
Math 421, Homework #9 Solutions

(1) (a) A set E ⊂ Rn is said to be path connected if for any pair of points x ∈ E and y ∈ E there
exists a continuous function γ : [0, 1]→ Rn satisfying γ(0) = x, γ(1) = y, and γ(t) ∈ E for all
t ∈ [0, 1]. Let E ⊂ Rn and assume that E is path connected. Prove that E is connected.

Proof. We will argue by contradiction. Assume that E is not connected. Then there exists
sets U ⊂ E and V ⊂ E which are nonempty, disjoint (U ∩ V = ∅), relatively open in E, and
U ∪ V = E.

Consider points x ∈ U and y ∈ V (which we can do because we assume that U and V are both
nonempty). Since E is path connected, we can find a continuous map γ : [0, 1]→ Rn satisfying
γ(0) = x, γ(1) = y, and γ([0, 1]) ⊂ E. Define sets U ′ = U ∩ γ([0, 1]) and V ′ = V ∩ γ([0, 1]).
We claim that U ′ and V ′ separate γ([0, 1]). Indeed, since x ∈ U and x = γ(0) ∈ γ([0, 1]) we
have that x ∈ U ′ = U ∩ γ([0, 1]) so U ′ is nonempty. Similarly y ∈ V ′ = V ∩ γ([0, 1]) so V ′ is
nonempty. Since U ∩ V = ∅ we have that

U ′ ∩ V ′ = (U ∩ γ([0, 1])) ∩ (V ∩ γ([0, 1])) = U ∩ V ∩ γ([0, 1]) = ∅,
and similarly, since γ([0, 1]) ⊂ E by assumption we have that

U ′ ∪ V ′ = (U ∩ γ([0, 1])) ∪ (V ∩ γ([0, 1]))

= (U ∪ V ) ∩ γ([0, 1])

= E ∩ γ([0, 1]) = γ([0, 1]).

Finally, we observe that the Lemma stated in the solutions to Homework #5 implies that U ′

and V ′ are relatively open in γ([0, 1]). We conclude that γ([0, 1]) is not connected.
However, since [0, 1] is connected, and γ is continuous, it follows from Theorem 9.30 that

γ([0, 1]) is connected. This contradiction shows that E must be connected as well. �

(b) Prove that open balls in Rn are connected, i.e. given a ∈ Rn and r > 0 prove that Br(a) is
connected.

Proof. Applying part (a) it suffices to show that an open ball is always path connected. Let
a ∈ Rn, let r > 0, and let x, y ∈ Br(a).

Define γ : [0, 1]→ Rn by

γ(t) = (1− t)x + ty.

Then γ is a continuous function since each component function is a first-order polynomial in t.
Moreover γ(0) = x and γ(1) = y. We claim that γ(t) ∈ Br(a) for all t ∈ [0, 1]. Indeed for t = 0
or t = 1 we have that γ(t) ∈ Br(a) by assumption. Moreover, for t ∈ (0, 1) we have that

‖γ(t)− a‖ = ‖(1− t)x + ty − a‖
= ‖(1− t)(x− a) + t(y − a)‖ a = (1− t)a + ta

≤ ‖(1− t)(x− a)‖+ ‖t(y − a)‖ triangle inequality

= |1− t| ‖x− a‖+ |t| ‖y − a‖ properties of norms

< |1− t| r + |t| r x, y ∈ Br(a), t 6= 0 and t 6= 1

= (1− t)r + tr = r since t ∈ (0, 1).

We conclude that γ(t) ∈ Br(a) for all t ∈ [0, 1]. Therefore Br(a) is path-connected, and by part
(a), Br(a) is connected. �



(c) Prove that Rn is connected.

Proof. Arguing as in part (b), given x, y ∈ Rn, the function γ : [0, 1]→ Rn defined by

γ(t) = (1− t)x + ty

is a continuous function with γ(0) = x, γ(1) = y and γ(t) ∈ Rn for all t ∈ [0, 1]. Therefore Rn

is path connected, and hence connected by part (a). �

Alternate proof. We have that

Rn =
⋃
k∈N

Bk(0)

and that ⋂
k∈N

Bk(0) = B1(0) 6= ∅.

Therefore problem 2(b) from Homework #5 tells us that Rn is connected since each of the sets
Bk(0) is connected. �

(d) Prove that only subsets of Rn which are both open and closed are Rn and ∅.

Proof. Assume that U ⊂ Rn is open and closed, and that U 6= Rn and U 6= ∅. We claim that U
and V := U c separate Rn. Indeed U is open (and hence relatively open in Rn) and nonempty
by assumption. Since U is also assumed to be closed, V = U c is also open. Moreover, since we
assume that U 6= Rn it must by that V = Rn \ U is nonempty. Finally we have that

U ∩ V = U ∩ U c = ∅
and that

U ∪ V = U ∪ U c = Rn.

