Math 421, Homework #2 Solutions

(1) Let f:[a,b] — R be a bounded function. Assume that f has a finite number of discontinuities, i.e.
assume there exists a finite subset E of [a, b] so that f is continuous at all z € [a,b] \ E. Prove that
f is integrable on [a, b].

Proof. Define the set F1 = F U {a,b}, and label the elements of E; by
a=q <q <---<gy=»

and define a quantity
Ag = min P —qi_
I je{l,...,n} A

so that Ag gives the smallest distance between successive g;’s. Since f is assumed to be bounded on
[a, b], there is an M > 0 so that

M < f(z) <M for all z € [a, b].
Let € > 0, and define 6 > 0 by

6 = min _c &
B 8Mn’ 4 [°
Define a partition Q = {zq, ..., 22,41} of [a,b] by ¢ = a, 2p+1 = b,

22j+1:qj+5 ifj€{0,...,n—1},
and
:rgj:qud 1f]€{1,7n}
Since we chose 6 < Ag/4 it follows that x; > x; for j > i. Note that by construction ¢; € (@25, 2541)
if j€{1,...,n— 1}, while gy € [x0,21) and ¢, € (x2n, Tan+1]. Hence f is continuous, and therefore
integrable, on each of the intervals [xg;_1, z2;] for j € {1,...,n}. Therefore we can choose a partition

Pj of [.ng_l,l’gj] so that
3
U(faP]) 7L(f7pj) < %

for each j € {1,...,n}. Defining, P = QU (U}‘ZIPj), we then have that
U(f,P) = L(f, P) = [sup f([a, z1]) — inf f([a, z:1])](z1 — a)
+ [sup f([z2n, b]) — inf f([z2n,0])](b — 2n)

n—1

+ Z[SUP f([w2), x2541]) — inf f([22;, 2oj41])] (2241 — T25)
+> U(f,P) = L(f, P))
j=1

n—1
<2ME+2Mb+ Y 2M(20)+ Y o

N N n
Jj=1 Jj=1
g
=4Mn5—|—§
g g
< 4M — =e.
=AM T T

We therefore can conclude that f is integrable on [a, b].



(2) (a)

Consider a function f : [a,b] — R, and assume that there is a single point at which f is nonzero,
i.e. assume that there is a point ¢ € [a,b] so that f satisfies f(x) = 0 for all z € [a,b] \ {c}.

Prove that f is integrable on [a, b] and that f: f(z)dx = 0.

Proof. Since f([a,b]) = {0, f(c)} by assumption, it follows that f is bounded on [a, b]. Further-
more, since f(z) =0 for x € [a,b] \ {c}, it follows that f is continuous on [a,b] \ {c}. Therefore
by Problem (1), f is integrable on [a, b].

To prove that fab f(z) dx = 0, we initially assume that f(c¢) > 0. Let P = {zo,...,x,} be a
partition of [a,b]. We claim that L(f, P) = 0. Indeed, if ¢ ¢ [x;_1,x;] then f(x) is identically
zero on [xj_1,x;] so

m;(f) :=inf f([z;-1,z;]) =inf {0} = 0.
On the other hand if ¢ € [z;_1,z;] then f([z;_1,2,]) = {0, f(c)}, and since we are assuming
f(e) >0, we again have that

m;(f) = inf f([z;-1,2;]) = inf {0, f(c)} = 0.

Thus L(f, P) = 0 as claimed. Since we have already shown that f is integrable on [a, b] we have

b b
[ t@de=w [ 1)z
' = sup {Z(f7 P) | P a partition of [a,b]}
= sup {0}
=0.
Finally, to deal with the case that f(c) < 0, we can apply the previous argument to the

function —f to conclude that f;[ff(x)} dr =0 and thus f; f(z)dxz =0 as well.
(]

Let f : [a,b] — R be an integrable function. Let g : [a,b] — R be a function which agrees with
f at all points in [a,b] except for one, i.e. assume there exists a ¢ € [a,b] so that g(z) = f(x)

for all z € [a,b] \ {c}. Prove that g is integrable on [a,b] and that f; g(z)dx = f; f(x)dx.

Proof. Define h(z) = f(z) — g(x). According to our assumptions h(xz) = 0 on [a,b] \ {c}.
Therefore part (a) implies that h is integrable on [a, b] and that

/abh(x)dxo.

Then, since g(z) = f(x) — h(x) it follows from Theorem 5.19 that g is integrable on [a, b] and
that

/abg(a:) dx = /:f(x) — h(x)dz

z/abf(x)dx—/abh(x)da:

= /abf(x) dz.



(c) (5.1.6) Let f : [a,b] — R be an integrable function, and assume that g : [a,b] — R agrees
with f except on a finite set, i.e. assume there exists a finite set E so that g(z) = f(x) for all

x € [a,b] \ E. Prove that g is integrable on [a, b] and that f; g(z)dx = ff f(x)dx.

Proof. Assume that E = {x1,...,x,}. For k € {1,...,n — 1}, define functions gy on [a, b] by
z) ifzé€la,b\{x1,...,x
o () = f(x) ! [a, 0]\ {21 K}
g(z) ifxe{rptr,...,zn},
and define gy = f and g,, = g. Then, it follows immediately from this definition that
9k(z) = gr—1(x) for all z € [a,b] \ {xx}.

