Math 421, Homework #9 Solutions

(1) (a) A set $E \subset \mathbb{R}^n$ is said to be *path connected* if for any pair of points $\mathbf{x} \in E$ and $\mathbf{y} \in E$ there exists a continuous function $\gamma: [0,1] \to \mathbb{R}^n$ satisfying $\gamma(0) = \mathbf{x}, \gamma(1) = \mathbf{y}$, and $\gamma(t) \in E$ for all $t \in [0,1]$. Let $E \subset \mathbb{R}^n$ and assume that E is path connected. Prove that E is connected.

Proof. We will argue by contradiction. Assume that E is not connected. Then there exists sets $U \subset E$ and $V \subset E$ which are nonempty, disjoint $(U \cap V = \emptyset)$, relatively open in E, and $U \cup V = E.$

Consider points $\mathbf{x} \in U$ and $\mathbf{y} \in V$ (which we can do because we assume that U and V are both nonempty). Since E is path connected, we can find a continuous map $\gamma: [0,1] \to \mathbb{R}^n$ satisfying $\gamma(0) = \mathbf{x}, \gamma(1) = \mathbf{y}, \text{ and } \gamma([0,1]) \subset E.$ Define sets $U' = U \cap \gamma([0,1])$ and $V' = V \cap \gamma([0,1])$. We claim that U' and V' separate $\gamma([0,1])$. Indeed, since $\mathbf{x} \in U$ and $\mathbf{x} = \gamma(0) \in \gamma([0,1])$ we have that $\mathbf{x} \in U' = U \cap \boldsymbol{\gamma}([0,1])$ so U' is nonempty. Similarly $\mathbf{y} \in V' = V \cap \boldsymbol{\gamma}([0,1])$ so V' is nonempty. Since $U \cap V = \emptyset$ we have that

 $U' \cap V' = (U \cap \gamma([0,1])) \cap (V \cap \gamma([0,1])) = U \cap V \cap \gamma([0,1]) = \emptyset,$

and similarly, since $\gamma([0,1]) \subset E$ by assumption we have that

$$U' \cup V' = (U \cap \gamma([0,1])) \cup (V \cap \gamma([0,1]))$$
$$= (U \cup V) \cap \gamma([0,1])$$
$$= E \cap \gamma([0,1]) = \gamma([0,1]).$$

Finally, we observe that the Lemma stated in the solutions to Homework #5 implies that U' and V' are relatively open in $\gamma([0,1])$. We conclude that $\gamma([0,1])$ is not connected.

However, since [0,1] is connected, and γ is continuous, it follows from Theorem 9.30 that $\gamma([0,1])$ is connected. This contradiction shows that E must be connected as well. \square

(b) Prove that open balls in \mathbb{R}^n are connected, i.e. given $\mathbf{a} \in \mathbb{R}^n$ and r > 0 prove that $B_r(\mathbf{a})$ is connected.

Proof. Applying part (a) it suffices to show that an open ball is always path connected. Let $\mathbf{a} \in \mathbb{R}^n$, let r > 0, and let $\mathbf{x}, \mathbf{y} \in B_r(\mathbf{a})$.

Define $\boldsymbol{\gamma}: [0,1] \to \mathbb{R}^n$ by

$$\boldsymbol{\gamma}(t) = (1-t)\mathbf{x} + t\mathbf{y}.$$

Then γ is a continuous function since each component function is a first-order polynomial in t. Moreover $\gamma(0) = \mathbf{x}$ and $\gamma(1) = \mathbf{y}$. We claim that $\gamma(t) \in B_r(\mathbf{a})$ for all $t \in [0, 1]$. Indeed for t = 0or t = 1 we have that $\gamma(t) \in B_r(\mathbf{a})$ by assumption. Moreover, for $t \in (0, 1)$ we have that

$\ \boldsymbol{\gamma}(t) - \mathbf{a}\ = \ (1-t)\mathbf{x} + t\mathbf{y} - \mathbf{a}\ $	
$= \ (1-t)(\mathbf{x}-\mathbf{a}) + t(\mathbf{y}-\mathbf{a})\ $	$\mathbf{a} = (1-t)\mathbf{a} + t\mathbf{a}$
$\leq \ (1-t)(\mathbf{x}-\mathbf{a})\ + \ t(\mathbf{y}-\mathbf{a})\ $	triangle inequality
$= \left 1-t\right \left\ \mathbf{x}-\mathbf{a}\right\ + \left t\right \left\ \mathbf{y}-\mathbf{a}\right\ $	properties of norms
$<\left 1-t\right r+\left t\right r$	$\mathbf{x}, \mathbf{y} \in B_r(\mathbf{a}), t \neq 0 \text{ and } t \neq 1$
= (1-t)r + tr = r	since $t \in (0, 1)$.

