
Math 421, Homework #5 Solutions

(1) (8.3.6) Suppose that E ⊂ Rn and C is a subset of E.
(a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as

defined in Definition 8.20(ii)).

Proof. First assume that C is a closed set. Then since C ⊂ E we have that

C = E ∩ C
so C can be written as the intersection of a closed set with E. Therefore C is relatively closed
in E.

Next assume that C is relatively closed in E. Then, there exists a closed set B so that

C = E ∩B.
Since E is assumed to be closed, this means that C is the intersection of two closed sets, so C
is a closed set since intersections of closed sets are closed. �

(b) Prove that C is relatively closed in E if and only if E \ C is relatively open in E.

Proof. Assume that C is relatively closed in E. Then, there exists a closed set B so that

C = E ∩B.
We then find that

E \ C = E ∩ Cc

= E ∩ (E ∩B)c

= E ∩ (Ec ∪Bc)
= (E ∩ Ec) ∪ (E ∩Bc)
= ∅ ∪ (E ∩Bc) = E ∩Bc.

Since B is closed, Bc is open. Therefore E \C is relatively open in E since it can be written as
E intersected with an open set.

Next assume that E \ C is relatively open in E. Then there exists an open set A so that

E \ C = E ∩A. (1)

We claim that C = E ∩Ac. Indeed since C ⊂ E we have that E ∩ C = C and thus

E \ (E \ C) = E \ (E ∩ Cc)
= E ∩ (E ∩ Cc)c

= E ∩ (Ec ∪ C)

= (E ∩ Ec) ∪ (E ∩ C)

= ∅ ∪ C = C.

Meanwhile, (1) gives us

E \ (E \ C) = E \ (E ∩A)

= E ∩ (E ∩A)c

= E ∩ (Ec ∪Ac)
= (E ∩ Ec) ∪ (E ∩Ac)
= ∅ ∪ (E ∩Ac)
= E ∩Ac.

Combining the above gives C = E∩Ac as claimed. Since A is open, Ac is closed, so C = E∩Ac
implies that C is relatively closed in E.
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The following lemma will be useful in parts (a) and (b) of the next problem.

Lemma. Let E ⊂ Rn, and assume that U ⊂ E is relatively open in E. Then for any subset E′ of
E, U ∩ E′ is relatively open in E′.

Proof. By the assumption that U ⊂ E is relatively open in E, there is an open set A so that

U = E ∩A.
Since E′ ⊂ E, E′ ∩ E = E′ so

U ∩ E′ = (E ∩A) ∩ E′ = (E ∩ E′) ∩A = E′ ∩A.
Therefore U ∩ E′ can be written as E′ intersected with an open set, so U ∩ E′ is relatively open in
E′. �

(2) (8.3.7)
(a) If A and B are connected subsets of Rn and A ∩B 6= ∅, prove that A ∪B is connected.

Proof. Assume that A ∪ B is not connected. Then there exist nonempty sets U ⊂ A ∪ B and
V ⊂ A ∪B satisfying

• U and V are relatively open in A ∪B,
• U ∩ V = ∅, and
• A ∪B = U ∪ V .

Let x ∈ A ∩ B (which we are assuming is nonempty). Then either x ∈ U or x ∈ V . Without
loss of generality assume that x ∈ U . Then both U ∩ A and U ∩ B are nonempty since both
contain x. Since V ⊂ A∪B is assumed to be nonempty, we know that V intersects at least one
of A or B, and without loss of generality assume that V ∩A is nonempty.

Define sets U ′ = U ∩A and V ′ = V ∩A, and note that both U ′ and V ′ are nonempty. Since
A ⊂ A ∪B the lemma above implies that U ′ and V ′ are relatively open in A. Moreover,

U ′ ∩ V ′ = (U ∩A) ∩ (V ∩A) = (U ∩ V ) ∩A = ∅ ∩A = ∅,
and

U ′ ∪ V ′ = (U ∩A) ∪ (V ∩A) = (U ∪ V ) ∩A = (A ∪B) ∩A = A.

Thus U ′ and V ′ separate A, which contradicts that assumption that A is a connected set. We
can thus conclude that A ∪B is connected. �
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(b) If {Eα}α∈A is a collection of connected sets in Rn and ∩α∈AEα 6= ∅, prove that

E = ∪α∈AEα
is connected.

Proof. Assume that E is not connected. Then there exist sets U ⊂ E and V ⊂ E, which are
nonempty, disjoint (U ∩V = ∅), relatively open in E, with E = U ∪V . Let x ∈ ∩α∈AEα (which
we are assuming is nonempty). Then x ∈ E = U ∪ V so x ∈ U or x ∈ V , and without loss of
generality, we can assume that x ∈ U . Therefore

U ∩ Eα 6= ∅ for all α ∈ A (2)

since each of these sets contains x. Since V ⊂ E we have that

V = V ∩ E = V ∩ (∪α∈AEα) = ∪α∈A(V ∩ Eα).

