Math 421, Homework #8 Solutions

1) Find an example of a function f : R?\ {0} — R for which lim, ,y_o f(z,y) exists, but the iterated
(=,y)
limits lim,_,0 limy,_,¢ f(,y) and lim,_,o lim,_,o f(z, y) do not exist.

Answer. Note that many correct answers are possible here. One way to construct an example is by
considering a function g : R — R satisfying

g is bounded, (1)
lirr%) g(x) does not exist, and (2)
z—
g(x) #0 for all x € R\ {0}. (3)

(We will address the existence of such a function below.)
Given a g satisfying 7, we define a function f : R? — R by

flzy) = (2® + %) g(@)g(y).

We first claim that lim(, ) (0,0) f(z,y) = 0. Indeed, since g is assumed to be bounded, there exists
an M > 0 so that |g(z)| < M for all € R. Therefore

@,y = (&% +57) l9(@)| lg()] < (2% +y°) M* = M? (2, )|
Given € > 0, we choose § = y/e/M. Then for |(z,y)| < § we have that

2
|f(z,y) = 0] < M? |[(2, )| < M? (VE/M)" =e.
We conclude that lim(, ) (0,0) f(2,%) = 0 as claimed.

We next claim that for fixed yg # 0 that lim,_,o f(z,y0) does not exist. Arguing by contradiction,
assume that lim,_,o f(x,y0) = L. Then, since

1
g(w) = mﬂ%yo)

we could use Theorem 9.15 with the assumptions that yo # 0 and g(yo) # 0 to conclude that

hmmmzhm((l)ﬂ%WO
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in contradiction to the assumption that lim,_,¢ g(z) does not exist. We conclude that lim, o f(x,yo)

does not exist for any fixed yo # 0, and that consequently, the iterated limit lim,_,¢ lim,_o f(z,y)

does not exist either. Since f is symmetric in = and y, an identical argument shows that similarly

limy 0 f(20,y) does not exist for any fixed zo # 0, and hence that lim,_,olim,_,¢ f(x,y) does not
exist.

Finally, we address the existence of a function g satisfying f. The following examples are

easily verified to satisfy f:
1 reQ
g(x) = {

-1 2¢Q
and

() 2+sinl z#0
T) =
g 2 z=0.



(2) Let I € R and J C R be open intervals, let (a,b) € I x J, and consider functions g : J \ {b} = R
and f: (I\ {a}) x (J\ {b}) = R. We say that
lim £ ) = g(y) uniformly for y € J \ {b}
if for any € > 0 there is a 6 > 0 so that for all z € I'\ {a} with 0 < |z —a|] < §, and all y € J\ {b}

|f(z,y) —g(y)| <e.

With I, J, a, b, f, and g as above, assume that lim,_,, f(x,y) = ¢g(y) uniformly for y € J\ {b}, and
that lim,_,, g(y) = L. Prove that

lim z,y) = L.
(I,y)ﬁ(aﬁb)f( v)

Proof. Let ¢ > 0. By the assumption that lim,_,, f(2,y) = g(y) uniformly for y € J \ {b} we can
choose a §; > 0 so that for z satisfying 0 < |z —a| < 01 and all y € J\ {b}

[f(@,y) — g(y)| <e/2.
Similarly, since lim,_,; g(y) = L, we can find a 2 > 0 so that for y satistying 0 < |y — b| < d2,
lg(y) — L < /2.
Define § = min {41, d2}. Then, if ||(z,y) — (a,b)|| < §, we have that
o —al=V(z—a)? < V(z—a)?+(y—b)?=(z—a,y = )| = l(z,9) — (a,b)] <5 <&
and similarly
ly—bl = (y =02 <V(z—a)?+(y—b)?=|(z,y) - (a,b)] <3< 6.

Therefore, for (z,y) € (I'\{a}) x (J\ {b}) satistying ||(x,y) — (a,b)|| < §, we can combine the above
to conclude that

|f(z,y) — L| = [(f(z,y) — 9(y)) + (g9(y) — L)|
<|f(z,y) — 9|+ lg(y) — L]
<eg/2+¢€/2=c¢.
We conclude that lim, )5 f(2,y) = L.



(3) (9.4.6) Prove that
B e V=l g £y

is continuous on RZ2.

Proof. Since for any (z,y), (a,b) € R? we have (arguing as in problem 2) that

|z —al < [[(z,y) = (a,b)]| (4)
and

ly =0l < |[(z,y) — (a,0)] (5)
it is straightforward to show that the functions p;(x,y) = « and pa(z,y) = y are continuous (indeed
uniformly continuous) at every point in R? (in either case, given € > 0 choose § = €). Moreover, since
sums/products/compositions of continuous functions are continuous, and reciprocals of continuous
functions are continuous where the function is nonzero, we can conclude that e~1/12=¥l is continuous
wherever it is defined, so f(z,y) is continuous at any point in R? with z # y.

