Math 421, Homework #5 Solutions

- (1) (8.3.6) Suppose that $E \subset \mathbb{R}^n$ and C is a subset of E.
 - (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition 8.20(ii)).

Proof. First assume that C is a closed set. Then since $C \subset E$ we have that

$$C = E \cap C$$

so C can be written as the intersection of a closed set with E. Therefore C is relatively closed in E.

Next assume that C is relatively closed in E. Then, there exists a closed set B so that

$$C = E \cap B.$$

Since E is assumed to be closed, this means that C is the intersection of two closed sets, so C is a closed set since intersections of closed sets are closed. \Box

(b) Prove that C is relatively closed in E if and only if $E \setminus C$ is relatively open in E.

Proof. Assume that C is relatively closed in E. Then, there exists a closed set B so that

 $C = E \cap B.$

We then find that

$$E \setminus C = E \cap C^{c}$$

= $E \cap (E \cap B)^{c}$
= $E \cap (E^{c} \cup B^{c})$
= $(E \cap E^{c}) \cup (E \cap B^{c})$
= $\emptyset \cup (E \cap B^{c}) = E \cap B^{c}$

Since B is closed, B^c is open. Therefore $E \setminus C$ is relatively open in E since it can be written as E intersected with an open set.

Next assume that $E \setminus C$ is relatively open in E. Then there exists an open set A so that

$$=E\cap A.$$

We claim that $C = E \cap A^c$. Indeed since $C \subset E$ we have that $E \cap C = C$ and thus

 $E \setminus C$

$$E \setminus (E \setminus C) = E \setminus (E \cap C^c)$$

= $E \cap (E \cap C^c)^c$
= $E \cap (E^c \cup C)$
= $(E \cap E^c) \cup (E \cap C)$
= $\emptyset \cup C = C.$

Meanwhile, (1) gives us

$$E \setminus (E \setminus C) = E \setminus (E \cap A)$$

= $E \cap (E \cap A)^c$
= $E \cap (E^c \cup A^c)$
= $(E \cap E^c) \cup (E \cap A^c)$
= $\emptyset \cup (E \cap A^c)$
= $E \cap A^c$.

Combining the above gives $C = E \cap A^c$ as claimed. Since A is open, A^c is closed, so $C = E \cap A^c$ implies that C is relatively closed in E.

(1)

The following lemma will be useful in parts (a) and (b) of the next problem.

Lemma. Let $E \subset \mathbb{R}^n$, and assume that $U \subset E$ is relatively open in E. Then for any subset E' of $E, U \cap E'$ is relatively open in E'.

Proof. By the assumption that $U \subset E$ is relatively open in E, there is an open set A so that

 $U = E \cap A.$

Since $E' \subset E, E' \cap E = E'$ so

$$U \cap E' = (E \cap A) \cap E' = (E \cap E') \cap A = E' \cap A.$$

Therefore $U \cap E'$ can be written as E' intersected with an open set, so $U \cap E'$ is relatively open in E'.

(2) (8.3.7)

(a) If A and B are connected subsets of \mathbb{R}^n and $A \cap B \neq \emptyset$, prove that $A \cup B$ is connected.

Proof. Assume that $A \cup B$ is not connected. Then there exist nonempty sets $U \subset A \cup B$ and $V \subset A \cup B$ satisfying

- U and V are relatively open in $A \cup B$,
- $U \cap V = \emptyset$, and
- $A \cup B = U \cup V$.

Let $x \in A \cap B$ (which we are assuming is nonempty). Then either $x \in U$ or $x \in V$. Without loss of generality assume that $x \in U$. Then both $U \cap A$ and $U \cap B$ are nonempty since both contain x. Since $V \subset A \cup B$ is assumed to be nonempty, we know that V intersects at least one of A or B, and without loss of generality assume that $V \cap A$ is nonempty.

Define sets $U' = U \cap A$ and $V' = V \cap A$, and note that both U' and V' are nonempty. Since $A \subset A \cup B$ the lemma above implies that U' and V' are relatively open in A. Moreover,

$$U' \cap V' = (U \cap A) \cap (V \cap A) = (U \cap V) \cap A = \emptyset \cap A = \emptyset,$$

and

$$U' \cup V' = (U \cap A) \cup (V \cap A) = (U \cup V) \cap A = (A \cup B) \cap A = A$$

Thus U' and V' separate A, which contradicts that assumption that A is a connected set. We can thus conclude that $A \cup B$ is connected.

