Math 421, Homework #6 Solutions

(1) Let E C R™ Show that B
(E) = (E)”,

i.e. the complement of the closure is the interior of the complement ]

Proof. Before giving the proof we recall characterizations of the interior and closure (proved in
lecture) that will be useful: if S is any subset of R™ we have that

x € 8% <= Je>0, so that B.(z) C S (1)
and -
x €S <= Ve>0,B(x)NS #0. (2)
Proceeding with the proof, we have that

T € (E’)C — ¢ FE by definition of complement

<= Je > 0sothat B.(x)NE =1 contrapositive of with § = F

<= Je > 0 so that B.(z) C E° definitions of intersection and complement

< x € (B9’ applied with S = E°.
Therefore (E)C = (E°) as claimed. O

Alternate proof using the definitions. If x € (E)¢, then by definition of closure, there exists a closed
set C' D E so that © ¢ C. But then z € C° C E°, and since C is closed C° is open. Therefore x is
in an open subset of E° and hence x € (E°)° by definition of interior.

Conversely, if z € (E°)°, there exists an open set V' C E° so that « € V by definition of interior.
But then x ¢ V¢ D E. Since V is open, V¢ is closed, so there exists a closed set V¢ containing F
with x ¢ V€. By definition of closure, this means that x ¢ E, and hence z € (E)°. O

Alternate proof using Theorem 8.32. Using Theorem 8.32i, E C E. Using that complements reverse
inclusions, this implies that (E)¢ C E°. Since E is closed, (E)¢ is an open set contained in E° so,
by Theorem 8.32ii applied to E¢, we can conclude that (E)¢ C (E€)°.

Next, applying Theorem 8.32i to E¢ we have that (E€)° C E€, which implies that E = (E€)¢ C
((E€)°)c. Since (E°)° is open, we conclude that ((E€)°)¢ is a closed set containing E so, by Theorem
8.32iii, we can conclude that E C ((E¢)°)¢. Taking complements in this last inclusion we get that
(E°)° = (((E°)°))¢ C (E)°. Combining this with the conclusion of the first paragraph, we conclude

that (E€)° = (E)°. O

I Note that each of the proofs given below can be adapted to show that E¢ = (E°)¢, i.e. the closure of the complement is
the complement of the interior.



(2) Let E C R™.

(a)

Show that if F is connected, then the closure E is also connected.

Proof. Assume that E is not connected. Then there exist subsets U, V of E so that U and V/
are disjoint (U NV = @), nonempty, relatively open in E, and so that E=U U V.

Define U' = ENU, and V' = ENV. We claim that U’ and V'’ are nonempty, relatively
open in E, and satisfy E = U’ UV’, and U’ NV’ = (), and thus E is not connected if E is not
connected. Indeed, using that F C FE, we find

U'uV =(ENU)U(ENV)=ENn(UUV)=ENE=E
and further
UnV =ENU)NENV)=ENUNV)=EN)=1,

soU'UV'=FE and U' NV’ =0, as claimed. B
To see that U’ is relatively open in E, we note that since U is relatively open in £, there
exists an open set A C R™ so that U = EN A. Then,

U=ENU=EnN(ENA)=(ENE)YNA=ENA

so U’ is relatively open in E since A is open. An identical argument shows that V' is relatively
open in F.

Finally we claim that U’ is nonempty. We saw above that there is an open set A so that
U =ENAand U=FENA%# (. Suppose that U’ = EN A is empty. Then E C A°, and since
A is open A€ is closed. But since A€ is a closed set containing F, Theorem 8.32 (iii) tells us
that £ C A°. This in turn implies that U = EN A = (), in contradiction to the fact that U # (.
Therefore U’ is nonempty. An identical arguement shows that V/ = E NV is nonempty since
V is nonempty and relatively open in E.

In conclusion, we have shown that if E is not connected, then E is not connected. Therefore,
if E is connected, E must be connected as well. ([l

Is the converse true, i.e. if E is connected must it be the case that E is also connected? Prove
or find a counterexample.

No. A counterexample is given by E = R\ {0} = (—00,0) U (0,00). The set is not connected
since it is separated by the sets U = (—00,0) and V = (0,+0c). The closure of F is £ = R
since R is the only closed set containing E. Theorem 8.30 shows that R is connected, so we
have found an example of a set E which is not connected, but has connected closure. O



(3) (8.4.9) Find examples of:
(a) sets A, B in R such that (AU B)° # A° U B°.