It remains to show that f(x,y) is continuous at points where # = y. Consider a point (a,a) € R?,
and let £ > 0. Choose § = 3(—logc.)™! where ¢, := min {1/2,¢}. Note that since c. < 1/2 <1, it
follows that logc. < 0 so d > 0. Then, if ||(z,y) — (a,a)|| < § it follows from (4) and (5)) that

|z —yl=|(x —a)+ (a —y)|

<lz—al+a—yl

= |z —al+ly—ad

< Iz, y) = (@, a)| + || (z,y) = (a,a)

=2|l(z,y) — (a,a)| + [ (z,y) — (a,a)]]

< 20.
We can conclude that for ||(z,y) — (a,a)|| < § with z # y that 1/|z —y| > 1/(26) and thus that
—1/|z —y| < —1/(26). Since €' is a strictly increasing function, we can conclude that for z # y
satisfying ||(z,y) — (a,a)|| <,

() — 0] = e"VIe=vl < ¢=1/@0) _ glosce _¢, <.
Meanwhile, if x = y we have that
|f(z,y) — 0| =0<e.

Therefore, for (z,y) € R? satisfying |(x,y) — (a,a)| < §, we have that

|f(1',y) - 0| <g,
so we can conclude that f is continuous at (a,a) € R?. Combining this with the observations of the
first paragraph, we can conclude that f is continuous at every point in R2. O



(4) Let E C R™ be a bounded set, and assume that f : F — R™ is uniformly continuous on E. Show that
f is a bounded function, i.e. show that there exists an M > 0 so that for every x € E, ||f(x)|| < M.

Proof. Since f is uniformly continuous on E, we can find a § > 0 so that if x, y € FE satisfy
Ix -yl <34,
I£(x) — £(y)]l < 1.

Assume that f is not bounded. Then for every M > 0 there exists an x € F with ||[f(x)| > M.
In particular, we can construct a sequence, by choosing any x; € F, and then inductively choose
Xy, € E to satisfy

I£(xx)ll = 1+ [[£(x-1)]] -
A straightforward induction argument then shows that
Hf(Xkl)H — Hf(xkz)ll > ky — ko forall ki, ko € N with ky > ks. (6)

Since E is bounded and x;, € E for all k£ € N, it follows that {x;} is a bounded sequence. By the
Bolzano-Weierstrass theorem, we can find a convergent subsequence {xkj }j en (the limit of which
might not be in £). Since xj; is convergent, it is a Cauchy sequence. In particular, there exists an
N € N so that for j >¢> N,

i, = x| <0
with § as chosen in the first paragraph. But then it follows from the first paragraph that
Hf(ij) — f(Xke)H < 1.
We then arrive at the contradiction 1 > 1 arguing as follows:
1> [|£(er,) — £k, |

> |18 (e, )| — ()| by the triangle inequality
> || (e )| = (1 (e )

> ki — ke by@andj>€
>1

where in the last two inequalities we've used that k; is a strictly increasing sequence of natural
numbers (from the definition of subsequence). This contradiction let’s us conclude that f is bounded.
O



(5) (cf. 9.4.8) Let £ C R™ and let f : £ — R™ be uniformly continuous on E. Prove that f can be
extended to a continuous function on the closure E of E, i.e. prove that there exists a continuous
function g : E — R™ satisfying g(x) = f(x) for all x € E.

Proof. Let a € E'\ E. The assumption that a € E implies that every set of the form B.(a) N E
is nonempty, and since a ¢ E by assumption, it follows that for every e > 0, B.(a) N E contains
points that are not equal to a. Applying this statement to the sequence ¢,, = %, it follows that exist
sequences E which converge to a.

Let {x} be a sequence in E converging to a. We claim that f(x;) is a convergent sequence. To
show this, it suffices to show that f(xy) is a Cauchy sequence. Let € > 0. Using the assumption that
f is uniformly continuous on F, we can find a 6 > 0 so that

[f(x) —f(y)|| <e forallx,yeE with [|x —y| <.
Then, since {x;} is convergent, it is a Cauchy sequence, so there exists an N € N so that
xp —x;]| <6 forallk, j>N.
Combining these statements, we find that for k, j > N, that
I€(xe) — £, < <.

We conclude that f(xy) is a Cauchy sequence and therefore a convergent sequence.

