
Math 421, Homework #7 Solutions

(1) Let {xk} and {yk} be convergent sequences in Rn, and assume that limk→∞ xk = L and that
limk→∞ yk = M. Prove directly from definition 9.1 (i.e. don’t use Theorem 9.2) that:
(a) limk→∞ xk + yk = L + M.

Proof. Let ε > 0. The assumptions that limk→∞ xk = L and limk→∞ yk = M allow us to find
an N ∈ N so that for k ≥ N ,

‖xk − L‖ < ε

2
and

‖yk −M‖ < ε

2
.

We can then us the triangle inequality to find for k ≥ N that

‖(xk + yk)− (L + M)‖ = ‖(xk − L) + (yk −M)‖
≤ ‖xk − L‖+ ‖yk −M‖

<
ε

2
+

ε

2
= ε

We therefore conclude that limk→∞ xk + yk = L + M. �



(b) limk→∞ xk · yk = L ·M.

Proof. Let ε > 0.
We first consider the case that M = 0. Then there exists an N1 ∈ N so that

‖yk‖ = ‖yk − 0‖ < ε

1 + ‖L‖
for k ≥ N1.

Similarly, there is an N2 ∈ N so that

‖xk − L‖ < 1 for k ≥ N2

and hence

‖xk‖ = ‖(xk − L) + L‖ ≤ ‖xk − L‖+ ‖L‖ < 1 + ‖L‖ for k ≥ N2.

Using the above with Cauchy-Schwartz inequality, we find for k ≥ N := max {N1, N2}
|xk · yk − 0| = |xk · yk|

≤ ‖xk‖ ‖yk‖

< (1 + ‖L‖) ε

1 + ‖L‖
= ε.

Therefore limk→∞ xk · yk = 0 = L · 0 = L ·M.
To deal with the case where M 6= 0 we can argue as in the previous paragraph to find an

N1 ∈ N so that
‖xk‖ < 1 + ‖L‖ for k ≥ N1.

We then use the assumption limk→∞ xk = L to find an N2 ∈ N so that

‖xk − L‖ < ε

2 ‖M‖
for k ≥ N2,

and similarly, we can use the assumption limk→∞ yk = M to find an N3 ∈ N so that

‖yk −M‖ < ε

2 (1 + ‖L‖)
.

Then we can use the Cauchy-Schwartz inequality to find for k ≥ N := max {N1, N2, N3} that

|xk · yk − L ·M| = |xk · yk − xk ·M + xk ·M− L ·M|
= |xk · (yk −M) + (xk − L) ·M|
≤ |xk · (yk −M)|+ |(xk − L) ·M|
≤ ‖xk‖ ‖yk −M‖+ ‖xk − L‖ ‖M‖

< (1 + ‖L‖) ε

2 (1 + ‖L‖)
+

ε

2 ‖M‖
‖M‖ = ε.

Therefore limk→∞ xk · yk = L ·M as claimed. �
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(2) Prove directly from definition 9.10 (i.e. don’t use the Heine-Borel Theorem or the Borel Covering
Lemma) that if K1 and K2 are compact sets, then the union K1 ∪K2 is also compact.

Proof. Let {Uα}α∈A be an open cover of K1 ∪K2, i.e. we assume that all Uα are open sets, and that

K1 ∪K2 ⊂
⋃
α∈A

Uα.

In order to show that K1 ∪K2 we need to find a finite subset A′ of A so that {Uα}α∈A′ is cover of
K1 ∪K2. Since

K1 ⊂ K1 ∪K2 ⊂
⋃
α∈A

Uα,

{Uα}α∈A is an open cover of K1. Since K1 is assumed to be compact there is a finite subcover, i.e.
there is a finite subset A1 of A so that

K1 ⊂
⋃
α∈A1

Uα.

Similarly, {Uα}α∈A is an open cover of K2, and since K2 is compact, we can find a finite subset A2

of A so that
K2 ⊂

⋃
α∈A2

Uα.

Combining the above, we have that

K1 ∪K2 ⊂

( ⋃
α∈A1

Uα

)
∪

( ⋃
α∈A2

Uα

)
=

⋃
α∈A1∪A2

Uα.