(b) If $\{E_{\alpha}\}_{\alpha \in A}$ is a collection of connected sets in \mathbb{R}^n and $\cap_{\alpha \in A} E_{\alpha} \neq \emptyset$, prove that

$$E = \cup_{\alpha \in A} E_{\alpha}$$

is connected.

Proof. Assume that E is not connected. Then there exist sets $U \subset E$ and $V \subset E$, which are nonempty, disjoint $(U \cap V = \emptyset)$, relatively open in E, with $E = U \cup V$. Let $x \in \bigcap_{\alpha \in A} E_{\alpha}$ (which we are assuming is nonempty). Then $x \in E = U \cup V$ so $x \in U$ or $x \in V$, and without loss of generality, we can assume that $x \in U$. Therefore

$$U \cap E_{\alpha} \neq \emptyset \qquad \text{for all } \alpha \in A \tag{2}$$

since each of these sets contains x. Since $V \subset E$ we have that

$$V = V \cap E = V \cap (\cup_{\alpha \in A} E_{\alpha}) = \cup_{\alpha \in A} (V \cap E_{\alpha}).$$

Since V is nonempty, this implies that there exist an $\alpha' \in A$ so that

$$V \cap E_{\alpha'} \neq \emptyset. \tag{3}$$

We claim that $E_{\alpha'}$ is not connected, which would be a contradiction. Define $U' = U \cap E_{\alpha'}$ and $V' = V \cap E_{\alpha'}$. Both U' and V' are nonempty by (2) and (3). Moreover, the lemma above implies that U' and V' are relatively open in $E_{\alpha'}$ since $E_{\alpha'} \subset E$ by definition of E. Moreover

$$U' \cap V' = (U \cap E_{\alpha'}) \cap (V \cap E_{\alpha'}) = (U \cap V) \cap E_{\alpha'} = \emptyset \cap E_{\alpha'} = \emptyset$$

so $U' \cap V' = \emptyset$. Furthermore, since $E_{\alpha'} \subset E$, $E_{\alpha'} \cap E = E_{\alpha'}$ so

$$U' \cup V' = (U \cap E_{\alpha'}) \cup (V \cap E_{\alpha'}) = (U \cup V) \cap E_{\alpha'} = E \cap E_{\alpha'} = E_{\alpha'},$$

so $U' \cup V' = E_{\alpha'}$. Therefore $E_{\alpha'}$ is not connected, which contradicts our assumptions. This contradiction let's us conclude that E is connected.

(c) If A and B are connected subset of \mathbb{R} and $A \cap B \neq \emptyset$, prove that $A \cap B$ is connected.

Proof sketch 1. Theorem 8.30 tells us that $A \cap B$ are intervals, i.e. sets of one of the following forms:

 $\begin{aligned} & \{x \in \mathbb{R} \mid a < x < b\} & \text{with } -\infty \leq a \text{ and } b \leq +\infty \\ & \{x \in \mathbb{R} \mid a \leq x < b\} & \text{with } -\infty < a < b \leq +\infty \\ & \{x \in \mathbb{R} \mid a < x \leq b\} & \text{with } -\infty \leq a < b < +\infty \\ & \{x \in \mathbb{R} \mid a \leq x \leq b\} & \text{with } -\infty < a \leq b < +\infty. \end{aligned}$

A straightforward, but arduous argument by cases shows that any two sets of one of the above form have intersection with one of the above forms. Therefore $A \cap B$ is an interval and hence connected by Theorem 8.30.

Proof 2. Let $x_0 \in A \cap B$ (which is assumed to be nonempty). Define

Ι

$$= \{ [a,b] \subset \mathbb{R} \, | \, x_0 \in [a,b] \subset A \cap B \}$$

i.e. an element of I is a (possibly degenerate) closed interval containing x_0 and contained in $A \cap B$. Note that by definition

$$x_0 \in \bigcap_{[a,b]\in I} [a,b] \neq \emptyset.$$

Since intervals are connected by Theorem 8.30, part (b) let's us conclude that

$$E := \bigcup_{[a,b]\in I} [a,b] \tag{4}$$

is connected.

