Math 421, Homework #9 Solutions

(b) Prove that open balls in \(\mathbb{R}^n \) are connected, i.e. given \(a \in \mathbb{R}^n \) and \(r > 0 \) prove that \(B_r(a) \) is connected.

Proof. Applying part (a) it suffices to show that an open ball is always path connected. Let \(a \in \mathbb{R}^n \), let \(r > 0 \), and let \(x, y \in B_r(a) \).

Define \(\gamma : [0,1] \to \mathbb{R}^n \) by

\[
\gamma(t) = (1-t)x + ty.
\]

Then \(\gamma \) is a continuous function since each component function is a first-order polynomial in \(t \). Moreover \(\gamma(0) = x \) and \(\gamma(1) = y \). We claim that \(\gamma(t) \in B_r(a) \) for all \(t \in [0,1] \). Indeed for \(t = 0 \) or \(t = 1 \) we have that \(\gamma(t) \in B_r(a) \) by assumption. Moreover, for \(t \in (0,1) \) we have that

\[
\|\gamma(t) - a\| = \|(1-t)x + ty - a\|
\]

\[
= \|(1-t)(x - a) + t(y - a)\|
\]

\[
\leq |1-t|\|x - a\| + |t|\|y - a\|
\]

\[
= |1-t|\|x - a\| + |t|\|y - a\|
\]

\[
< |1-t|r + |t|r
\]

\[
= (1-t)r + tr = r
\]

\[
x, y \in B_r(a), t \neq 0 \text{ and } t \neq 1
\]

We conclude that \(\gamma(t) \in B_r(a) \) for all \(t \in [0,1] \). Therefore \(B_r(a) \) is path-connected, and by part (a), \(B_r(a) \) is connected. \(\square \)
(c) Prove that \mathbb{R}^n is connected.

Proof. Arguing as in part (b), given $x, y \in \mathbb{R}^n$, the function $\gamma : [0, 1] \to \mathbb{R}^n$ defined by

$$\gamma(t) = (1 - t)x + ty$$

is a continuous function with $\gamma(0) = x$, $\gamma(1) = y$ and $\gamma(t) \in \mathbb{R}^n$ for all $t \in [0, 1]$. Therefore \mathbb{R}^n is path connected, and hence connected by part (a). □

Alternate proof. We have that $\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} B_k(0)$ and that $\bigcap_{k \in \mathbb{N}} B_k(0) = B_1(0) \neq \emptyset$. Therefore problem 2(b) from Homework #5 tells us that \mathbb{R}^n is connected since each of the sets $B_k(0)$ is connected. □

(d) Prove that only subsets of \mathbb{R}^n which are both open and closed are \mathbb{R}^n and \emptyset.

Proof. Assume that $U \subset \mathbb{R}^n$ is open and closed, and that $U \neq \mathbb{R}^n$ and $U \neq \emptyset$. We claim that U and $V := U^c$ separate \mathbb{R}^n. Indeed U is open (and hence relatively open in \mathbb{R}^n) and nonempty by assumption. Since U is also assumed to be closed, $V = U^c$ is also open. Moreover, since we assume that $U \neq \mathbb{R}^n$ it must by that $V = \mathbb{R}^n \setminus U$ is nonempty. Finally we have that

$$U \cap V = U \cap U^c = \emptyset$$

and that

$$U \cup V = U \cup U^c = \mathbb{R}^n.$$

Therefore U and V separate \mathbb{R}^n and therefore \mathbb{R}^n is not connected in contradiction part to (c). This contradiction lets us conclude that any subset U of \mathbb{R}^n that is both open and closed must satisfy either $U = \mathbb{R}^n$ or $U = \emptyset$. □
(2) Consider a function $f : E \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$ and assume that f is continuous at some point $a \in E$ and that $f(a) \neq 0$. Prove that there is an $r > 0$ so that for all $x \in E$ with $\|x - a\| < r$, $f(x) \neq 0$.

Proof. Since $f(a) \neq 0$ and f is assumed to be continuous at a we can find an $r > 0$ so that $\|f(x) - f(a)\| < \frac{1}{2} \|f(a)\| (\neq 0)$ for $x \in E$ with $\|x - a\| < r$.

Using the triangle inequality, it follows that for $x \in E$ with $\|x - a\| < r$

$$\|f(x)\| - \|f(a)\| \leq \|f(x) - f(a)\| < \frac{1}{2} \|f(a)\|$$

or equivalently that

$$\frac{1}{2} \|f(a)\| < \|f(x)\| - \|f(a)\| < \frac{1}{2} \|f(a)\|$$

and hence

$$\|f(x)\| > \frac{1}{2} \|f(a)\| \neq 0 \quad \text{for } x \in E \text{ with } \|x - a\| < r.$$

Therefore $f(x) \neq 0$ for $x \in E$ with $\|x - a\| < r$. □

Alternate proof. Assume not. Then for every $r > 0$ there is an $x_r \in E$ satisfying $\|x_r - a\| < r$ and $f(x_r) = 0$. In particular, for each $k \in \mathbb{N}$ there is an $x_k \in E$ satisfying $\|x_k - a\| < \frac{1}{k}$ and $f(x_k) = 0$.