Since V is nonempty, this implies that there exist an α′ ∈ A so that

V ∩ Eα′ 6= ∅. (3)

We claim that Eα′ is not connected, which would be a contradiction. Define U ′ = U ∩ Eα′

and V ′ = V ∩ Eα′ . Both U ′ and V ′ are nonempty by (2) and (3). Moreover, the lemma above
implies that U ′ and V ′ are relatively open in Eα′ since Eα′ ⊂ E by definition of E. Moreover

U ′ ∩ V ′ = (U ∩ Eα′) ∩ (V ∩ Eα′) = (U ∩ V ) ∩ Eα′ = ∅ ∩ Eα′ = ∅
so U ′ ∩ V ′ = ∅. Furthermore, since Eα′ ⊂ E, Eα′ ∩ E = Eα′ so

U ′ ∪ V ′ = (U ∩ Eα′) ∪ (V ∩ Eα′) = (U ∪ V ) ∩ Eα′ = E ∩ Eα′ = Eα′ ,

so U ′ ∪ V ′ = Eα′ . Therefore Eα′ is not connected, which contradicts our assumptions. This
contradiction let’s us conclude that E is connected. �
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(c) If A and B are connected subset of R and A ∩B 6= ∅, prove that A ∩B is connected.

Proof sketch 1. Theorem 8.30 tells us that A ∩ B are intervals, i.e. sets of one of the following
forms:

{x ∈ R | a < x < b} with −∞ ≤ a and b ≤ +∞
{x ∈ R | a ≤ x < b} with −∞ < a < b ≤ +∞
{x ∈ R | a < x ≤ b} with −∞ ≤ a < b < +∞
{x ∈ R | a ≤ x ≤ b} with −∞ < a ≤ b < +∞.

A straightforward, but arduous argument by cases shows that any two sets of one of the above
form have intersection with one of the above forms. Therefore A ∩ B is an interval and hence
connected by Theorem 8.30. �

Proof 2. Let x0 ∈ A ∩B (which is assumed to be nonempty). Define

I = {[a, b] ⊂ R |x0 ∈ [a, b] ⊂ A ∩B}
i.e. an element of I is a (possibly degenerate) closed interval containing x0 and contained in
A ∩B. Note that by definition

x0 ∈
⋂

[a,b]∈I

[a, b] 6= ∅.

Since intervals are connected by Theorem 8.30, part (b) let’s us conclude that

E :=
⋃

[a,b]∈I

[a, b] (4)

is connected.
We claim that E = A ∩ B, which will finish the proof. Indeed, from the definition of E we

have that E ⊂ A∩B since each interval on the right hand side of (4) is assumed to be a subset
A∩B. Let c ∈ A∩B. If c > x0 then we claim that [x0, c] ⊂ A∩B. If not, then there would be
a d ∈ (x0, c) with either d /∈ A or d /∈ B. Without loss of generality, assume that d /∈ A. Then
A∩ (−∞, d) and A∩ (d,+∞) are nonempty (since the first contains x0 and the second contains
c) relatively open sets which separate A in contradiction to the assumption that A is connected.
We conclude that [x0, c] ⊂ A∩B which implies that [x0, c] ∈ I and hence that c ∈ E. Similarly,
we can argue that if c ≤ x0, then [c, x0] ⊂ A ∩B (or else either A or B wouldn’t be connected)
so [c, x0] ∈ I and hence c ∈ E. Hence A ∩ B ⊂ E. Thus A ∩ B = E as claimed and therefore
A ∩B is connected. �
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(d) Show that part (c) is no longer true if R2 replaces R, i.e. provide an example of a pair of connected
sets in R2 whose intersection is not connected. (A clearly drawn picture and explanation of your
picture would be a sufficient answer here.)

Example. Let
A = {(cos t, sin t)] | t ∈ [0, π]}

and
B = {(cos t, sin t) | t ∈ [π, 2π]} .

Then A and B are connected because they are the continuous image of intervals (we will prove
this in class eventually), but

A ∩B = {(−1, 0), (1, 0)}
which is not a connected set since U = {(−1, 0)} and V = {(1, 0)} are nonempty, disjoint,
relatively open in A ∩B and A ∩B = U ∪ V . �
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(3) (8.3.8) Let V be a subset of Rn.
(a) Prove that V is open if and only if there is a collection of open balls {Bα}α∈A such that

V = ∪α∈ABα.

Proof. Assume that V is open. Then for any x ∈ V there is an εx > 0 so that Bεx(x) ⊂ V . We
claim that

V = ∪x∈VBεx(x)

Indeed if y ∈ V then y ∈ Bεy (y) so y ∈ ∪x∈VBεx(x) and hence V ⊂ ∪x∈VBεx(x). Conversely,
since Bεx(x) ⊂ V for all x ∈ V it follows that ∪x∈VBεx(x) ⊂ V . Therefore V = ∪x∈VBεx(x),
so V can be written as a union of open balls.

Now assume that there is a collection of open balls {Bα}α∈A so that

V = ∪α∈ABα.
Then since any union of open sets is open, we can conclude that V is open. �

(b) What happens to this result if open is replaced by closed, i.e. is it true that a set is closed if
and only if it can be written as a union of closed balls? Prove or provide a counterexample.

Answer. Since a set with a single point is a closed ball of radius zero we can write any closed
set C as

C =
⋃
x∈C

B0(x),

and hence every closed set is a union of closed balls.
However, since

(−1, 1) =
⋃
n∈N

[−1 + 1
n , 1−

1
n ] =

⋃
n∈N

B1−1/n(0),

and (−1, 1) is not closed, not every union of closed balls is a closed set. �
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