We claim that $E = A \cap B$, which will finish the proof. Indeed, from the definition of E we have that $E \subset A \cap B$ since each interval on the right hand side of (4) is assumed to be a subset $A \cap B$. Let $c \in A \cap B$. If $c > x_0$ then we claim that $[x_0, c] \subset A \cap B$. If not, then there would be a $d \in (x_0, c)$ with either $d \notin A$ or $d \notin B$. Without loss of generality, assume that $d \notin A$. Then $A \cap (-\infty, d)$ and $A \cap (d, +\infty)$ are nonempty (since the first contains x_0 and the second contains c) relatively open sets which separate A in contradiction to the assumption that A is connected. We conclude that $[x_0, c] \subset A \cap B$ which implies that $[x_0, c] \in I$ and hence that $c \in E$. Similarly, we can argue that if $c \leq x_0$, then $[c, x_0] \subset A \cap B$ (or else either A or B wouldn't be connected) so $[c, x_0] \in I$ and hence $c \in E$. Hence $A \cap B \subset E$. Thus $A \cap B = E$ as claimed and therefore $A \cap B$ is connected.

(d) Show that part (c) is no longer true if \mathbb{R}^2 replaces \mathbb{R} , i.e. provide an example of a pair of connected sets in \mathbb{R}^2 whose intersection is not connected. (A clearly drawn picture and explanation of your picture would be a sufficient answer here.)

Example. Let

$$A = \{(\cos t, \sin t)] \, | \, t \in [0, \pi] \}$$

and

$$B = \{(\cos t, \sin t) \mid t \in [\pi, 2\pi]\}.$$

Then A and B are connected because they are the continuous image of intervals (we will prove this in class eventually), but

$$A \cap B = \{(-1,0), (1,0)\}$$

which is not a connected set since $U = \{(-1,0)\}$ and $V = \{(1,0)\}$ are nonempty, disjoint, relatively open in $A \cap B$ and $A \cap B = U \cup V$.

- (3) (8.3.8) Let V be a subset of \mathbb{R}^n .
 - (a) Prove that V is open if and only if there is a collection of open balls $\{B_{\alpha}\}_{\alpha \in A}$ such that

$$V = \cup_{\alpha \in A} B_{\alpha}.$$

Proof. Assume that V is open. Then for any $x \in V$ there is an $\varepsilon_x > 0$ so that $B_{\varepsilon_x}(x) \subset V$. We claim that

$$V = \bigcup_{x \in V} B_{\varepsilon_x}(x)$$

Indeed if $y \in V$ then $y \in B_{\varepsilon_y}(y)$ so $y \in \bigcup_{x \in V} B_{\varepsilon_x}(x)$ and hence $V \subset \bigcup_{x \in V} B_{\varepsilon_x}(x)$. Conversely, since $B_{\varepsilon_x}(x) \subset V$ for all $x \in V$ it follows that $\bigcup_{x \in V} B_{\varepsilon_x}(x) \subset V$. Therefore $V = \bigcup_{x \in V} B_{\varepsilon_x}(x)$, so V can be written as a union of open balls.

Now assume that there is a collection of open balls $\{B_{\alpha}\}_{\alpha \in A}$ so that

$$V = \cup_{\alpha \in A} B_{\alpha}.$$

Then since any union of open sets is open, we can conclude that V is open.

(b) What happens to this result if *open* is replaced by *closed*, i.e. is it true that a set is closed if and only if it can be written as a union of closed balls? Prove or provide a counterexample.

Answer. Since a set with a single point is a closed ball of radius zero we can write any closed set C as

$$C = \bigcup_{x \in C} \overline{B}_0(x),$$

and hence every closed set is a union of closed balls.

However, since

$$(-1,1) = \bigcup_{n \in \mathbb{N}} [-1 + \frac{1}{n}, 1 - \frac{1}{n}] = \bigcup_{n \in \mathbb{N}} \overline{B}_{1-1/n}(0)$$

and (-1, 1) is not closed, not every union of closed balls is a closed set.