We conclude that $\gamma(t) \in B_r(\mathbf{a})$ for all $t \in [0, 1]$. Therefore $B_r(\mathbf{a})$ is path-connected, and by part (a), $B_r(\mathbf{a})$ is connected. (c) Prove that \mathbb{R}^n is connected.

Proof. Arguing as in part (b), given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the function $\boldsymbol{\gamma} : [0, 1] \to \mathbb{R}^n$ defined by

$$\boldsymbol{\gamma}(t) = (1-t)\mathbf{x} + t\mathbf{y}$$

is a continuous function with $\gamma(0) = \mathbf{x}$, $\gamma(1) = \mathbf{y}$ and $\gamma(t) \in \mathbb{R}^n$ for all $t \in [0, 1]$. Therefore \mathbb{R}^n is path connected, and hence connected by part (a).

Alternate proof. We have that

$$\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} B_k(\mathbf{0})$$

and that

$$\bigcap_{k\in\mathbb{N}}B_k(\mathbf{0})=B_1(\mathbf{0})\neq\emptyset.$$

Therefore problem 2(b) from Homework #5 tells us that \mathbb{R}^n is connected since each of the sets $B_k(\mathbf{0})$ is connected.

(d) Prove that only subsets of \mathbb{R}^n which are both open and closed are \mathbb{R}^n and \emptyset .

Proof. Assume that $U \subset \mathbb{R}^n$ is open and closed, and that $U \neq \mathbb{R}^n$ and $U \neq \emptyset$. We claim that U and $V := U^c$ separate \mathbb{R}^n . Indeed U is open (and hence relatively open in \mathbb{R}^n) and nonempty by assumption. Since U is also assumed to be closed, $V = U^c$ is also open. Moreover, since we assume that $U \neq \mathbb{R}^n$ it must by that $V = \mathbb{R}^n \setminus U$ is nonempty. Finally we have that

and that

$$U \cup V = U \cup U^c = \mathbb{R}^n.$$

 $U \cap V = U \cap U^c = \emptyset$

Therefore U and V separate \mathbb{R}^n and therefore \mathbb{R}^n is not connected in contradiction part to (c). This contradiction lets us conclude that any subset U of \mathbb{R}^n that is both open and closed must satisfy either $U = \mathbb{R}^n$ or $U = \emptyset$. (2) Consider a function $\mathbf{f} : E \subset \mathbb{R}^n \to \mathbb{R}^m$ and assume that \mathbf{f} is continuous at some point $\mathbf{a} \in E$ and that $\mathbf{f}(\mathbf{a}) \neq \mathbf{0}$. Prove that there is an r > 0 so that for all $\mathbf{x} \in E$ with $\|\mathbf{x} - \mathbf{a}\| < r$, $\mathbf{f}(\mathbf{x}) \neq \mathbf{0}$.

Proof. Since $\mathbf{f}(\mathbf{a}) \neq \mathbf{0}$ and \mathbf{f} is assumed to be continuous at \mathbf{a} we can find an r > 0 so that

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})\| < \frac{1}{2} \|\mathbf{f}(\mathbf{a})\| (\neq 0) \quad \text{for } \mathbf{x} \in E \text{ with } \|\mathbf{x} - \mathbf{a}\| < r.$$

Using the triangle inequality, it follows that for $\mathbf{x} \in E$ with $\|\mathbf{x} - \mathbf{a}\| < r$

$$\|\|\mathbf{f}(\mathbf{x})\| - \|\mathbf{f}(\mathbf{a})\|\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a})\| < \frac{1}{2} \|\mathbf{f}(\mathbf{a})\|$$

or equivalently that

$$-rac{1}{2} \| \mathbf{f}(\mathbf{a}) \| < \| \mathbf{f}(\mathbf{x}) \| - \| \mathbf{f}(\mathbf{a}) \| < rac{1}{2} \| \mathbf{f}(\mathbf{a}) \|$$

and hence

$$\|\mathbf{f}(\mathbf{x})\| > \frac{1}{2} \|\mathbf{f}(\mathbf{a})\| \neq 0 \quad \text{ for } \mathbf{x} \in E \text{ with } \|\mathbf{x} - \mathbf{a}\| < r.$$

Therefore $\mathbf{f}(\mathbf{x}) \neq \mathbf{0}$ for $\mathbf{x} \in E$ with $\|\mathbf{x} - \mathbf{a}\| < r$.

