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Math 421, Homework #9 Solutions

A set E C R™ is said to be path connected if for any pair of points x € E and y € E there
exists a continuous function - : [0,1] — R"™ satisfying v(0) = x, v(1) =y, and «(t) € E for all
t €10,1]. Let E C R™ and assume that E is path connected. Prove that F is connected.

Proof. We will argue by contradiction. Assume that F is not connected. Then there exists
sets U C F and V C E which are nonempty, disjoint (U NV = (), relatively open in F, and
UuV =E.

Consider points x € U and y € V' (which we can do because we assume that U and V' are both
nonempty). Since E is path connected, we can find a continuous map = : [0, 1] — R™ satisfying
~(0) = x, v(1) =y, and v([0,1]) C E. Define sets U’ = U N~([0,1]) and V' =V n~([0,1]).
We claim that U’ and V' separate ([0, 1]). Indeed, since x € U and x = ~(0) € ~([0,1]) we
have that x € U’ = U N+([0,1]) so U’ is nonempty. Similarly y € V' = V n~([0,1]) so V' is
nonempty. Since U NV = () we have that

U'nv’' = @Un~([0,1])) n(Vn~([0,1])) = UnV n~([0,1]) = 0,
and similarly, since v([0,1]) C E by assumption we have that
U'uv’ = (U n~([0,1])) U (VN ~([0,1]))
= (U uV)n~([0,1])
= En~([0,1]) = ~([0,1]).
Finally, we observe that the Lemma stated in the solutions to Homework #5 implies that U’
and V' are relatively open in ([0, 1]). We conclude that +([0, 1]) is not connected.

However, since [0, 1] is connected, and ~ is continuous, it follows from Theorem 9.30 that
~([0,1]) is connected. This contradiction shows that £ must be connected as well. O

Prove that open balls in R™ are connected, i.e. given a € R™ and r > 0 prove that B,(a) is
connected.

Proof. Applying part (a) it suffices to show that an open ball is always path connected. Let
acR” let r >0, and let x, y € B,.(a).
Define ~ : [0,1] — R™ by
() = (1 —t)x +ty.
Then - is a continuous function since each component function is a first-order polynomial in .

Moreover v(0) = x and (1) = y. We claim that v(¢t) € B,(a) for all ¢t € [0, 1]. Indeed for t =0
or t =1 we have that v(t) € B.(a) by assumption. Moreover, for ¢t € (0,1) we have that

l7(#) —al = I(1 = t)x + ty — a|

=[(1-t)(x—a)+tly —a) a=(1—-t)a+ta
<1 =t)(x—a)|+[[tly —a)| triangle inequality
=|1—t||x—al + |t |ly — al properties of norms
<|1—tlr+|tr X,y € Br(a),t #0and t # 1
={1-Or+tr=r since t € (0, 1).

We conclude that y(t) € B,.(a) for all ¢ € [0, 1]. Therefore B,.(a) is path-connected, and by part
(a), Br(a) is connected. O



(c)

Prove that R™ is connected.

Proof. Arguing as in part (b), given x, y € R", the function - : [0, 1] — R™ defined by

Y(t) = (1= t)x +ty
is a continuous function with v(0) = x, v(1) = y and ~v(t) € R™ for all ¢ € [0,1]. Therefore R
is path connected, and hence connected by part (a). ]

Alternate proof. We have that

R" = | J Bx(0)

keN
and that
m Bi(0) = B1(0) # 0.
keN
Therefore problem 2(b) from Homework #5 tells us that R™ is connected since each of the sets
By (0) is connected. O

Prove that only subsets of R™ which are both open and closed are R™ and 0.

Proof. Assume that U C R™ is open and closed, and that U # R™ and U # (. We claim that U
and V := U® separate R™. Indeed U is open (and hence relatively open in R™) and nonempty
by assumption. Since U is also assumed to be closed, V = U*€ is also open. Moreover, since we
assume that U # R™ it must by that V' = R"™ \ U is nonempty. Finally we have that

Unv=U0nU°=0
and that
UuV=UUU°=R".
Therefore U and V separate R™ and therefore R™ is not connected in contradiction part to (c).

