
Math 421, Homework #4 Solutions
Note: In problems (1) and (2) we will denote the operator norm by ‖·‖L to distinguish it from the usual

norm ‖·‖ on Rn.

(1) (8.2.11) Let T ∈ L(Rn,Rm), and define

M1 := sup
‖x‖=1

‖T(x)‖ = sup
{
‖T(x)‖

∣∣x ∈ Rn; ‖x‖ = 1
}

M2 := inf
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}
.

(a) Prove that M1 ≤ ‖T‖L.

Proof. We claim that{
‖T(x)‖

∣∣x ∈ Rn; ‖x‖ = 1
}
⊂
{

‖T(x)‖
‖x‖

∣∣x 6= 0
}
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Indeed if ‖x‖ = 1 then x 6= 0 so

‖T(x)‖ = ‖T(x)‖
1 = ‖T(x)‖

‖x‖ ∈
{

‖T(x)‖
‖x‖

∣∣x 6= 0
}
.

It then follows from properties of suprema that

M1 := sup
{
‖T(x)‖

∣∣x ∈ Rn; ‖x‖ = 1
}
≤ sup

{
‖T(x)‖
‖x‖

∣∣x 6= 0
}

=: ‖T‖L .
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(b) Using the linear property of T, prove that if x 6= 0, then

‖T(x)‖
‖x‖

≤M1.

Proof. Let x ∈ Rn \ {0}, and define y = 1
‖x‖x. Using the properties of the norm, we then have

that

‖y‖ =
∥∥∥ 1
‖x‖x

∥∥∥ =
∣∣∣ 1
‖x‖

∣∣∣ ‖x‖ = 1
‖x‖ ‖x‖ = 1.

We can then conclude that

‖T(y)‖ ≤ sup
{
‖T(x)‖

∣∣x ∈ Rn; ‖x‖ = 1
}

=: M1.

Using the linearity of T and the properties of norms, we also have that

‖T(y)‖ =
∥∥∥T( 1

‖x‖x)
∥∥∥ =

∥∥∥ 1
‖x‖T(x)

∥∥∥ =
∣∣∣ 1
‖x‖

∣∣∣ ‖T(x)‖ = 1
‖x‖ ‖T(x)‖ .

Combining the previous two lines then gives us ‖T(x)‖
‖x‖ ≤M1. �

1 Using the linearity of T one can actually show that these sets are equal, which gives a slightly different proof that
‖T‖L = M1.



(c) Prove that M1 = M2 = ‖T‖L.

Proof. We first show that M1 = ‖T‖L. In part (b) we showed if x 6= 0 then M1 ≥ ‖T(x)‖
‖x‖ . This

shows that M1 is an upper bound for the set{
‖T(x)‖
‖x‖

∣∣x 6= 0
}

and consequently that

M1 ≥ sup
{

‖T(x)‖
‖x‖

∣∣x 6= 0
}

=: ‖T‖L .

Since we showed in part (a) that M1 ≤ ‖T‖L we can conclude that ‖T‖L = M1.
We next show that M2 = ‖T‖L. We start by showing that ‖T‖L ≤ M2. Our strategy will

be to show that ‖T‖L is a lower bound for the set

S :=
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}

which would then let us conclude that ‖T‖L ≤ inf S =: M2. Let c < ‖T‖L. Then, defining
ε = ‖T‖L−c > 0, we can use the definition of ‖T‖L and the approximation property of suprema
to find an xc ∈ Rn \ {0} satisfying

‖T(xc)‖
‖xc‖

> ‖T‖L − ε = c

or equivalently ‖T(xc)‖ > c ‖xc‖. We conclude that if c < ‖T‖L then c /∈ S. Thus, if c ∈ S it
must be the case that c ≥ ‖T‖L, which means that ‖T‖L is a lower bound for S as claimed. As
observed above, this lets us conclude that

‖T‖L ≤ inf S = inf
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}

=: M2.

To finish the proof, we next show that ‖T‖L ≥ M2. To do this we observe that since
Theorem 8.16 tells us that

‖T(x)‖ ≤ ‖T‖L ‖x‖ for all x ∈ Rn

it follows that

‖T‖L ∈
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}

and consequently that

‖T‖L ≥ inf
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}

=: M2.