We next show that limg_,o f(x1) is independent of the choice of sequence x; — a. Consider
two sequences {x;} and {y} in E, and assume both sequences converge to a. From the previous
paragraph, both of the sequences {f(x;)} and {f(yx)} are convergent. Let L; = limy_, o f(xx) and
let Lo = limg_oo f(yx). We seek to show that Ly = Ly. Let € > 0. The assumption that f is
uniformly continuous on E again allows us to find a § > 0 so that

If(x) —f(y)|l <e/2 forall x,y € E with ||x —y|| <.
Then, since x; and yj both converge to a, we can find an N € N so that ||xx —al| < 6/2 and
llyx —al| < d/2 for k > N, and consequently
Ixe —yvill < llxx —a||+ la—y&|| <6/24+6/2=6 for k> N.
Combining the above, we find that
If(xx) — f(yx)|| <e/2 for k> N.

Letting £k — oo above and using Theorem 2.17 and the comments following Theorem 9.4, we find
that
Iy~ Lol = Jim [[£(xe) — (i) < /2 < e,

Thus |L; — Lg|| < e. Since € > 0 is arbitrary, we conclude that ||L; — Le|| = 0 and hence that
L; = Lo.

We now define g : £ — R™ as follows. If a € E we define g(a) = f(a). If a € E\ E, choose
a sequence x; € F converging to a (which can be done by the comments in the first paragraph).
Define g(a) by

g(a):= lim f(xg).
k—o0

This limit exists by the discussion in the second paragraph, and is independent of the choice of
sequence xj; — a by the discussion in the third paragraph.

It remains to show that g defined in this way is a continuous function. Let ¢ > 0. We need to
show that there is a § > 0 so thatEl

lg(x) —g(y)|| <e forallx,yeE with [|x —y| <.
Using the uniform continuity of f, we can choose a d; > 0 so that
If(x") —f(y")|| <e/2 forall x',y" € E with ||x' —y'|| < 4. (7)

L This will actually show that g is uniformly continuous on E, which is slightly stronger than what you are asked to prove.
5



Define § = §;/2, and assume that x, y € E satisfy ||x —y|| < §. Choose sequences {x;} and {yx}
in F satisfying limy_, ., X = x and limg_c Yx = ¥, and note that by definition of g we have that
limg o0 f(x%) = g(x) and limg_, o £(x) = g(x). Since limyg_ o, X = x and limg_, yx =y, wWe can
find an NV € N so that

Ixx —x|| <d/2=061/4 and |yr—yl <d/2=6/4 fork>N,
and consequently
Ik — ol < i = x|+ %= ¥l + Iy — yall < 01/4+01/24 01 /4 =6, for k> N.
Using this with we can conclude that
If(xx) — £(yx)|| <e/2 for k> N.

Again using Theorem 2.17 and the comments following Theorem 9.4, we can take a limit here and
conclude that

&) — &)l = Jim [I£(xe) — £(yu)l| < /2 < <.

To summarize, given ¢ > 0 we have shown how to choose § > 0 so that for x, y € E with ||[x —y|| <4,
llg(x) — g(y)|| < e. We conclude that g is uniformly continuous on E.

Remark. In the part of the above proof where we show g to be continuous, one might be tempted
to argue as follows: since, given any sequence {x;} in E converging to x € E, limy_,. g(xx) =
limy o £(x) = g(x), the sequential characterization of continuity allows one to conclude that g
is continuous at x € E. The problem with this argument is that it only considers sequences in E.
In order to use the sequential characterization of continuity to show that g is continuous on E, we
have to consider sequences where some (or all) of the terms might be in £\ E; that is, we can
say g is continuous at x € E if and only if for every sequence {x;} in E which converges to x,
limg 00 g(x%) = g(x). At the point in the problem where we are trying to show g is continuous, we
only know limg_,o g(xk) = g(x) to be true if the each term in the sequence xj is assumed to be in
E.

The reason that the additional work we did here to prove that g is continuous is not necessary in
the proof of Theorem 3.40 (where the special case E = (a,b) and E = [a, b] is addressed) is because
assuming E is an interval simplifies things significantly. Indeed any sequence z;, € E \ {b} = [a,b)
converging to b will satisfy xp € E = (a,b) for sufficiently large values of k (and similarly if we
replace “b” by “a” in this statement).

If were instead we consider the case E = Q and E = R, it should be clear why it takes more
work to prove that the extended function g is continuous. To use the sequential characterization of
continuity to show a function ¢ : E — R is continuous at, say, v/2, it is not sufficient to consider
only sequences z; — /2 with z; € Q. One must consider all possible sequences of real numbers
zr — V2 where each x, may be rational or irrational.



