Review Sheet: Sequences in \mathbb{R}

Definition 1. Let S be any set. A sequence in S is a function $f : \mathbb{N} \to S$.

Usually we will denote $x_k = f(k)$. Common notations for sequences include: $\{x_k\}, (x_k), \{x_k\}_{k=1}^{\infty}, (x_k)_{k=1}^{\infty}, \{x_k\}_{k\in\mathbb{N}}, (x_k)_{k\in\mathbb{N}}, \{x_1, x_2, \ldots\}, (x_1, x_2, \ldots).$

Definition 2. Let $\{x_k\}$ be a sequence in \mathbb{R} .

- (1) $\{x_k\}$ is said to converge to $L \in \mathbb{R}$ if for every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ so that for all $k \ge N$, $|x_k - L| < \varepsilon$. If $\{x_k\}$ converges to L, we will write $\lim_{k\to\infty} x_k = L$, and L is said to be the *limit* of $\{x_k\}$.
- (2) $\{x_k\}$ is said to be *convergent* if x_k converges to some $L \in \mathbb{R}$.
- (3) $\{x_k\}$ is said to be *bounded* if there is an M > 0 so that $|x_k| \leq M$ for all $k \in \mathbb{N}$.
- (4) $\{x_k\}$ is said to be a *Cauchy sequence* if for any $\varepsilon > 0$ there and is an $N \in \mathbb{N}$ so that for any $n \ge N$ and $m \ge N$, $|x_n x_m| < \varepsilon$.
- (5) $\{x_k\}$ is said to be *increasing* if $x_{k+1} \ge x_k$ for all $k \in \mathbb{N}$.
- (6) $\{x_k\}$ is said to be strictly increasing if $x_{k+1} > x_k$ for all $k \in \mathbb{N}$.
- (7) $\{x_k\}$ is said to be *decreasing* if $x_{k+1} \leq x_k$ for all $k \in \mathbb{N}$.
- (8) $\{x_k\}$ is said to be strictly decreasing if $x_{k+1} < x_k$ for all $k \in \mathbb{N}$.
- (9) $\{x_k\}$ is said to be *monotonic* if it is either decreasing or increasing.
- (10) A subsequence of $\{x_k\}$ is a sequence of the form $\{x_{j_k}\}_{k\in\mathbb{N}}$, where $\{j_k\}_{k\in\mathbb{N}}$ is a strictly increasing sequence in \mathbb{N} .

It is a straightforward consequence of the definition of convergence that a sequence in \mathbb{R} can have at most one limit (which is why we say "the limit of $\{x_k\}$ " above, rather than "a limit of $\{x_k\}$ "). Some other basic consequences of the definitions above are given in Theorems 3, 4 and 5.

Theorem 3. Let $\{x_k\}$ be a convergent sequence in \mathbb{R} . Then:

- (1) $\{x_k\}$ is bounded.
- (2) $\{x_k\}$ is a Cauchy sequence.
- (3) Every subsequence $\{x_{j_k}\}$ of $\{x_k\}$ is convergent and has the same limit as $\{x_k\}$.

Theorem 4. Let $\{x_k\}$ and $\{y_k\}$ be sequences in \mathbb{R} , and assume that $\{x_k\}$ converges to $L \in \mathbb{R}$ and that $\{y_k\}$ converges to $M \in \mathbb{R}$. Then:

- (1) $\{x_k + y_k\}$ converges to L + M.
- (2) $\{x_k y_k\}$ converges to LM.
- (3) If $M \neq 0$ then $\left\{\frac{x_k}{y_k}\right\}$ converges to $\frac{L}{M}$.
- (4) If $x_k \ge y_k$ for all $k \in \mathbb{N}$, then $L \ge M$.

Theorem 5 (The Squeeze Theorem). Consider sequences $\{x_k\}, \{y_k\}$, and $\{z_k\}$ satisfying

$$x_k \leq y_k \leq z_k$$
 for all $k \in \mathbb{N}$.

If $\{x_k\}$ and $\{z_k\}$ are convergent and satisfy $\lim_{k\to\infty} x_k = \lim_{k\to\infty} z_k = L$ then $\{y_k\}$ is convergent and $\lim_{k\to\infty} y_k = L$.

Theorems 6, 7, and 8 are each logically equivalent to the completeness axiom for real numbers.

Theorem 6 (Monotone Convergence Theorem for Sequences). Bounded, monotonic sequences in \mathbb{R} are convergent.

Theorem 7 (Bolzano-Weierstrass Theorem). A bounded sequence in \mathbb{R} has a convergent subsequence.

Theorem 8 (Cauchy Criterion for Covergence). A Cauchy sequence in \mathbb{R} is convergent.