We conclude that ‖T‖L = M2 as claimed. �
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(2) Let T, U ∈ L(Rn,Rm).2

(a) Prove that
‖T + U‖L ≤ ‖T‖L + ‖U‖L

where T + U is the linear transformation defined by (T + U) (x) = T(x) + U(x).

Proof. Given x ∈ Rn we have that

‖(T + U)(x)‖ = ‖T(x) + U(x)‖ by definition of T + U

≤ ‖T(x)‖+ ‖U(x)‖ by the triangle inequality

≤ ‖T‖L ‖x‖+ ‖U‖L ‖x‖ by Theorem 8.16

= (‖T‖L + ‖U‖L) ‖x‖ .
Therefore

(‖T‖L + ‖U‖L) ∈
{
C > 0

∣∣ ‖ (T + U) (x)‖ ≤ C‖x‖ for all x ∈ Rn
}

and hence

(‖T‖L + ‖U‖L) ≥ inf
{
C > 0

∣∣ ‖ (T + U) (x)‖ ≤ C‖x‖ for all x ∈ Rn
}
.

But by problem 1(c) we have that

‖T + U‖L = inf
{
C > 0

∣∣ ‖ (T + U) (x)‖ ≤ C‖x‖ for all x ∈ Rn
}
.

Combining the previous two lines gives

‖T + U‖L ≤ ‖T‖L + ‖U‖L
as claimed. �

(b) Prove that for any c ∈ R,
‖cT‖L = |c| ‖T‖L

where cT is the linear transformation defined by (cT)(x) = cT(x).

Proof. We have

‖cT‖L = sup
{

‖(cT)(x)‖
‖x‖

∣∣x 6= 0
}

definition of operator norm

= sup
{

‖cT(x)‖
‖x‖

∣∣x 6= 0
}

definition of cT

= sup
{
|c| ‖T(x)‖

‖x‖
∣∣x 6= 0

}
properties of the norm on Rn

= sup
(
|c|
{

‖T(x)‖
‖x‖

∣∣x 6= 0
})

definition of cA for A a set and c ∈ R

= |c| sup
{

‖T(x)‖
‖x‖

∣∣x 6= 0
}

properties of suprema

= |c| ‖T‖L definition of operator norm.

Therefore ‖cT‖L = |c| ‖T‖L as claimed. �

2 Note that one of the practical consequences of Problem (1) is that there are multiple equivalent definitions of the operator
norm. That means each part of this problem could be done in different ways depending on what characterization of the operator

norm that one chooses to work with.
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(c) Prove that
‖T‖L = 0

if and only if T(x) = 0 for all x ∈ Rn.

Proof. First assume that ‖T‖L = 0. Then by Theorem 8.16, we have for any x ∈ Rn that

0 ≤ ‖T(x)‖ ≤ ‖T‖L ‖x‖ = 0

which implies that ‖T(x)‖ = 0, and hence T(x) = 0. Thus ‖T‖L = 0 implies that T(x) = 0
for all x ∈ Rn.

Now assume that ‖T(x)‖ = 0 for all x ∈ Rn. Then for any C > 0 and x ∈ Rn, we have that

‖T(x)‖ = ‖0‖ = 0 ≤ C ‖x‖ .
Thus {

C > 0
∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn

}
= (0,+∞)

and using problem 1(c) we conclude that

‖T‖L = inf
{
C > 0

∣∣ ‖T(x)‖ ≤ C‖x‖ for all x ∈ Rn
}

= inf(0,+∞) = 0.

Thus if T(x) = 0 for all x ∈ Rn then ‖T‖L = 0. �
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(3) (8.3.2) Let a ∈ Rn, and let s, r ∈ R satisfy 0 ≤ s < r. Define

V = {x ∈ Rn | s < ‖x− a‖ < r} and E = {x ∈ Rn | s ≤ ‖x− a‖ ≤ r} .
Prove that V is open and that E is closed.

Proof 1: Using Theorem 8.24. We have that

V = {x ∈ Rn | s < ‖x− a‖ < r}
= {x ∈ Rn | s < ‖x− a‖ and ‖x− a‖ < r}
= {x ∈ Rn | s < ‖x− a‖} ∩ {x ∈ Rn | ‖x− a‖ < r}
= B̄s(a)c ∩Br(a).

