
Math 421, Homework #8 Solutions

(1) Find an example of a function f : R2 \ {0} → R for which lim(x,y)→0 f(x, y) exists, but the iterated
limits limx→0 limy→0 f(x, y) and limy→0 limx→0 f(x, y) do not exist.

Answer. Note that many correct answers are possible here. One way to construct an example is by
considering a function g : R→ R satisfying

g is bounded, (1)

lim
x→0

g(x) does not exist, and (2)

g(x) 6= 0 for all x ∈ R \ {0}. (3)

(We will address the existence of such a function below.)
Given a g satisfying (1)–(3), we define a function f : R2 → R by

f(x, y) =
(
x2 + y2

)
g(x)g(y).

We first claim that lim(x,y)→(0,0) f(x, y) = 0. Indeed, since g is assumed to be bounded, there exists
an M > 0 so that |g(x)| ≤M for all x ∈ R. Therefore

|f(x, y)| =
(
x2 + y2

)
|g(x)| |g(y)| ≤

(
x2 + y2

)
M2 = M2 ‖(x, y)‖2 .

Given ε > 0, we choose δ =
√
ε/M . Then for |(x, y)| < δ we have that

|f(x, y)− 0| ≤M2 ‖(x, y)‖2 < M2
(√
ε/M

)2
= ε.

We conclude that lim(x,y)→(0,0) f(x, y) = 0 as claimed.
We next claim that for fixed y0 6= 0 that limx→0 f(x, y0) does not exist. Arguing by contradiction,

assume that limx→0 f(x, y0) = L. Then, since

g(x) =
1

(x2 + y20) g(y0)
f(x, y0)

we could use Theorem 9.15 with the assumptions that y0 6= 0 and g(y0) 6= 0 to conclude that

lim
x→0

g(x) = lim
x→0

(
1

(x2 + y20) g(y0)
f(x, y0)

)
= lim
x→0

1

(x2 + y20) g(y0)
lim
x→0

f(x, y0)

=
L

y20g(y0)

in contradiction to the assumption that limx→0 g(x) does not exist. We conclude that limx→0 f(x, y0)
does not exist for any fixed y0 6= 0, and that consequently, the iterated limit limy→0 limx→0 f(x, y)
does not exist either. Since f is symmetric in x and y, an identical argument shows that similarly
limy→0 f(x0, y) does not exist for any fixed x0 6= 0, and hence that limx→0 limy→0 f(x, y) does not
exist.

Finally, we address the existence of a function g satisfying (1)–(3). The following examples are
easily verified to satisfy (1)–(3):

g(x) =

{
1 x ∈ Q
−1 x /∈ Q

and

g(x) =

{
2 + sin 1

x x 6= 0

2 x = 0.
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(2) Let I ⊂ R and J ⊂ R be open intervals, let (a, b) ∈ I × J , and consider functions g : J \ {b} → R
and f : (I \ {a})× (J \ {b})→ R. We say that

lim
x→a

f(x, y) = g(y) uniformly for y ∈ J \ {b}

if for any ε > 0 there is a δ > 0 so that for all x ∈ I \ {a} with 0 < |x− a| < δ, and all y ∈ J \ {b}
|f(x, y)− g(y)| < ε.

With I, J , a, b, f , and g as above, assume that limx→a f(x, y) = g(y) uniformly for y ∈ J \ {b}, and
that limy→b g(y) = L. Prove that

lim
(x,y)→(a,b)

f(x, y) = L.

Proof. Let ε > 0. By the assumption that limx→a f(x, y) = g(y) uniformly for y ∈ J \ {b} we can
choose a δ1 > 0 so that for x satisfying 0 < |x− a| < δ1 and all y ∈ J \ {b}

|f(x, y)− g(y)| < ε/2.

Similarly, since limy→b g(y) = L, we can find a δ2 > 0 so that for y satisfying 0 < |y − b| < δ2,

|g(y)− L| < ε/2.

