
Math 421, Homework #6 Solutions

(1) Let E ⊂ Rn Show that (
Ē
)c

= (Ec)
o
,

i.e. the complement of the closure is the interior of the complement.1

Proof. Before giving the proof we recall characterizations of the interior and closure (proved in
lecture) that will be useful: if S is any subset of Rn we have that

x ∈ So ⇐⇒ ∃ε > 0, so that Bε(x) ⊂ S (1)

and
x ∈ S̄ ⇐⇒ ∀ε > 0, Bε(x) ∩ S 6= ∅. (2)

Proceeding with the proof, we have that

x ∈
(
Ē
)c ⇐⇒ x /∈ Ē by definition of complement

⇐⇒ ∃ε > 0 so that Bε(x) ∩ E = ∅ contrapositive of (2) with S = E

⇐⇒ ∃ε > 0 so that Bε(x) ⊂ Ec definitions of intersection and complement

⇐⇒ x ∈ (Ec)
o

(1) applied with S = Ec.

Therefore
(
Ē
)c

= (Ec)
o

as claimed. �

Alternate proof using the definitions. If x ∈ (Ē)c, then by definition of closure, there exists a closed
set C ⊃ E so that x /∈ C. But then x ∈ Cc ⊂ Ec, and since C is closed Cc is open. Therefore x is
in an open subset of Ec and hence x ∈ (Ec)o by definition of interior.

Conversely, if x ∈ (Ec)o, there exists an open set V ⊂ Ec so that x ∈ V by definition of interior.
But then x /∈ V c ⊃ E. Since V is open, V c is closed, so there exists a closed set V c containing E
with x /∈ V c. By definition of closure, this means that x /∈ Ē, and hence x ∈ (Ē)c. �

Alternate proof using Theorem 8.32. Using Theorem 8.32i, E ⊂ Ē. Using that complements reverse
inclusions, this implies that (Ē)c ⊂ Ec. Since Ē is closed, (Ē)c is an open set contained in Ec so,
by Theorem 8.32ii applied to Ec, we can conclude that (Ē)c ⊂ (Ec)o.

Next, applying Theorem 8.32i to Ec we have that (Ec)o ⊂ Ec, which implies that E = (Ec)c ⊂
((Ec)o)c. Since (Ec)o is open, we conclude that ((Ec)o)c is a closed set containing E so, by Theorem
8.32iii, we can conclude that Ē ⊂ ((Ec)o)c. Taking complements in this last inclusion we get that
(Ec)o = (((Ec)o)c)c ⊂ (Ē)c. Combining this with the conclusion of the first paragraph, we conclude
that (Ec)o = (Ē)c. �

1 Note that each of the proofs given below can be adapted to show that Ec = (Eo)c, i.e. the closure of the complement is
the complement of the interior.



(2) Let E ⊂ Rn.
(a) Show that if E is connected, then the closure Ē is also connected.

Proof. Assume that E is not connected. Then there exist subsets U , V of E so that U and V
are disjoint (U ∩ V = ∅), nonempty, relatively open in E, and so that E = U ∪ V .

Define U ′ = E ∩ U , and V ′ = E ∩ V . We claim that U ′ and V ′ are nonempty, relatively
open in E, and satisfy E = U ′ ∪ V ′, and U ′ ∩ V ′ = ∅, and thus E is not connected if E is not
connected. Indeed, using that E ⊂ E, we find

U ′ ∪ V ′ = (E ∩ U) ∪ (E ∩ V ) = E ∩ (U ∪ V ) = E ∩ E = E

and further

U ′ ∩ V ′ = (E ∩ U) ∩ (E ∩ V ) = E ∩ (U ∩ V ) = E ∩ ∅ = ∅,
so U ′ ∪ V ′ = E and U ′ ∩ V ′ = ∅, as claimed.

To see that U ′ is relatively open in E, we note that since U is relatively open in E, there
exists an open set A ⊂ Rn so that U = E ∩A. Then,

U ′ = E ∩ U = E ∩ (E ∩A) = (E ∩ E) ∩A = E ∩A

so U ′ is relatively open in E since A is open. An identical argument shows that V ′ is relatively
open in E.

Finally we claim that U ′ is nonempty. We saw above that there is an open set A so that
U ′ = E ∩ A and U = E ∩ A 6= ∅. Suppose that U ′ = E ∩ A is empty. Then E ⊂ Ac, and since
A is open Ac is closed. But since Ac is a closed set containing E, Theorem 8.32 (iii) tells us
that E ⊂ Ac. This in turn implies that U = E ∩A = ∅, in contradiction to the fact that U 6= ∅.
Therefore U ′ is nonempty. An identical arguement shows that V ′ = E ∩ V is nonempty since
V is nonempty and relatively open in E.

In conclusion, we have shown that if E is not connected, then E is not connected. Therefore,
if E is connected, E must be connected as well. �

(b) Is the converse true, i.e. if Ē is connected must it be the case that E is also connected? Prove
or find a counterexample.

No. A counterexample is given by E = R \ {0} = (−∞, 0) ∪ (0,∞). The set is not connected
since it is separated by the sets U = (−∞, 0) and V = (0,+∞). The closure of E is Ē = R
since R is the only closed set containing E. Theorem 8.30 shows that R is connected, so we
have found an example of a set E which is not connected, but has connected closure. �
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(3) (8.4.9) Find examples of:
(a) sets A, B in R such that (A ∪B)o 6= Ao ∪Bo.

