
Math 421, Homework #3 Solutions

(1) Consider a function f : R→ R, and assume that f is continuous at x0 ∈ R and locally integrable on
R. Prove that

lim
δ→0+

1

2δ

∫ x0+δ

x0−δ
f(x) dx = f(x0).

Proof 1. In order to prove that

lim
δ→0+

1

2δ

∫ x0+δ

x0−δ
f(x) dx = f(x0).

we need to show that for any ε > 0, there exists a δ′ > 0 so that

δ ∈ (0, δ′) ⇒

∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣∣ < ε.

Let ε > 0. Since f is assumed continuous at x0, we can find a δ′ > 0 so that

|x− x0| < δ′ ⇒ |f(x)− f(x0)| < ε.

For δ ∈ (0, δ′), we therefore have that∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣∣ =

∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

1

2δ

∫ x0+δ

x0−δ
1 dx

∣∣∣∣∣
=

∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x) dx− 1

2δ

∫ x0+δ

x0−δ
f(x0) dx

∣∣∣∣∣
=

∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x)− f(x0) dx

∣∣∣∣∣
≤ 1

2δ

∫ x0+δ

x0−δ
|f(x)− f(x0)| dx

<
1

2δ

∫ x0+δ

x0−δ
ε dx since |x− x0| < δ < δ′

= ε.

Hence δ ∈ (0, δ′) implies that ∣∣∣∣∣ 1

2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣∣ < ε

as required. �

Proof 2. Here we will use the Fundamental Theorem of Calculus (FTC).
Define

F (x) =

∫ x

c

f(t) dt

for any c ∈ R. Note that since f is assumed to be continuous at x0, the FTC implies that F is
differentiable at x0, and that F ′(x0) = f(x0).1

We then have that

1 Strictly speaking, the statement of the FTC assumed that c < x in the definition
∫ x
c f(t) dt, but this assumption is easily

removed since for any other c′ ∈ R we have that∫ x

c′
f(t) dt =

∫ c′

c
f(t) dt +

∫ x

c
f(t) dt

so choosing a different c in the definition of F merely changes the function by a constant.



lim
δ→0+

1

2δ

∫ x0+δ

x0−δ
f(x) dx = lim

δ→0+

1

2δ

(∫ x0+δ

c

f(x) dx−
∫ x0−δ

c

f(x) dx

)

= lim
δ→0+

1

2δ
(F (x0 + δ)− F (x0 − δ))

=
1

2

(
lim
δ→0+

F (x0 + δ)− F (x0)

δ
+ lim
δ→0+

F (x0 − δ)− F (x0)

−δ

)
=

1

2
(F ′(x0) + F ′(x0))

= F ′(x0) = f(x0).

�
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(2) (5.3.9) Suppose that f : [a, b]→ R is continuously differentiable and 1–1 on [a, b]. Prove that∫ b

a

f(x) dx+

∫ f(b)

f(a)

f−1(x) dx = bf(b)− af(a). (1)

Proof. Since f is continuous and 1–1, the inverse f−1 of f is defined and continuous. Moreover, since
f is assumed to be continuously differentiable, we can apply Theorem 5.35 (with f−1 here playing
the role of f in the theorem, and f here playing the role of φ in the theorem) that∫ f(b)

f(a)

f−1(x) dx =

∫ b

a

f−1(f(x))f ′(x) dx

=

∫ b

a

xf ′(x) dx.

Integrating this last expression by parts, we continue

= xf(x)|ba −
∫ b

a

d
dx (x)f(x) dx

= bf(b)− af(a)−
∫ b

a

f(x) dx.

We have thus shown that∫ f(b)

f(a)

f−1(x) dx = bf(b)− af(a)−
∫ b

a

f(x) dx

which is equivalent to (1) above. �

3



(3) (cf. 5.4.6) Let f , g : [0,∞) → R be locally integrable functions, and assume that g(x) ≥ 0 for all
x ∈ [0,∞). Assume that the limit

L := lim
x→∞

f(x)

g(x)

exists and satisfies L ∈ (0,∞). Prove that f is improperly integrable on [0,∞) if and only if g is
improperly integrable on [0,∞).

Proof. According to the definition of limit, the equation

L = lim
x→∞

f(x)

g(x)

means that for any ε > 0, there exists an N , so that x > N implies that∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε.

Since L > 0 is finite, we can, in particular, find an N , so that x > N implies that∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < L

2
,

or equivalently, so that

0 <
L

2
<
f(x)

g(x)
<

3L

2

for all x > N . Note that this implies that g(x) is nonzero for all x > N , and since g(x) ≥ 0 for all
x ≥ 0, we have that g(x) > 0 for all x > N . We can therefore multiply this inequality through by
g(x) to find that

0 <
L

2
g(x) < f(x) <

3L

2
g(x)

for all x > N .
Now, if g is improperly integrable on [0,∞), then 3L

2 g is improperly integrable on [0,∞) (Theorem

5.42), and therefore 3L
2 g is improperly integrable on [N,∞). The inequality

0 < f(x) <
3L

2
g(x) for all x > N

then allows us to apply the comparison theorem for improper integrals (Theorem 5.43) to conclude
that f is improperly integrable on [N,∞). Since f is assumed locally integrable on [0,∞), f being
improperly integrable on [N,∞) is equivalent to f being improperly integrable on [0,∞).