Therefore U and V separate Rn and therefore Rn is not connected in contradiction part to (c).
This contradiction lets us conclude that any subset U of Rn that is both open and closed must
satisfy either U = Rn or U = ∅. �
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(2) Consider a function f : E ⊂ Rn → Rm and assume that f is continuous at some point a ∈ E and
that f(a) 6= 0. Prove that there is an r > 0 so that for all x ∈ E with ‖x− a‖ < r, f(x) 6= 0.

Proof. Since f(a) 6= 0 and f is assumed to be continuous at a we can find an r > 0 so that

‖f(x)− f(a)‖ < 1

2
‖f(a)‖ (6= 0) for x ∈ E with ‖x− a‖ < r.

Using the triangle inequality, it follows that for x ∈ E with ‖x− a‖ < r

|‖f(x)‖ − ‖f(a)‖| ≤ ‖f(x)− f(a)‖ < 1

2
‖f(a)‖

or equivalently that

−1

2
‖f(a)‖ < ‖f(x)‖ − ‖f(a)‖ < 1

2
‖f(a)‖

and hence

‖f(x)‖ > 1

2
‖f(a)‖ 6= 0 for x ∈ E with ‖x− a‖ < r.

Therefore f(x) 6= 0 for x ∈ E with ‖x− a‖ < r. �

Alternate proof. Assume not. Then for every r > 0 there is an xr ∈ E satisfying ‖xr − a‖ < r and
f(xr) = 0. In particular, for each k ∈ N there is an xk ∈ E satisfying ‖xk − a‖ < 1

k and f(xk) = 0.

But then we can use the squeeze theorem with ‖xk − a‖ < 1
k to conclude that xk → a so xk is a

sequence in E converging to a. Consequently, the sequential characterization of continuity and the
assumption that f is continuous at a let’s us conclude that

lim
k→∞

f(xk) = f(a).

However, since f(xk) = 0 for all k ∈ N, this leads to the contradiction

0 6= f(a) = lim
k→∞

f(xk) = lim
k→∞

0 = 0.

This contradiction allows us to conclude the original statement is true. �
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(3) Let I ⊂ R and J ⊂ R be open intervals and let (a, b) ∈ I × J . Given a function f : I × J → R define
functions g : I → R and h : J → R by

g(x) = f(x, b) and h(x) = f(a, x).

(a) Assume that f is continuous at (a, b). Prove that g is continuous at a and that h is continuous
at b.

Proof. Let ε > 0 Since f is assumed to be continuous at (a, b), there exists a δ > 0 so that

|f(x, y)− f(a, b)| < ε for (x, y) ∈ I × J with ‖(x, y)− (a, b)‖ < δ.

Then if x ∈ I and |x− a| < δ, we have ‖(x, b)− (a, b)‖ =
√

(x− a)2 = |x− a| < δ so we can
use the definition of g to conclude that

|g(x)− g(a)| = |f(x, b)− f(a, b)| < ε.

Therefore g is continuous at a. Similarly, we have that if y ∈ J and |y − b| < δ, then
‖(a, y)− (a, b)‖ = |y − b| < δ so

|h(y)− h(b)| = |f(a, y)− f(a, b)| < ε,

and hence h is continuous at b. �

(b) Show that the converse of part (a) is not true, i.e. find an example of a function f : I × J → R
which is not continuous at (a, b) but where g is continuous at a and h is continuous at b (with
g and h defined as above).

Example. Let f : (−1, 1)× (−1, 1)→ R be defined by

f(x, y) =

{
0 xy = 0

1 xy 6= 0

and let (a, b) = (0, 0). Then it’s easy to show that f is not continuous at (0, 0) (for example we
could use the sequential characterization of limits with limk→∞ f( 1

k ,
1
k ) = limk→∞ 1 = 1 and

limk→∞ f( 1
k , 0) = limk→∞ 0 = 0). However,

g(x) = f(x, 0) = 0

for all x ∈ (−1, 1) so g is continuous on (−1, 1) since g is constant. Similarly

h(y) = f(0, y) = 0

for all y ∈ (−1, 1) so h is continuous on (−1, 1) since h is constant. �
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(4) Find an example of a continuous function f : Rn → Rm and a closed set F ⊂ Rn so that f(F ) not a
closed set.

Example. Let f : R → R be defined by f(x) = x√
1+x2

A straightforward computation shows that

the function g : (−1, 1)→ R defined by g(x) = x√
1−x2

satisfies

f(g(x)) = x for all x ∈ (−1, 1)

and
g(f(x)) = x for all x ∈ R.

f is invertible and f−1 = g. We can conclude from this that f(R) = (−1, 1). Then the image of the
closed set R is (−1, 1) which is not closed. �

Remark. Note that in constructing your example, the closed set F must be unbounded. This is
because if F were both closed and bounded, the Heine-Borel Theorem would tell us that F is compact,
and then f(F ) would be compact, and hence closed and bounded, by Theorem 9.29. Therefore if
we are to have f(F ) not closed with f continuous and F closed, it must be the case that F is not
bounded.
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