Math 421, Homework #6 Due: Wednesday, March 17

Homework assignments should be submitted during lecture. Please consult the homework rules and guidelines before completing the assignment. In particular:

- Write in compete sentences, organized into paragraphs.
- Leave plenty of room in between problems.
- Write only on the front side of each sheet of paper.
- Staple!
- Write on your assignment the names of any persons or sources consulted during its completion (other than the course text or instructor).
- (1) Let $E \subset \mathbb{R}^n$ Show that

$$\left(\bar{E}\right)^c = \left(E^c\right)^o,$$

i.e. the complement of the closure is the interior of the complement.

- (2) Let $E \subset \mathbb{R}^n$.
 - (a) Show that if E is connected, then the closure \overline{E} is also connected.
 - (b) Is the converse true, i.e. if \overline{E} is connected must it be the case that E is also connected? Prove or find a counterexample.
- (3) (8.4.9) Find examples of:
 - (a) sets A, B in \mathbb{R} such that $(A \cup B)^o \neq A^o \cup B^o$.
 - (b) sets A, B in \mathbb{R} such that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.
 - (c) sets A, B in \mathbb{R} such that $\partial(A \cup B) \neq \partial A \cup \partial B$ and $\partial(A \cap B) \neq \partial A \cup \partial B$.
- (4) (9.1.8)
 - (a) Let E be a subset of \mathbb{R}^n . A point $\mathbf{a} \in \mathbb{R}^n$ is called a *cluster point* of E if $E \cap B_r(\mathbf{a})$ contains infinitely many points for every r > 0. Prove that \mathbf{a} is a cluster point of E if and only if for each r > 0, $E \cap B_r(\mathbf{a}) \setminus \{\mathbf{a}\}$ is nonempty.
 - (b) Prove that every bounded¹ infinite subset of \mathbb{R}^n has at least one cluster point.

¹ A subset A of \mathbb{R}^n is said to be bounded if there is an R > 0 so that $A \subset B_R(\mathbf{0})$.