Similarly, if f is improperly integrable on [0,∞), we use the inequality

0 <
L

2
g(x) < f(x) for all x > N

with the comparison theorem for improper integrals to conclude that L
2 g and g are improperly inte-

grable on [N,∞), which, with the assumption of local integrability of g, implies that g is improperly
integrable on [0,∞).

�
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(4) Let f : [0,+∞) → R be a locally integrable function. Show that f is improperly integrable on
[0,+∞) if and only if for every ε > 0 there exists an R > 0 so that if y > x > R then

∣∣∫ y
x
f(t) dt

∣∣ < ε.

Proof. We first assume that f is improperly integrable on [0,∞). This means that the limit

L := lim
r→∞

∫ r

0

f(t) dt

exists (and is finite). By definition, this means that for any ε′ > 0 we can find an R ∈ R so that for
r > R we have that ∣∣∣∣∫ r

0

f(t) dt− L
∣∣∣∣ < ε′.

Given, ε > 0, we can thus find an R > 0 so that∣∣∣∣∫ r

0

f(t) dt− L
∣∣∣∣ < ε

2
for r > R (2)

(i.e. we apply the previous definition with ε′ = ε/2). We then find that if y > x > R that∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ =

∣∣∣∣∫ y

0

f(t) dt−
∫ x

0

f(t) dt

∣∣∣∣ by Theorem 5.20

=

∣∣∣∣(∫ y

0

f(t) dt− L
)

+

(
L−

∫ x

0

f(t) dt

)∣∣∣∣
≤
∣∣∣∣∫ y

0

f(t) dt− L
∣∣∣∣+

∣∣∣∣L− ∫ x

0

f(t) dt

∣∣∣∣ by the triangle inequality

=

∣∣∣∣∫ y

0

f(t) dt− L
∣∣∣∣+

∣∣∣∣∫ x

0

f(t) dt− L
∣∣∣∣

<
ε

2
+
ε

2
= ε by (2), since x > R and y > R.

Thus, improper integrability of f on [0,∞) implies that for any ε > 0 there is an R > 0 so that∣∣∫ y
x
f(t) dt

∣∣ < ε provided y > x > R.

We next assume that for any ε′ > 0 there exists an R > 0 so that for y > x > R,
∣∣∫ y
x
f(t) dt

∣∣ < ε′.

Define a sequence xn =
∫ n
0
f(t) dt. Then, given ε > 0, we can choose an R > 0 so that

∣∣∫ y
x
f(t) dt

∣∣ < ε,
and choosing an N ∈ N with N ≥ R we see that for n > m > N that

|xn − xm| =
∣∣∣∣∫ n

0

f(t) dt−
∫ m

0

f(t) dt

∣∣∣∣ by definition of xj

=

∣∣∣∣∫ n

m

f(t) dt

∣∣∣∣ by Theorem 5.20

< ε.

Therefore xn is a Cauchy sequence and hence has a limit. Let L = limn→∞ xn. We claim that
limr→∞

∫ r
0
f(t) dt = L. To prove this we need to demonstrate that for any ε > 0, there is an R > 0

so that if r > R then
∣∣∫ r

0
f(t) dt− L

∣∣ < ε. Let ε > 0. Choose an R′ so that∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ < ε

2
if y > x > R′, (3)

which we can do by assumption, and choose an N ∈ N so that

|xn − L| <
ε

2
if n > N , (4)
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which we can do by the fact that limn→∞ xn = L. Then defining R = max {R′, N} we choose a
natural number n > R and find that if r > R then∣∣∣∣∫ r

0

f(t) dt− L
∣∣∣∣ =

∣∣∣∣(∫ r

0

f(t) dt− xn
)

+ (xn − L)

∣∣∣∣
≤
∣∣∣∣∫ r

0

f(t) dt− xn
∣∣∣∣+ |xn − L| by the triangle inequality

<

∣∣∣∣∫ r

0

f(t) dt− xn
∣∣∣∣+

ε

2
by (4) since n > R ≥ N

=

∣∣∣∣∫ r

0

f(t) dt−
∫ n

0

f(t) dt

∣∣∣∣+
ε

2
by definition of xn

=

∣∣∣∣∫ r

n

f(t) dt

∣∣∣∣+
ε

2
Theorem 5.20

<
ε

2
+
ε

2
= ε by (3) since r > R ≥ R′ and n > R ≥ R′.

We conclude that limr→∞
∫ r
0
f(t) dt = L and thus f is improperly integrable on [0,∞). �
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(5) (5.4.7)
(a) Suppose that f is improperly integrable on [0,+∞). Prove that if limx→∞ f(x) exists, then

limx→∞ f(x) = 0.