Example. Let A = [−1, 0] and B = [0, 1]. Then

(A ∪B)o = ([−1, 0] ∪ [0, 1])o = [−1, 1]o = (−1, 1)

while
Ao ∪Bo = [−1, 0]o ∪ [0, 1]o = (−1, 0) ∪ (0, 1).

�

(b) sets A, B in R such that A ∩B 6= Ā ∩ B̄.

Example. Let A = (−1, 0) and B = (0, 1). Then

A ∩B = (−1, 0) ∩ (0, 1) = ∅ = ∅
while

Ā ∩ B̄ = (−1, 0) ∩ (0, 1) = [−1, 0] ∩ [0, 1] = {0} .
�

(c) sets A, B in R such that ∂(A ∪B) 6= ∂A ∪ ∂B and ∂(A ∩B) 6= ∂A ∪ ∂B.

Example. Let A = [−1, 0] and B = [0, 1]. Then

∂A ∪ ∂B = {−1, 0} ∪ {0, 1} = {−1, 0, 1}
while

∂(A ∪B) = ∂([−1, 1]) = {−1, 1}
and

∂(A ∩B) = ∂({0}) = {0} .
�
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(4) (9.1.8)
(a) Let E be a subset of Rn. A point a ∈ Rn is called a cluster point of E if E ∩ Br(a) contains

infinitely many points for every r > 0. Prove that a is a cluster point of E if and only if for
each r > 0, E ∩Br(a) \ {a} is nonempty.

Proof. First assume that a is a cluster point of E, i.e. that for every r > 0 the set E ∩ Br(a)
contains infinitely many points. We aim to show that for all r > 0 that E ∩ Br(a) \ {a} is
nonempty. Assuming to the contrary that there exists an r′ > 0 so that

E ∩Br′(a) \ {a} = ∅
lets us conclude that

E ∩Br′(a) ⊂ {a} .
Thus E ∩ Br′(a) is a finite set in contradiction to the assumption that E ∩ Br(a) contains
infinitely many points for all r > 0. We conclude that E∩Br(a)\{a} is nonempty for all r > 0.

We next assume that E ∩Br(a) \ {a} is nonempty for all r > 0. Define r1 = 1 and choose a
point x1 ∈ E ∩Br1(a) \ {a}. Then construct sequences {rk} and {xk} inductively by

rk = min
{

1
2k−1 , ‖xk−1 − a‖

}
and choose an xk ∈ E ∩Brk(a)\{a}. Note that each rk is positive since xk 6= a by assumption.
Further, note that xk 6= xk−1 and rk < rk−1 for all k > 1 since

‖xk − a‖ < rk ≤ ‖xk−1 − a‖ < rk−1 (3)

by construction. Finally, note that the squeeze theorem tells us that limk→∞ rk = 0 since

0 < rk ≤ 1
2k−1 for all k ∈ N \ {1}.

We claim that for each r > 0 that E ∩Br(a) contains infinitely many points. Indeed, given
r > 0, the fact that limk→∞ rk = 0 allows us to find an N ∈ N so that rk < r for k ≥ N . Then
for k ≥ N we can use (3) to conclude that

‖xk − a‖ < rk ≤ rN < r

so xk ∈ Br(a) for all k ≥ N . Since xk ∈ E by construction and each of the xk are distinct by
(3), we can conclude that Br(a) ∩ E contains the infinite set {xk}k≥N . �

Alternate proof. We argue exactly as above to show that if a is a cluster point of E, then
E ∩Br(a) \ {a} is nonempty for all r > 0.

We next assume that E∩Br(a)\{a} is nonempty for all r > 0. We will argue by contradiction
to show that a is a cluster point of E. If a is not cluster point of E, then there exists an r′ > 0
for which E ∩ Br′(a) is a finite set. We can conclude that E ∩ Br′(a) \ {a} is also a finite set,
and we write E ∩Br′(a) \ {a} = {x1, . . . ,xj}. Define

r′′ = min
i∈{1,...,j}

{‖xi − a‖} > 0.

Then, since ‖xi − a‖ ≥ r′′ for all i ∈ {1, . . . , j}, it follows that E ∩ Br′′(a) \ {a} is empty,
in contradiction to the assumption that E ∩ Br(a) \ {a} is nonempty for all r > 0. This
contradiction shows that a must be a cluster point of E. �
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(b) Prove that every bounded infinite subset of Rn has at least one cluster point.

Proof. Denoting the set by E, the fact that E is infinite allows us to choose a sequence {xk}k∈N
with xk ∈ E for all k ∈ N and xk 6= xj if k 6= j.2 By the Bolzano-Weierstrass theorem {xk} has
a convergent subsequence which we will denote by yk = xjk , and we note that since the xk are
distinct, so are the yk, i.e. yk 6= yj if k 6= j. Let L = limk→∞ yk. We claim that L is a cluster
point of E. Indeed, let r > 0. Since yk converges to L, there is an N ∈ N so that yk ∈ Br(L)
if k ≥ N . Since the yk are distinct, and yk ∈ E for all k ∈ N by assumption, we conclude that
Br(L)∩E contains the infinite set {yk}k≥N . Therefore L is a cluster point of E as claimed. �

2 Choose any x1 ∈ E, and then choose

xn+1 ∈ E \ {x1, . . . ,xn} .
Since E is assumed to infinite, none of the sets E \ {x1, . . . ,xn} can be empty.
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