Math 421, Homework #3 Solutions

(1) Consider a function f: R — R, and assume that f is continuous at xg € R and locally integrable on
R. Prove that
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we need to show that for any € > 0, there exists a ¢’ > 0 so that
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Let € > 0. Since f is assumed continuous at zp, we can find a ¢’ > 0 so that
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For ¢ € (0,4"), we therefore have that
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Hence 6 € (0,¢’) implies that
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Proof 2. Here we will use the Fundamental Theorem of Calculus (FTC).
Define

Flz) = /m £(t) dt

for any ¢ € R. Note that since f is assumed to be continuous at xy, the FTC implies that F is
differentiable at xp, and that F'(zq) = f(xo)ﬂ
We then have that

1 Strictly speaking, the statement of the FTC assumed that ¢ < z in the definition f: f(t) dt, but this assumption is easily
removed since for any other ¢’ € R we have that

/C,zf(t)dt:/CCIf(t)dt+/:f(t)dt

so choosing a different c in the definition of F' merely changes the function by a constant.






(2) (5.3.9) Suppose that f : [a,b] — R is continuously differentiable and 1-1 on [a, b]. Prove that

F(b)
/ f(z dx—l—/ f_l(gc)dac:bf(b)—af(a). (1)
f(a)

Proof. Since f is continuous and 1-1, the inverse f~! of f is defined and continuous. Moreover, since
f is assumed to be continuously differentiable, we can apply Theorem 5.35 (with f~! here playing
the role of f in the theorem, and f here playing the role of ¢ in the theorem) that
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Integrating this last expression by parts, we continue
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= bf(b) - af(a / fla
We have thus shown that
f(b)
|5 de = br(b) - afte /f dz
f(a)

which is equivalent to (1)) above. O



(3) (cf. 5.4.6) Let f, g : [0,00) — R be locally integrable functions, and assume that g(z) > 0 for all
x € [0,00). Assume that the limit

exists and satisfies L € (0,00). Prove that f is improperly integrable on [0,00) if and only if g is
improperly integrable on [0, co).

Proof. According to the definition of limit, the equation

= lim M
L= ;cl—>oo g(x)

means that for any € > 0, there exists an N, so that > N implies that

Lx) - Ll <e.
9(x)
Since L > 0 is finite, we can, in particular, find an N, so that x > N implies that
f@) L
9(x) 2’
or equivalently, so that
L 3L
< =< M < —
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for all > N. Note that this implies that g(z) is nonzero for all z > N, and since g(z) > 0 for all
x > 0, we have that g(x) > 0 for all x > N. We can therefore multiply this inequality through by

g(z) to find that

L 3L
0< So(x) < f(x) < > g(a)
for all x > N.
Now, if g is improperly integrable on [0, c0), then % g is improperly integrable on [0, c0) (Theorem
5.42), and therefore %g is improperly integrable on [N, 00). The inequality

3L
0< flz) < ?g(l’) for all z > N
then allows us to apply the comparison theorem for improper integrals (Theorem 5.43) to conclude
that f is improperly integrable on [N, c0). Since f is assumed locally integrable on [0, 00), f being
improperly integrable on [N, c0) is equivalent to f being improperly integrable on [0, c0).
Similarly, if f is improperly integrable on [0, 00), we use the inequality

0< %g(z) < f(x) for all x > N

with the comparison theorem for improper integrals to conclude that % g and g are improperly inte-
grable on [N, 00), which, with the assumption of local integrability of g, implies that g is improperly
integrable on [0, 00).

O



(4) Let f : [0,400) — R be a locally integrable function. Show that f is improperly integrable on
[0, +00) if and only if for every € > 0 there exists an R > 0 so that if y > « > R then |fmy f(t) dt| < e.

Proof. We first assume that f is improperly integrable on [0, 00). This means that the limit

T

L := lim ft)dt

r—00 0

exists (and is finite). By definition, this means that for any ¢’ > 0 we can find an R € R so that for
r > R we have that

/rf(t)dt—L’ <.
0

Given, € > 0, we can thus find an R > 0 so that

/Orf(t)dt—L‘<;forr>R @)

(i.e. we apply the previous definition with ¢’ = £/2). We then find that if y > z > R that

/jf(t) dt’ _ /Oyf(t) dt /Ox £(1) dt‘ by Theorem 5.20
_ (/jf(t)dt—L) + (L—/jf(t)dt)‘
< /0 ! Ft)dt — L' + ‘L - /O ’ £(b) dt‘ by the triangle inequality
- /Oyf(t)dtL'Jr‘/ozf(t)dtL‘
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<ztg=¢ by (2), since z > R and y > R.

Thus, improper integrability of f on [0,00) implies that for any e > 0 there is an R > 0 so that
| [ f(t)dt| < e provided y >z > R.

We next assume that for any €’ > 0 there exists an R > 0 so that for y > z > R, ‘fj f(@) dt‘ <.
Define a sequence x,, = [;' f(t) dt. Then, given e > 0, we can choose an R > 0so that | [¥ f(t) dt| <e,
and choosing an N € N with N > R we see that for n > m > N that

|Tn — x| = ‘/ ft)dt — / f@) dt‘ by definition of x;
0 0
= / (@) dt’ by Theorem 5.20
<e.