But then we can use the squeeze theorem with $\|x_k - a\| < \frac{1}{k}$ to conclude that $x_k \rightarrow a$ so x_k is a sequence in E converging to a. Consequently, the sequential characterization of continuity and the assumption that f is continuous at a let’s us conclude that

$$\lim_{k \rightarrow \infty} f(x_k) = f(a).$$

However, since $f(x_k) = 0$ for all $k \in \mathbb{N}$, this leads to the contradiction

$$0 \neq f(a) = \lim_{k \rightarrow \infty} f(x_k) = \lim_{k \rightarrow \infty} 0 = 0.$$

This contradiction allows us to conclude the original statement is true. □
Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be open intervals and let $(a, b) \in I \times J$. Given a function $f : I \times J \to \mathbb{R}$ define functions $g : I \to \mathbb{R}$ and $h : J \to \mathbb{R}$ by

$$g(x) = f(x, b) \quad \text{and} \quad h(x) = f(a, x).$$

(a) Assume that f is continuous at (a, b). Prove that g is continuous at a and that h is continuous at b.

Proof. Let $\varepsilon > 0$ Since f is assumed to be continuous at (a, b), there exists a $\delta > 0$ so that

$$|f(x, y) - f(a, b)| < \varepsilon \quad \text{for} \quad (x, y) \in I \times J \quad \text{with} \quad \|(x, y) - (a, b)\| < \delta.$$

Then if $x \in I$ and $|x - a| < \delta$, we have $\|(x, b) - (a, b)\| = \sqrt{(x - a)^2} = |x - a| < \delta$ so we can use the definition of g to conclude that

$$|g(x) - g(a)| = |f(x, b) - f(a, b)| < \varepsilon.$$

Therefore g is continuous at a. Similarly, we have that if $y \in J$ and $|y - b| < \delta$, then $\|(a, y) - (a, b)\| = |y - b| < \delta$ so

$$|h(y) - h(b)| = |f(a, y) - f(a, b)| < \varepsilon,$$

and hence h is continuous at b. \qed

(b) Show that the converse of part (a) is not true, i.e. find an example of a function $f : I \times J \to \mathbb{R}$ which is not continuous at (a, b) but where g is continuous at a and h is continuous at b (with g and h defined as above).

Example. Let $f : (-1, 1) \times (-1, 1) \to \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases}
0 & xy = 0 \\
1 & xy \neq 0
\end{cases}$$

and let $(a, b) = (0, 0)$. Then it’s easy to show that f is not continuous at $(0, 0)$ (for example we could use the sequential characterization of limits with $\lim_{k \to \infty} f\left(\frac{1}{k}, \frac{1}{k}\right) = \lim_{k \to \infty} 1 = 1$ and $\lim_{k \to \infty} f\left(\frac{1}{k}, 0\right) = \lim_{k \to \infty} 0 = 0$). However,

$$g(x) = f(x, 0) = 0$$

for all $x \in (-1, 1)$ so g is continuous on $(-1, 1)$ since g is constant. Similarly

$$h(y) = f(0, y) = 0$$

for all $y \in (-1, 1)$ so h is continuous on $(-1, 1)$ since h is constant. \qed
(4) Find an example of a continuous function $f : \mathbb{R}^n \to \mathbb{R}^m$ and a closed set $F \subset \mathbb{R}^n$ so that $f(F)$ not a closed set.

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{\sqrt{1+x^2}}$. A straightforward computation shows that the function $g : (-1,1) \to \mathbb{R}$ defined by $g(x) = \frac{x}{\sqrt{1-x^2}}$ satisfies

$$f(g(x)) = x \quad \text{for all } x \in (-1,1)$$

and

$$g(f(x)) = x \quad \text{for all } x \in \mathbb{R}.$$

f is invertible and $f^{-1} = g$. We can conclude from this that $f(\mathbb{R}) = (-1,1)$. Then the image of the closed set \mathbb{R} is $(-1,1)$ which is not closed. \qed

Remark. Note that in constructing your example, the closed set F must be unbounded. This is because if F were both closed and bounded, the Heine-Borel Theorem would tell us that F is compact, and then $f(F)$ would be compact, and hence closed and bounded, by Theorem 9.29. Therefore if we are to have $f(F)$ not closed with f continuous and F closed, it must be the case that F is not bounded.