Define δ = min {δ1, δ2}. Then, if ‖(x, y)− (a, b)‖ < δ, we have that

|x− a| =
√

(x− a)2 ≤
√

(x− a)2 + (y − b)2 = ‖(x− a, y − b)‖ = ‖(x, y)− (a, b)‖ < δ ≤ δ1
and similarly

|y − b| =
√

(y − b)2 ≤
√

(x− a)2 + (y − b)2 = ‖(x, y)− (a, b)‖ < δ ≤ δ2.
Therefore, for (x, y) ∈ (I \ {a})× (J \ {b}) satisfying ‖(x, y)− (a, b)‖ < δ, we can combine the above
to conclude that

|f(x, y)− L| = |(f(x, y)− g(y)) + (g(y)− L)|
≤ |f(x, y)− g(y)|+ |g(y)− L|
< ε/2 + ε/2 = ε.

We conclude that lim(x,y)→(a,b) f(x, y) = L.
�
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(3) (9.4.6) Prove that

f(x, y) =

{
e−1/|x−y| x 6= y

0 x = y

is continuous on R2.

Proof. Since for any (x, y), (a, b) ∈ R2 we have (arguing as in problem 2) that

|x− a| ≤ ‖(x, y)− (a, b)‖ (4)

and
|y − b| ≤ ‖(x, y)− (a, b)‖ (5)

it is straightforward to show that the functions p1(x, y) = x and p2(x, y) = y are continuous (indeed
uniformly continuous) at every point in R2 (in either case, given ε > 0 choose δ = ε). Moreover, since
sums/products/compositions of continuous functions are continuous, and reciprocals of continuous
functions are continuous where the function is nonzero, we can conclude that e−1/|x−y| is continuous
wherever it is defined, so f(x, y) is continuous at any point in R2 with x 6= y.

It remains to show that f(x, y) is continuous at points where x = y. Consider a point (a, a) ∈ R2,
and let ε > 0. Choose δ = 1

2 (− log cε)
−1 where cε := min {1/2, ε}. Note that since cε ≤ 1/2 < 1, it

follows that log cε < 0 so δ > 0. Then, if ‖(x, y)− (a, a)‖ < δ it follows from (4) and (5) that

|x− y| = |(x− a) + (a− y)|
≤ |x− a|+ |a− y|
= |x− a|+ |y − a|
≤ ‖(x, y)− (a, a)‖+ ‖(x, y)− (a, a)‖
= 2 ‖(x, y)− (a, a)‖+ ‖(x, y)− (a, a)‖
< 2δ.

We can conclude that for ‖(x, y)− (a, a)‖ < δ with x 6= y that 1/ |x− y| > 1/(2δ) and thus that
−1/ |x− y| < −1/(2δ). Since et is a strictly increasing function, we can conclude that for x 6= y
satisfying ‖(x, y)− (a, a)‖ < δ,

|f(x, y)− 0| = e−1/|x−y| < e−1/(2δ) = elog cε = cε ≤ ε.
Meanwhile, if x = y we have that

|f(x, y)− 0| = 0 < ε.

Therefore, for (x, y) ∈ R2 satisfying |(x, y)− (a, a)| < δ, we have that

|f(x, y)− 0| < ε,

so we can conclude that f is continuous at (a, a) ∈ R2. Combining this with the observations of the
first paragraph, we can conclude that f is continuous at every point in R2. �
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(4) Let E ⊂ Rn be a bounded set, and assume that f : E → Rm is uniformly continuous on E. Show that
f is a bounded function, i.e. show that there exists an M > 0 so that for every x ∈ E, ‖f(x)‖ ≤M .

Proof. Since f is uniformly continuous on E, we can find a δ > 0 so that if x, y ∈ E satisfy
‖x− y‖ < δ,

‖f(x)− f(y)‖ < 1.