The set Br(a) is open since open balls are open sets. Since closed balls are closed sets, the complement
B̄s(a)c is open, so we have written V as the intersection of two open sets. Thus V is open by Theorem
8.24(ii).

Similarly, we have that

E = {x ∈ Rn | s ≤ ‖x− a‖ ≤ r}
= {x ∈ Rn | s ≤ ‖x− a‖ and ‖x− a‖ ≤ r}
= {x ∈ Rn | s ≤ ‖x− a‖} ∩ {x ∈ Rn | ‖x− a‖ ≤ r}
= Bs(a)c ∩ B̄r(a).

Since Bs(a) is an open set3 the complement Bs(a)c is a closed set. We have thus written E as the
intersection of the closed sets Bs(a)c and B̄r(a) so E is closed by Theorem 8.24(iv). �

Proof 2: Arguing directly from the definitions. Let x ∈ V , i.e. assume that s < ‖x − a‖ < r. Let
ε = min {‖x− a‖ − s, r − ‖x− a‖} > 0. Then if y ∈ Bε(x) we will have that

‖y − a‖ ≤ ‖y − x‖+ ‖x− a‖ by the triangle inequality

< ε + ‖x− a‖ since y ∈ Bε(x)

≤ (r − ‖x− a‖) + ‖x− a‖ since ε ≤ r − ‖x− a‖
= r.

We also have that

‖y − a‖ ≥ |‖y − x‖ − ‖x− a‖| by the triangle inequality

≥ ‖x− a‖ − ‖y − x‖ since |c| ≥ −c for all c ∈ R
> ‖x− a‖ − ε since y ∈ Bε(x)

≥ ‖x− a‖ − (‖x− a‖ − s) since ε ≤ ‖x− a‖ − s

= s.

Therefore, for y ∈ Bε(x) we have that s < ‖y − a‖ < r so Bε(x) ⊂ V . This shows that V is open.
To show that E is closed, we need to show that Ec is open. Let x ∈ Ec. Then either ‖x− a‖ > r

or ‖x− a‖ < s. We first assume that ‖x− a‖ > r and define ε = ‖x− a‖−r > 0. Then if y ∈ Bε(x)
we will have that

‖y − a‖ ≥ |‖y − x‖ − ‖x− a‖| by the triangle inequality

≥ ‖x− a‖ − ‖y − x‖ since |c| ≥ −c for all c ∈ R
> ‖x− a‖ − ε since y ∈ Bε(x)

= ‖x− a‖ − (‖x− a‖ − r) since ε = ‖x− a‖ − r

= r.

3 If s = 0 we define Bs(a) = ∅.
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This shows that Bε(x) ⊂ Ec. We next assume that ‖x− a‖ < s, and choose ε = s − ‖x− a‖ > 0.
Then if y ∈ Bε(x) we will have that

‖y − a‖ ≤ ‖y − x‖+ ‖x− a‖ by the triangle inequality

< ε + ‖x− a‖ since y ∈ Bε(x)

= (s− ‖x− a‖) + ‖x− a‖ since ε = s− ‖x− a‖
= s.

Thus Bε(x) ⊂ Ec in this case as well. We have thus shown that given any x ∈ Ec we can find an
ε > 0 so that Bε(x) ⊂ Ec. Therefore Ec is open, and E is closed.

�
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(4) (8.3.9) Show that if E ⊂ Rn is a closed set and a /∈ E, then

inf
x∈E
‖x− a‖ > 0.

Proof. The assumption a /∈ E is equivalent to a ∈ Ec. Since E is closed, Ec is open, so there exists
an ε > 0 so that Bε(a) ⊂ Ec. Therefore, given x ∈ E, x /∈ Ec, and consequently x /∈ Bε(a) (or else
we would have x ∈ Bε(a) ⊂ Ec). But x /∈ Bε(a) = {x ∈ Rn | ‖x− a‖ < ε} implies that

‖x− a‖ ≥ ε for all x ∈ E

and we can conclude that
inf
x∈E
‖x− a‖ ≥ ε > 0.

�
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