Ezample. Let A =[-1,0] and B = [0,1]. Then
(AUB)° = (]-1,00U][0,1])° = [-1,1]° = (-1,1)
while
A°UB° =[~1,01°U[0,1]° = (—1,0) U (0,1).

(b) sets A, B in R such that AN B # AN B.

Ezample. Let A= (—1,0) and B = (0,1). Then
ANB=(-1,00n(0,1)=0=10

while

ANB=(-1,00n(0,1) =[~1,0]n[0,1] = {0} .

(c) sets A, B in R such that 0(AU B) # 0AU 0B and 0(AN B) # 0AU 0B.

Ezample. Let A =[—1,0] and B = [0,1]. Then
0AUOB ={-1,04 U{0,1} = {-1,0,1}
while
I(AUB) =0(-1,1]) ={-1,1}
and

0(ANB) =0({0}) = {0}.



(4) (9.1.8)
(a) Let E be a subset of R™. A point a € R" is called a cluster point of E if EN B,.(a) contains
infinitely many points for every r > 0. Prove that a is a cluster point of F if and only if for
each r > 0, EN B,(a) \ {a} is nonempty.

Proof. First assume that a is a cluster point of F, i.e. that for every r > 0 the set E N B,.(a)
contains infinitely many points. We aim to show that for all » > 0 that E N B,.(a) \ {a} is
nonempty. Assuming to the contrary that there exists an 7’ > 0 so that

ENB,.(a)\{a} =0
lets us conclude that
ENB,(a) C {a}.
Thus F N B, (a) is a finite set in contradiction to the assumption that E N B,.(a) contains
infinitely many points for all > 0. We conclude that ENB,(a)\ {a} is nonempty for all » > 0.

We next assume that £ N B, (a) \ {a} is nonempty for all » > 0. Define 1 = 1 and choose a
point x; € EN B, (a) \ {a}. Then construct sequences {r;} and {x;} inductively by

TR = min{zk%u Xr—1— aH}

and choose an x;, € ENB,, (a)\ {a}. Note that each ry is positive since x;, # a by assumption.
Further, note that x; # x;_1 and r; < rp_1 for all £ > 1 since

[ —all <7 < [Ixp—1 —all <71 (3)
by construction. Finally, note that the squeeze theorem tells us that limy_,. 7 = 0 since
0 <rp < gy forall k € N\ {1}.

We claim that for each r > 0 that E N B,.(a) contains infinitely many points. Indeed, given
r > 0, the fact that limg_,, 7 = 0 allows us to find an N € N so that r, < r for kK > N. Then
for Kk > N we can use to conclude that

Ixx —all <rp <ry <r

so X € By(a) for all k > N. Since x; € E by construction and each of the x, are distinct by
(@), we can conclude that B,(a) N E contains the infinite set {xz}, y- O

Alternate proof. We argue exactly as above to show that if a is a cluster point of E, then
E N B.(a)\ {a} is nonempty for all r > 0.

We next assume that ENB,.(a)\{a} is nonempty for all » > 0. We will argue by contradiction
to show that a is a cluster point of E. If a is not cluster point of E, then there exists an r’ > 0
for which E N B, (a) is a finite set. We can conclude that E'N B,/(a) \ {a} is also a finite set,
and we write £ N B,/(a) \ {a} = {x1,...,x;}. Define

r = min N {l|x; — al|} > 0.

i€{1,....,j

Then, since ||x; —a| > " for all ¢ € {1,...,j}, it follows that E N B, (a) \ {a} is empty,
in contradiction to the assumption that E N B,(a) \ {a} is nonempty for all » > 0. This
contradiction shows that a must be a cluster point of E. (Il



(b) Prove that every bounded infinite subset of R™ has at least one cluster point.

Proof. Denoting the set by E, the fact that E is infinite allows us to choose a sequence {x }, oy
with x, € E for all k € N and x;, # x; if k # jE| By the Bolzano-Weierstrass theorem {xy} has
a convergent subsequence which we will denote by y; = x;,, and we note that since the x; are
distinct, so are the yy, i.e. yp #y; if £ # j. Let L = limp o y. We claim that L is a cluster
point of E. Indeed, let r > 0. Since y converges to L, there is an N € N so that y, € B,.(L)
if K > N. Since the yj are distinct, and y; € E for all £ € N by assumption, we conclude that
B,.(L)N E contains the infinite set {y},~ . Therefore L is a cluster point of E as claimed. [0

2 Choose any x1 € E, and then choose
Xn+1 € EN{X1,...,Xn}.
Since E is assumed to infinite, none of the sets E \ {x1,...,%xp} can be empty.
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