Therefore Zn is a Cauchy sequence and hence has a limit. Let L = lim, .. x,. We claim that
lim, fOT f(t)dt = L. To prove this we need to demonstrate that for any € > 0, there is an R > 0
so that if » > R then UOT f(t)dt — L| < e. Let € > 0. Choose an R’ so that

Y
/ f(t)dt’<;ify>x>R’, 3)

which we can do by assumption, and choose an N € N so that
|xn—L|<gifn>N, (4)
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which we can do by the fact that lim, , , = L. Then defining R = max{R’, N} we choose a
natural number n > R and find that if » > R then

/OTf(t)dt—L‘ = (/OTf(t)dt—xn> +($n—L)‘
< /07’ f@)dt — x| + |z, — L by the triangle inequality
</Orf(t)dt—xn+§ bysincen>R2N
= /07” f(#) dt—/on (@) dt‘ +% by definition of z,,
= /Tf(t) dt’—i—; Theorem 5.20
<£+E=€ bysincer>R2R’andn>R2R’.

2 2
We conclude that lim,_, o for f(t)dt = L and thus f is improperly integrable on [0, 00). O



(5) (5.4.7)
(a) Suppose that f is improperly integrable on [0,400). Prove that if lim,_, . f(x) exists, then

limg o f(z) =0.

Proof. Let
L= lim f(z).

Tr—>r00
We will argue by contradiction to show that L = 0. Assume initially that L > 0. Then according
to the definition of L = lim,_,, f(z) there is an R; > 0 so that

L
|f(z) —L| < 3 ifx >Ry
from which we can conclude that —L/2 < f(x) — L < L/2 and thus
L
f(a:)>§>0ifx>R1. (5)

We claim that this implies that f is not improperly integrable on [0, 00). If f were improperly
integrable on [0, c0) then problem (4) would allow us to find an Ry > 0 so that

y
/ f(t)dt’ < 1forall y >z > Rs. (6)
Choosing an x > max {R1, Re} and defining y = x + 3/L, we conclude

y v,
/ f(t)dt > / 5 dt by the comparison theorem and
L

=(y— 117)5
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which contradict @ Thus f is not improperly integrable on [0, c0) if L > 0.
If L < 0 we can apply the argument of the previous paragraph to —f (which will limit to
—L > 0) to conclude that —f is not improperly integrable on [0, 00) and thus f is not integrable
on [0,00). We conclude that L = 0. O

>1



(b) Let

fz) =

1 ifz € [n,n+2"") for some n € N
0 otherwise.

Prove that f is improperly integrable on [0, 4+00) but lim,_,+ f(x) does not exist. (Note that
this example shows that we can’t eliminate the assumption that the limit lim,_, . f(z) exists

in part (a).)

Proof. Let n € N. We have that
n+1 n+2"" n+1
/ f(x) dx:/ f(z) dx—i—/ f(z)dx.
n n

n+2-"m
Since f(z) = 1for x € [n,n+27"]\{n + 27"} it follows from problem #2 on homework #2 that

f:+27” f(z)dx = f:“in 1dx = 27™. Similarly, since f(z) =0 for x € [n+27", n+1]\{n + 1},
the second integral on the right vanishes. Therefore

n+1
/ f(z)dx =2"" for n € N. (7)

Similarly, since f(x) =0 for = € [0,1), we have that fol f(z)dz = O

To see that f is improperly integrable, we first observe that f is locally integrable because
on any closed interval contained in [0, 00), f has a finite number of discontinuities (problem #1
from homework #2). Defining F(z) = fom f(t)dt, we observe that since f is nonnegative, we
can use the comparison theorem to conclude that for y > x,

F(y) - F(z) = /Oyﬂt)dt— /(ff(t) dt = / £(t)dt > 0.

Therefore F is an increasing function. To show that lim, ., F'(z) exists (and hence that f is
improperly integrable on [0,00)) if suffices to show that F is bounded above. Let z € [0, 00).
Choosing a natural number N > z, we have that

F(z) < F(N) since F' is increasing
N
= f(t)dt by definition of F
0
N n+1
= / f(t)dt by Theorem
n=0v"
N n+1 1
= Z/ f(t)dt since / f(z)de =0
n=1v" 0
N
=227 by
n=1
1
=1- oN by the geometric sum formula (see proof of Thm 6.7)
< 1.

Therefore F(z) < 1 for any = € [0,00), so F is bounded above, and as observed above, this
implies that lim, . F(z) = lim, oo fox f(t)dt exists. E|

2 If one uses the convention that the natural numbers include zero, then we would have instead that fol f(x)dx =1 instead,
but this ultimately has no effect on the improper integrability of f.
3 With slightly more work, we can show that fooo f(t)dt = 1. Indeed, given any x € [0, 00) we can argue that if n € N is less
than z, then [ f(t)dt > 1 —27™. Therefore for any & > 0 we can find an R > 0 so that if > R, [ f(t)dt € (1 —¢,1).
8



Finally, we show that lim,_, ., f(x) doesn’t exist. Arguing by contradiction we assume that
L =lim,_, f(x) exists. Then there exists an R € R so that

1
|f(z)—L| < 3 ifif x > R,
or equivalently that
1 1
—§<f(x)—L<§ififx>R. (8)

Choosing a natural number N > R, we get that f(N) = 1 so we can use to conclude that
L> % Meanwhile using that N + % > N > R with f(N + %) =0 and we can also conclude
that L < 3 which is a contradiction. Therefore lim,_,« f(z) doesn’t exist. O