We will argue by induction to prove that for all k € {0,1,...,n} that g is integrable on [a, b]
and that

jﬁbgk<x>da:j£bf<x>dz. (1)

Since g = g, this will prove the desired result. As our base case, we take k = 0, in which case
holds trivially. For our inductive step, we assume that for some k > 0 that g, is integrable
on [a, b] and that holds. Then, since gxy1 agrees with gi except for at xr41, we can use part
(b) to conclude that g4 is integrable on [a,b] and that

[%mmmzf%wmzlﬂmw.



(3) (5.2.5) Prove that if f is integrable on [0,1] and 8 > 0, then

l/nﬂ
lim na/ flz)dx=0
0

n—oo

for all a < .

Proof. Since f is assumed integrable on [a, b], f must be bounded, i.e. there exists an M > 0 so that
|f(z)| < M for all x € [a,b].

Using Theorem 5.22, and the comparison theorem (Theorem 5.21), we can conclude for n > 0 that

1/n? 1/n?
ne / f(x)da| < n® / 1 (@)] da

1/n?
§no‘/ M dx
0

= Mn®(1/n” —0)
= Mn* 5,

1/n?
n /0 f(x)dx

Since we assume 3 > «, we know that n®# — 0 as n — oo, it follows from and the squeeze
theorem that

SO

0< < Mn°=P, (2)

1/n?
lim n® / f(z)dx = 0.
0

n—oo



(4) (5.2.8) Let f be continuous on a closed, nondegenerate interval|a, b], let

M = sup [f(z),
z€la,b]

and assume that M > 0.
(a) Prove that if p > 0, then for every € € (0, M) there is a nondegenerate interval I. C [a, b] such
that

b
(M —e)P|L| < / F@)P < MP(b - a) 3)

where |I.| denotes the length of the interval I.

Proof. By definition of supremum, we have that
|f(z)| < sup |[f(x)|=M for all x € [a, b],

z€la,b

and since aP is an increasing function on [0,00), we can raise each term to the p power to
conclude that

|f(x)|P < MP for all x € [a, b].
Integrating on [a, b] and using the comparison theorem (Theorem 5.21), we conclude that

b b
/|f(x)|pdx§/ MPdx = MP(b— a). (4)

Since f is assumed to be continuous, |f] is also continuous, so the extreme value theorem
let’s us conclude that there is an zg € [a, b] satisfying | f(z0)| = sup,cq | f(2)| = M. Let £ > 0.
Again using continuity of |f|, there exists a 6 > 0 so that for = € [a, b] satisfying |x — x| < 0,
we will have that || f(z)] — M| = ||f(z)| — |f(zo)|| < . If we choose a closed nondegenerate
interva]ﬂ I =]ec,d] C(xg—9,z0+0)N]a,b] then

[lf(z)|— M| <e forallz €Tl

which implies that f(z) > M —e > 0 for all x € I. Again using that 2P in increasing on [0, 00)
we can conclude that

[f(@)|P > (M —¢e)? forallz eI
Using the comparison theorem, it then follows that
d d
/ |f(x)\dez/ (M —e)Pde= (M —¢e)P(d—c)= (M —e)"[I]. (5)

Moreover, using Theorem 5.20 we have that

/ab|f(:c)pdx:/{l]f(x)pdx+/cd|f(x)|pdm+/db|f(x>pdx
>
> [ .

Here we've used the comparison theorem with |f(z)[? > 0 to conclude that [ |f(z)[P dz > 0
and f; |f(x)[P dz > 0. This with (5) yields

b
[ i@ > @r -1 )
Together ([4)) and (6]) yield (3). O

L1f 29 € (a,b) we can choose I = [xg — &',z + 8'] where &' > 0 is &' = min{6/2,b — o, z0 — a}. If 2o = a we can choose
I =[a,a+ §'] where 6’ = min{6/2,b — a} > 0, and if zg = b we can choose I = [b — §’,b] where 6’ = min {6/2,b — a} > 0.
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: b Ve .
(b) Prove that lim,_, (fa |f(z)P daz) exists and that
b 1/p
lim (/ |f(z)|pda:> =M.
p—o0 a

1/p
Proof. Let € > 0. According to the definition of lim,_, (fab |f(z)|P dx) = M, we must show
that we can find a P € R so that

1/p
(/b|f(9€)|p dm) -M|<e for p > P. (7)

From part (a) we can find a nondegenerate interval I = I/ C [a, b] so that

(v =3) 1< /ab f(@)” da < MP(b— a).

Raising each term above to the 1/p power and using that z'/P is an increasing function on
[0, +00), we can conclude that

1/p
(M —=3) < ( / @) dx) < M(b—a)'/?. (8)

Since b —a > 0 we know that lim, (b — a)'/? = 1. Therefore, we can find a P; € R so
that -
’(b—a)l/p—1‘<ﬁ forp > Py

from which we can conclude

M +
(b—a)l/p<1+%: ME for p > P;. (9)
Similarly, since |I| > 0, we know that lim, . |I |1/ P =1 so consequently, there exists a

P, € R so that

2
‘Ill/p_1‘<M€_/€/2 for p > P
from which we can conclude
2 M —
M7 >1— ¢/ < for p > P. (10)

M—c/2 M-—¢/2
Defining P = max {P;, P,} and combining (§)), (9), and let’s us conclude that

b 1/p
M—<€<</ f(x)|pdx> <M+e for p > P,

which is equivalent to .



