Worksheet on Images/Preimages

Definition 1. Let A and B be any sets, and let $f : A \to B$ be a function.

(1) Let C be a subset of the domain A of f. The *image* of C under f is the set f(C) defined by

$$f(C) := \{ y \in B \, | \, \exists x \in C \text{ with } f(x) = y \} = \bigcup_{x \in C} \{ f(x) \}$$

(2) Let D be a subset of the codomain B of f. The preimage of D under f is the set $f^{-1}(D)$ defined by¹

$$f^{-1}(D) := \{x \in A \mid f(x) \in D\},\$$

that is

 $x\in f^{-1}(D)\iff f(x)\in D.$

More informally, the image of C under f is the set of values that f takes on C, while the preimage of D under f is the set of points in the domain mapped to D by the function.

Here are some exercises to help understand these concepts. See section 1.5 in the textbook for help.

- (1) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$ find each of the following images/preimages:
 - (a) f([-1,2)) = ?
 - (b) $f([-2,1) \cup (3,5)) = ?$
 - (c) $f^{-1}([-1,1] \cup \{10\}) = ?$
 - (d) $f^{-1}(\{1\} \cup [9, 16)) = ?$
 - (e) $f^{-1}([-2, -1]) = ?$
- (2) Consider a function $f: A \to B$.
 - (a) If $\{C_{\alpha}\}_{\alpha \in I}$ is a collection of subsets of A, prove that

$$f\left(\bigcup_{\alpha\in I}C_{\alpha}\right) = \bigcup_{\alpha\in I}f\left(C_{\alpha}\right)$$

(b) If $\{D_{\alpha}\}_{\alpha \in I}$ is a collection of subsets of B, prove that

$$f^{-1}\left(\bigcup_{\alpha\in I}D_{\alpha}\right) = \bigcup_{\alpha\in I}f^{-1}\left(D_{\alpha}\right)$$

(c) If $\{C_{\alpha}\}_{\alpha \in I}$ is a collection of subsets of A, prove that

$$f\left(\bigcap_{\alpha\in I}C_{\alpha}\right)\subset\bigcap_{\alpha\in I}f\left(C_{\alpha}\right),$$

and find an example that shows we can't replace the " \subset " with an "=".

(d) If $\{D_{\alpha}\}_{\alpha \in I}$ is a collection of subsets of B, prove that

$$f^{-1}\left(\bigcap_{\alpha\in I}D_{\alpha}\right) = \bigcap_{\alpha\in I}f^{-1}\left(D_{\alpha}\right).$$

(e) If C_1 and C_2 are subsets of A, show that

$$f(C_1 \setminus C_2) \supset f(C_1) \setminus f(C_2)$$

and find an example that shows we can't replace the " \supset " with an "=". (f) If D_1 and D_2 are subsets of B, show that

$$f^{-1}(D_1 \setminus D_2) = f^{-1}(D_1) \setminus f^{-1}(D_2).$$

¹The term "inverse image" is sometimes used to mean the same thing as preimage. Do not let the word "inverse" or the notation $f^{-1}(D)$ confuse you into thinking the function f in question is invertible. The preimage $f^{-1}(D)$ makes sense for any function $f: A \to B$ whether there exists an inverse function $f^{-1}: B \to A$ or not.