Proof. Let
L = lim

x→∞
f(x).

We will argue by contradiction to show that L = 0. Assume initially that L > 0. Then according
to the definition of L = limx→∞ f(x) there is an R1 ≥ 0 so that

|f(x)− L| < L

2
if x > R1

from which we can conclude that −L/2 < f(x)− L < L/2 and thus

f(x) >
L

2
> 0 if x > R1. (5)

We claim that this implies that f is not improperly integrable on [0,∞). If f were improperly
integrable on [0,∞) then problem (4) would allow us to find an R2 > 0 so that∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ < 1 for all y > x > R2. (6)

Choosing an x > max {R1, R2} and defining y = x+ 3/L, we conclude∫ y

x

f(t) dt ≥
∫ y

x

L

2
dt by the comparison theorem and (5)

= (y − x)
L

2

=
3

L

L

2
=

3

2
> 1

which contradict (6). Thus f is not improperly integrable on [0,∞) if L > 0.
If L < 0 we can apply the argument of the previous paragraph to −f (which will limit to

−L > 0) to conclude that −f is not improperly integrable on [0,∞) and thus f is not integrable
on [0,∞). We conclude that L = 0. �
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(b) Let

f(x) =

{
1 if x ∈ [n, n+ 2−n) for some n ∈ N
0 otherwise.

Prove that f is improperly integrable on [0,+∞) but limx→∞ f(x) does not exist. (Note that
this example shows that we can’t eliminate the assumption that the limit limx→∞ f(x) exists
in part (a).)

Proof. Let n ∈ N. We have that∫ n+1

n

f(x) dx =

∫ n+2−n

n

f(x) dx+

∫ n+1

n+2−n

f(x) dx.

Since f(x) = 1 for x ∈ [n, n+2−n]\{n+ 2−n} it follows from problem #2 on homework #2 that∫ n+2−n

n
f(x) dx =

∫ n+2−n

n
1 dx = 2−n. Similarly, since f(x) = 0 for x ∈ [n+2−n, n+1]\{n+ 1},

the second integral on the right vanishes. Therefore∫ n+1

n

f(x) dx = 2−n for n ∈ N. (7)

Similarly, since f(x) = 0 for x ∈ [0, 1), we have that
∫ 1

0
f(x) dx = 0.2

To see that f is improperly integrable, we first observe that f is locally integrable because
on any closed interval contained in [0,∞), f has a finite number of discontinuities (problem #1
from homework #2). Defining F (x) =

∫ x
0
f(t) dt, we observe that since f is nonnegative, we

can use the comparison theorem to conclude that for y > x,

F (y)− F (x) =

∫ y

0

f(t) dt−
∫ x

0

f(t) dt =

∫ y

x

f(t) dt ≥ 0.

Therefore F is an increasing function. To show that limx→∞ F (x) exists (and hence that f is
improperly integrable on [0,∞)) if suffices to show that F is bounded above. Let x ∈ [0,∞).
Choosing a natural number N > x, we have that

F (x) ≤ F (N) since F is increasing

=

∫ N

0

f(t) dt by definition of F

=

N∑
n=0

∫ n+1

n

f(t) dt by Theorem

=

N∑
n=1

∫ n+1

n

f(t) dt since

∫ 1

0

f(x) dx = 0

=

N∑
n=1

2−n by (7)

= 1− 1

2N
by the geometric sum formula (see proof of Thm 6.7)

< 1.

Therefore F (x) < 1 for any x ∈ [0,∞), so F is bounded above, and as observed above, this
implies that limx→∞ F (x) = limx→∞

∫ x
0
f(t) dt exists. 3

2 If one uses the convention that the natural numbers include zero, then we would have instead that
∫ 1
0 f(x) dx = 1 instead,

but this ultimately has no effect on the improper integrability of f .
3 With slightly more work, we can show that

∫∞
0 f(t) dt = 1. Indeed, given any x ∈ [0,∞) we can argue that if n ∈ N is less

than x, then
∫ x
0 f(t) dt ≥ 1− 2−n. Therefore for any ε > 0 we can find an R > 0 so that if x > R,

∫ x
0 f(t) dt ∈ (1− ε, 1).
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Finally, we show that limx→∞ f(x) doesn’t exist. Arguing by contradiction we assume that
L = limx→∞ f(x) exists. Then there exists an R ∈ R so that

|f(x)− L| < 1

2
if if x > R,

or equivalently that

− 1

2
< f(x)− L < 1

2
if if x > R. (8)

Choosing a natural number N > R, we get that f(N) = 1 so we can use (8) to conclude that
L > 1

2 . Meanwhile using that N + 1
2 > N > R with f(N + 1

2 ) = 0 and (8) we can also conclude

that L < 1
2 which is a contradiction. Therefore limx→∞ f(x) doesn’t exist. �
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