Since A1 and A2 are both finite, so is A1 ∪A2. Thus {Uα}α∈A1∪A2
is a subcover of {Uα}α∈A with a

finite number of sets in it. We conclude that K1 ∪K2 is compact. �
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(3) (9.2.4) Suppose that K ⊂ Rn is compact and that for every x ∈ K there is an r(x) > 0 so that
Br(x)(x) ∩K = {x}. Prove that K is a finite set.

Proof using the definition of compactness. For each x, we choose an r(x) > 0 so that Br(x)(x)∩K =
{x}. Then, since

K ⊂
⋃
x∈K

Br(x)(x)

and each set Br(x)(x) is open,
{
Br(x)(x)

}
x∈K is an open cover for K. Since K is assumed to be

compact, it follows that there exists a finite collection of point {x1, . . . ,xj} ⊂ K so that

K ⊂
j⋃

k=1

Br(xk)(xk). (1)

Then we have that

K =

(
j⋃

k=1

Br(xk)(xk)

)
∩K by (1)

=

j⋃
k=1

(
Br(xk)(xk) ∩K

)
=

j⋃
k=1

{xk} by assumptions about r(x)

= {x1, . . . ,xj} .
We conclude that K is a finite set. �

Proof using sequences. Assume to the contrary that K is infinite. Then we can construct a sequence
{xk} with xk ∈ K for all k ∈ N, and with xk 6= xj for k 6= j.1 Since K is compact, the sequence
{xk} has a convergent subsequence {xjk} with x := limk→∞ xjk ∈ K. Since elements of the original
sequence are pairwise distinct, and jk is strictly increasing, it follows that the elements of the
subsequence are also pairwise distinct, i.e. xjk 6= xj` if k 6= `.

Since x ∈ K, we can by assumption find an r(x) > 0 so that Br(x)(x)∩K = {x}. But, by the
definition of limk→∞ xjk , we can find an N ∈ N so that for k ≥ N , xjk ∈ Br(x)(x). Since xjk ∈ K
for all k ∈ N this implies that

xjk ∈ Br(x)(x) ∩K = {x} for all k ≥ N .

We can conclude that xjk = x for all k ≥ N . This contradicts the fact that the xjk are pairwise
distinct. Therefore K must be a finite set. �

1 Such a sequence can be constructed as follows. Choose any x1 ∈ K, and inductively choose xk+1 ∈ K \ {x1, . . . ,xk}. If

there exists a k ∈ N for which K \ {x1, . . . ,xk} is empty, then K would not be an infinite set.
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(4) Let K ⊂ Rn be a compact set, let F ⊂ Rn be a closed set, and assume that K ∩ F = ∅. Prove that
there exists an open set O and a closed set C satisfying

K ⊂ O ⊂ C ⊂ F c.

Proof. Let x ∈ K. Since K ∩ F = ∅, we can conclude that x ∈ F c. Since F is closed, F c is open.
Therefore, there exists an ε(x) > 0 so that Bε(x)(x) ⊂ F c. Choosing such an ε(x) > 0 for each

x ∈ K, we have that
{
Bε(x)/2(x)

}
x∈K is an open cover for K since

K ⊂
⋃
x∈K

Bε(x)/2(x).

Since K is compact, we can find a finite subcover, i.e. there is a finite collection of points {xk}jk=1 ⊂ K
so that

K ⊂
j⋃

k=1

Bε(xk)/2(xk).

Since for any x ∈ K we have that

Bε(x)/2(x) ⊂ B̄ε(x)/2(x) ⊂ Bε(x)(x) ⊂ F c,

we can conclude that

K ⊂
j⋃

k=1

Bε(xk)/2(xk) ⊂
j⋃

k=1

B̄ε(xk)/2(xk) ⊂ F c.

Since any union of open sets is open (Theorem 8.24i), we can choose O = ∪jk=1Bε(xk)/2(xk), and since

finite unions of closed sets are closed (Theorem 8.24iv), we can choose C = ∪jk=1B̄ε(xk)/2(xk). �
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