This contradiction lets us conclude that any subset U of R™ that is both open and closed must
satisfy either U = R™ or U = {). O



(2) Consider a function f : E C R — R™ and assume that f is continuous at some point a € E and
that f(a) # 0. Prove that there is an 7 > 0 so that for all x € E with ||x —a|| < r, f(x) # 0.

Proof. Since f(a) # 0 and f is assumed to be continuous at a we can find an r > 0 so that
1
If(x) —f(a)] < 3 If(a)|| (£0) forx € E with ||[x —al <.

Using the triangle inequality, it follows that for x € F with ||[x —a| < r

HEGI = [IE@)[I] < [If(x) — f(a)]| < % I£(a)ll
or equivalently that
5 IE@ < [FGl — @] < 3 £
and hence .
If(x)] > 3 If(a)|| #0 for x € E with ||x —a| <.
Therefore f(x) # 0 for x € E with ||x — a|| < r. O

Alternate proof. Assume not. Then for every r > 0 there is an x, € E satisfying ||x, — a|| < r and
f(x,) = 0. In particular, for each k € N there is an x;, € E satisfying ||x; — al| < + and f(x;) = 0.
But then we can use the squeeze theorem with ||x; — al| < £ to conclude that x; — a so xy is a
sequence in F converging to a. Consequently, the sequential characterization of continuity and the
assumption that f is continuous at a let’s us conclude that

lim f(xx) = f(a).
k— o0
However, since f(x;) = 0 for all k£ € N, this leads to the contradiction
0 #f(a) = lim f(x;) = lim 0=0.
k—o00 k—o0

This contradiction allows us to conclude the original statement is true. O



(3) Let I C R and J C R be open intervals and let (a,b) € I x J. Given a function f : I x J — R define
functions g : I - R and h: J — R by

(a)

g(x) = f(x,b) and h(z) = f(a,z).
Assume that f is continuous at (a,b). Prove that g is continuous at a and that & is continuous
at b.

Proof. Let € > 0 Since f is assumed to be continuous at (a, b), there exists a § > 0 so that
|f(z,y) — fla,b)] <e for (z,y) € I x J with ||(z,y) — (a,b)|| <.

Then if z € T and |z — a| < 4§, we have ||(x,b) — (a,b)|| = \/(z — a)? = |z — a] < § so we can
use the definition of g to conclude that

l9(z) —g(a)| = [ f(z,b) — f(a,b)] <e.
Therefore g is continuous at a. Similarly, we have that if y € J and |y —b] < §, then
l(a,y) = (a,0)[| = |y = b] < 6 s0

[h(y) — h(d)| = |f(a,y) — f(a,b)] <e,

and hence h is continuous at b. O

Show that the converse of part (a) is not true, i.e. find an example of a function f: 7 x J = R
which is not continuous at (a,b) but where ¢ is continuous at a and h is continuous at b (with
g and h defined as above).

Ezample. Let f:(—1,1) x (—=1,1) — R be defined by

e ={) 20

and let (a,b) = (0,0). Then it’s easy to show that f is not continuous at (0,0) (for example we
could use the sequential characterization of limits with limg oo f (%, %) = limg_,oc1 =1 and
limyg oo f(%7 0) = limg_, 0 = 0). However,

g(x) = f(z,0) =0
for all x € (—1,1) so g is continuous on (—1, 1) since ¢ is constant. Similarly

h(y) = f(0,9) =0
for all y € (—1,1) so h is continuous on (—1,1) since h is constant. O



(4) Find an example of a continuous function f : R™ — R™ and a closed set F' C R™ so that f(F') not a

closed set.
Ezample. Let f : R — R be defined by f(z) = 11;152 A straightforward computation shows that
the function g : (—1,1) — R defined by g(z) = v satisfies
flg(x)) =2 forallz e (-1,1)
and

g(f(x))=a forall z € R.
f is invertible and f~! = g. We can conclude from this that f(R) = (—1,1). Then the image of the
closed set R is (—1, 1) which is not closed. O

Remark. Note that in constructing your example, the closed set F' must be unbounded. This is
because if ' were both closed and bounded, the Heine-Borel Theorem would tell us that F'is compact,
and then f(F') would be compact, and hence closed and bounded, by Theorem 9.29. Therefore if
we are to have f(F) not closed with f continuous and F' closed, it must be the case that F' is not
bounded.