Assume that f is not bounded. Then for every M > 0 there exists an x ∈ E with ‖f(x)‖ > M .
In particular, we can construct a sequence, by choosing any x1 ∈ E, and then inductively choose
xk ∈ E to satisfy

‖f(xk)‖ ≥ 1 + ‖f(xk−1)‖ .
A straightforward induction argument then shows that

‖f(xk1)‖ − ‖f(xk2)‖ ≥ k1 − k2 for all k1, k2 ∈ N with k1 > k2. (6)

Since E is bounded and xk ∈ E for all k ∈ N, it follows that {xk} is a bounded sequence. By the
Bolzano-Weierstrass theorem, we can find a convergent subsequence

{
xkj
}
j∈N (the limit of which

might not be in E). Since xkj is convergent, it is a Cauchy sequence. In particular, there exists an
N ∈ N so that for j > ` ≥ N , ∥∥xkj − xk`

∥∥ < δ

with δ as chosen in the first paragraph. But then it follows from the first paragraph that∥∥f(xkj )− f(xk`)
∥∥ < 1.

We then arrive at the contradiction 1 > 1 arguing as follows:

1 >
∥∥f(xkj )− f(xk`)

∥∥
≥
∣∣‖f(xkj )‖ − ‖f(xk`)‖

∣∣ by the triangle inequality

≥ ‖f(xkj )‖ − ‖f(xk`)‖
≥ kj − k` by (6) and j > `

≥ 1

where in the last two inequalities we’ve used that kj is a strictly increasing sequence of natural
numbers (from the definition of subsequence). This contradiction let’s us conclude that f is bounded.

�
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(5) (cf. 9.4.8) Let E ⊂ Rn and let f : E → Rm be uniformly continuous on E. Prove that f can be
extended to a continuous function on the closure Ē of E, i.e. prove that there exists a continuous
function g : Ē → Rm satisfying g(x) = f(x) for all x ∈ E.

Proof. Let a ∈ Ē \ E. The assumption that a ∈ Ē implies that every set of the form Bε(a) ∩ E
is nonempty, and since a /∈ E by assumption, it follows that for every ε > 0, Bε(a) ∩ E contains
points that are not equal to a. Applying this statement to the sequence εn = 1

n , it follows that exist
sequences E which converge to a.

Let {xk} be a sequence in E converging to a. We claim that f(xk) is a convergent sequence. To
show this, it suffices to show that f(xk) is a Cauchy sequence. Let ε > 0. Using the assumption that
f is uniformly continuous on E, we can find a δ > 0 so that

‖f(x)− f(y)‖ < ε for all x, y ∈ E with ‖x− y‖ < δ.

Then, since {xk} is convergent, it is a Cauchy sequence, so there exists an N ∈ N so that

‖xk − xj‖ < δ for all k, j ≥ N .

Combining these statements, we find that for k, j ≥ N , that

‖f(xk)− f(xj)‖ < ε.

We conclude that f(xk) is a Cauchy sequence and therefore a convergent sequence.
We next show that limk→∞ f(xk) is independent of the choice of sequence xk → a. Consider

two sequences {xk} and {yk} in E, and assume both sequences converge to a. From the previous
paragraph, both of the sequences {f(xk)} and {f(yk)} are convergent. Let L1 = limk→∞ f(xk) and
let L2 = limk→∞ f(yk). We seek to show that L1 = L2. Let ε > 0. The assumption that f is
uniformly continuous on E again allows us to find a δ > 0 so that

‖f(x)− f(y)‖ < ε/2 for all x, y ∈ E with ‖x− y‖ < δ.

Then, since xk and yk both converge to a, we can find an N ∈ N so that ‖xk − a‖ < δ/2 and
‖yk − a‖ < δ/2 for k ≥ N , and consequently

‖xk − yk‖ ≤ ‖xk − a‖+ ‖a− yk‖ < δ/2 + δ/2 = δ for k ≥ N .

Combining the above, we find that

‖f(xk)− f(yk)‖ < ε/2 for k ≥ N .

Letting k → ∞ above and using Theorem 2.17 and the comments following Theorem 9.4, we find
that

‖L1 − L2‖ = lim
k→∞

‖f(xk)− f(yk)‖ ≤ ε/2 < ε.

Thus ‖L1 − L2‖ < ε. Since ε > 0 is arbitrary, we conclude that ‖L1 − L2‖ = 0 and hence that
L1 = L2.