Alternate proof. Assume not. Then for every r > 0 there is an $\mathbf{x}_r \in E$ satisfying $\|\mathbf{x}_r - \mathbf{a}\| < r$ and $\mathbf{f}(\mathbf{x}_r) = \mathbf{0}$. In particular, for each $k \in \mathbb{N}$ there is an $\mathbf{x}_k \in E$ satisfying $\|\mathbf{x}_k - \mathbf{a}\| < \frac{1}{k}$ and $\mathbf{f}(\mathbf{x}_k) = \mathbf{0}$. But then we can use the squeeze theorem with $\|\mathbf{x}_k - \mathbf{a}\| < \frac{1}{k}$ to conclude that $\mathbf{x}_k \to \mathbf{a}$ so \mathbf{x}_k is a sequence in E converging to \mathbf{a} . Consequently, the sequential characterization of continuity and the assumption that \mathbf{f} is continuous at \mathbf{a} let's us conclude that

$$\lim_{k \to \infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{f}(\mathbf{a}).$$

However, since $\mathbf{f}(\mathbf{x}_k) = \mathbf{0}$ for all $k \in \mathbb{N}$, this leads to the contradiction

$$\mathbf{0} \neq \mathbf{f}(\mathbf{a}) = \lim_{k \to \infty} \mathbf{f}(\mathbf{x}_k) = \lim_{k \to \infty} \mathbf{0} = \mathbf{0}$$

This contradiction allows us to conclude the original statement is true.

(3) Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be open intervals and let $(a, b) \in I \times J$. Given a function $f : I \times J \to \mathbb{R}$ define functions $g : I \to \mathbb{R}$ and $h : J \to \mathbb{R}$ by

$$g(x) = f(x, b)$$
 and $h(x) = f(a, x)$.

(a) Assume that f is continuous at (a, b). Prove that g is continuous at a and that h is continuous at b.

Proof. Let $\varepsilon > 0$ Since f is assumed to be continuous at (a, b), there exists a $\delta > 0$ so that

$$|f(x,y) - f(a,b)| < \varepsilon \quad \text{for } (x,y) \in I \times J \text{ with } ||(x,y) - (a,b)|| < \delta.$$

Then if $x \in I$ and $|x - a| < \delta$, we have $||(x, b) - (a, b)|| = \sqrt{(x - a)^2} = |x - a| < \delta$ so we can use the definition of g to conclude that

$$g(x) - g(a)| = |f(x,b) - f(a,b)| < \varepsilon.$$

Therefore g is continuous at a. Similarly, we have that if $y \in J$ and $|y-b| < \delta$, then $||(a,y) - (a,b)|| = |y-b| < \delta$ so

$$|h(y) - h(b)| = |f(a, y) - f(a, b)| < \varepsilon,$$

and hence h is continuous at b.

(b) Show that the converse of part (a) is not true, i.e. find an example of a function $f: I \times J \to \mathbb{R}$ which is not continuous at (a, b) but where g is continuous at a and h is continuous at b (with g and h defined as above).

Example. Let $f: (-1,1) \times (-1,1) \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 & xy = 0\\ 1 & xy \neq 0 \end{cases}$$

and let (a, b) = (0, 0). Then it's easy to show that f is not continuous at (0, 0) (for example we could use the sequential characterization of limits with $\lim_{k\to\infty} f(\frac{1}{k}, \frac{1}{k}) = \lim_{k\to\infty} 1 = 1$ and $\lim_{k\to\infty} f(\frac{1}{k}, 0) = \lim_{k\to\infty} 0 = 0$). However,

$$q(x) = f(x,0) = 0$$

for all $x \in (-1, 1)$ so g is continuous on (-1, 1) since g is constant. Similarly

$$h(y) = f(0, y) = 0$$

for all $y \in (-1, 1)$ so h is continuous on (-1, 1) since h is constant.

(4) Find an example of a continuous function $f : \mathbb{R}^n \to \mathbb{R}^m$ and a closed set $F \subset \mathbb{R}^n$ so that f(F) not a closed set.

Example. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{\sqrt{1+x^2}}$ A straightforward computation shows that the function $g: (-1, 1) \to \mathbb{R}$ defined by $g(x) = \frac{x}{\sqrt{1-x^2}}$ satisfies

f(g(x)) = x for all $x \in (-1, 1)$

and

g(f(x)) = x for all $x \in \mathbb{R}$.

f is invertible and $f^{-1} = g$. We can conclude from this that $f(\mathbb{R}) = (-1, 1)$. Then the image of the closed set \mathbb{R} is (-1, 1) which is not closed.

Remark. Note that in constructing your example, the closed set F must be unbounded. This is because if F were both closed and bounded, the Heine-Borel Theorem would tell us that F is compact, and then f(F) would be compact, and hence closed and bounded, by Theorem 9.29. Therefore if we are to have f(F) not closed with f continuous and F closed, it must be the case that F is not bounded.