(z)) and v(z) = Im(f(z)). Using
the definition of line integral we have that

F (z)

z
=

1

z

∫
Cz

f(w) dw

=
1

z

∫ 1

0
f(tz)z dt

=

∫ 1

0
f(tz) dt

=

∫ 1

0
u(tz) dt+ i

∫ 1

0
v(tz) dt.
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Since u and v are continuous, the mean value theorem for integrals from calculus tells us
there are point sz, tz ∈ [0, 1] so that∫ 1

0
u(tz) dt = (1− 0)u(szz) = u(szz) and

∫ 1

0
v(tz) dt = v(tzz),

so we can write
F (z)

z
= u(szz) + iv(tzz).

Letting z → 0, we have that szz → 0 and tzz → 0 since sz, tz ∈ [0, 1] so, by continuity of u
and v, we conclude that

lim
z→0

F (z)

z
= u(0) + iv(0) = f(0).
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