We now define g : Ē → Rm as follows. If a ∈ E we define g(a) = f(a). If a ∈ Ē \ E, choose
a sequence xk ∈ E converging to a (which can be done by the comments in the first paragraph).
Define g(a) by

g(a) := lim
k→∞

f(xk).

This limit exists by the discussion in the second paragraph, and is independent of the choice of
sequence xk → a by the discussion in the third paragraph.

It remains to show that g defined in this way is a continuous function. Let ε > 0. We need to
show that there is a δ > 0 so that1

‖g(x)− g(y)‖ < ε for all x, y ∈ Ē with ‖x− y‖ < δ.

Using the uniform continuity of f , we can choose a δ1 > 0 so that

‖f(x′)− f(y′)‖ < ε/2 for all x′, y′ ∈ E with ‖x′ − y′‖ < δ1. (7)

1 This will actually show that g is uniformly continuous on Ē, which is slightly stronger than what you are asked to prove.
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Define δ = δ1/2, and assume that x, y ∈ Ē satisfy ‖x− y‖ < δ. Choose sequences {xk} and {yk}
in E satisfying limk→∞ xk = x and limk→∞ yk = y, and note that by definition of g we have that
limk→∞ f(xk) = g(x) and limk→∞ f(xk) = g(x). Since limk→∞ xk = x and limk→∞ yk = y, we can
find an N ∈ N so that

‖xk − x‖ < δ/2 = δ1/4 and ‖yk − y‖ < δ/2 = δ1/4 for k ≥ N ,

and consequently

‖xk − yk‖ ≤ ‖xk − x‖+ ‖x− y‖+ ‖y − yk‖ < δ1/4 + δ1/2 + δ1/4 = δ1 for k ≥ N.
Using this with (7) we can conclude that

‖f(xk)− f(yk)‖ < ε/2 for k ≥ N .

Again using Theorem 2.17 and the comments following Theorem 9.4, we can take a limit here and
conclude that

‖g(x)− g(y)‖ = lim
k→∞

‖f(xk)− f(yk)‖ ≤ ε/2 < ε.

To summarize, given ε > 0 we have shown how to choose δ > 0 so that for x, y ∈ Ē with ‖x− y‖ < δ,
‖g(x)− g(y)‖ < ε. We conclude that g is uniformly continuous on Ē. �

Remark. In the part of the above proof where we show g to be continuous, one might be tempted
to argue as follows: since, given any sequence {xk} in E converging to x ∈ Ē, limk→∞ g(xk) =
limk→∞ f(xk) = g(x), the sequential characterization of continuity allows one to conclude that g
is continuous at x ∈ Ē. The problem with this argument is that it only considers sequences in E.
In order to use the sequential characterization of continuity to show that g is continuous on Ē, we
have to consider sequences where some (or all) of the terms might be in Ē \ E; that is, we can
say g is continuous at x ∈ Ē if and only if for every sequence {xk} in Ē which converges to x,
limk→∞ g(xk) = g(x). At the point in the problem where we are trying to show g is continuous, we
only know limk→∞ g(xk) = g(x) to be true if the each term in the sequence xk is assumed to be in
E.

The reason that the additional work we did here to prove that g is continuous is not necessary in
the proof of Theorem 3.40 (where the special case E = (a, b) and Ē = [a, b] is addressed) is because
assuming E is an interval simplifies things significantly. Indeed any sequence xk ∈ Ē \ {b} = [a, b)
converging to b will satisfy xk ∈ E = (a, b) for sufficiently large values of k (and similarly if we
replace “b” by “a” in this statement).

If were instead we consider the case E = Q and Ē = R, it should be clear why it takes more
work to prove that the extended function g is continuous. To use the sequential characterization of
continuity to show a function g : Ē → R is continuous at, say,

√
2, it is not sufficient to consider

only sequences xk →
√

2 with xk ∈ Q. One must consider all possible sequences of real numbers
xk →

√
2 where each xk may be rational or irrational.
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