
Math 421, Homework #2 Solutions

(1) Let f : [a, b]→ R be a bounded function. Assume that f has a finite number of discontinuities, i.e.
assume there exists a finite subset E of [a, b] so that f is continuous at all x ∈ [a, b] \E. Prove that
f is integrable on [a, b].

Proof. Define the set E1 = E ∪ {a, b}, and label the elements of E1 by

a = q0 < q1 < · · · < qn = b.

and define a quantity
∆q = min

j∈{1,...,n}
qj − qj−1

so that ∆q gives the smallest distance between successive qj ’s. Since f is assumed to be bounded on
[a, b], there is an M > 0 so that

−M ≤ f(x) ≤M for all x ∈ [a, b].

Let ε > 0, and define δ > 0 by

δ = min

{
ε

8Mn
,

∆q

4

}
.

Define a partition Q = {x0, . . . , x2n+1} of [a, b] by x0 = a, x2n+1 = b,

x2j+1 = qj + δ if j ∈ {0, . . . , n− 1},
and

x2j = qj − δ if j ∈ {1, . . . , n}.
Since we chose δ ≤ ∆q/4 it follows that xj > xi for j > i. Note that by construction qj ∈ (x2j , x2j+1)
if j ∈ {1, . . . , n− 1}, while q0 ∈ [x0, x1) and qn ∈ (x2n, x2n+1]. Hence f is continuous, and therefore
integrable, on each of the intervals [x2j−1, x2j ] for j ∈ {1, . . . , n}. Therefore we can choose a partition
Pj of [x2j−1, x2j ] so that

U(f, Pj)− L(f, Pj) <
ε

2n
for each j ∈ {1, . . . , n}. Defining, P = Q ∪

(
∪nj=1Pj

)
, we then have that

U(f, P )− L(f, P ) = [sup f([a, x1])− inf f([a, x1])](x1 − a)

+ [sup f([x2n, b])− inf f([x2n, b])](b− x2n)

+

n−1∑
j=1

[sup f([x2j , x2j+1])− inf f([x2j , x2j+1])](x2j+1 − x2j)

+

n∑
j=1

U(f, Pj)− L(f, Pj)

< 2Mδ + 2Mδ +

n−1∑
j=1

2M(2δ) +

n∑
j=1

ε

2n

= 4Mnδ +
ε

2

≤ 4Mn
ε

8Mn
+
ε

2
= ε.

We therefore can conclude that f is integrable on [a, b].
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(2) (a) Consider a function f : [a, b]→ R, and assume that there is a single point at which f is nonzero,
i.e. assume that there is a point c ∈ [a, b] so that f satisfies f(x) = 0 for all x ∈ [a, b] \ {c}.
Prove that f is integrable on [a, b] and that

∫ b
a
f(x) dx = 0.

Proof. Since f([a, b]) = {0, f(c)} by assumption, it follows that f is bounded on [a, b]. Further-
more, since f(x) = 0 for x ∈ [a, b] \ {c}, it follows that f is continuous on [a, b] \ {c}. Therefore
by Problem (1), f is integrable on [a, b].

To prove that
∫ b
a
f(x) dx = 0, we initially assume that f(c) ≥ 0. Let P = {x0, . . . , xn} be a

partition of [a, b]. We claim that L(f, P ) = 0. Indeed, if c /∈ [xj−1, xj ] then f(x) is identically
zero on [xj−1, xj ] so

mj(f) := inf f([xj−1, xj ]) = inf {0} = 0.

On the other hand if c ∈ [xj−1, xj ] then f([xj−1, xj ]) = {0, f(c)}, and since we are assuming
f(c) ≥ 0, we again have that

mj(f) = inf f([xj−1, xj ]) = inf {0, f(c)} = 0.

Thus L(f, P ) = 0 as claimed. Since we have already shown that f is integrable on [a, b] we have∫ b

a

f(x) dx = (L)

∫ b

a

f(x) dx

= sup {L(f, P ) |P a partition of [a, b]}
= sup {0}
= 0.

Finally, to deal with the case that f(c) < 0, we can apply the previous argument to the

function −f to conclude that
∫ b
a

[−f(x)] dx = 0 and thus
∫ b
a
f(x) dx = 0 as well.

�

(b) Let f : [a, b]→ R be an integrable function. Let g : [a, b]→ R be a function which agrees with
f at all points in [a, b] except for one, i.e. assume there exists a c ∈ [a, b] so that g(x) = f(x)

for all x ∈ [a, b] \ {c}. Prove that g is integrable on [a, b] and that
∫ b
a
g(x) dx =

∫ b
a
f(x) dx.

Proof. Define h(x) = f(x) − g(x). According to our assumptions h(x) = 0 on [a, b] \ {c}.
Therefore part (a) implies that h is integrable on [a, b] and that∫ b

a

h(x) dx = 0.

Then, since g(x) = f(x) − h(x) it follows from Theorem 5.19 that g is integrable on [a, b] and
that ∫ b

a

g(x) dx =

∫ b

a

f(x)− h(x) dx

=

∫ b

a

f(x) dx−
∫ b

a

h(x) dx

=

∫ b

a

f(x) dx.

�
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(c) (5.1.6) Let f : [a, b] → R be an integrable function, and assume that g : [a, b] → R agrees
with f except on a finite set, i.e. assume there exists a finite set E so that g(x) = f(x) for all

x ∈ [a, b] \ E. Prove that g is integrable on [a, b] and that
∫ b
a
g(x) dx =

∫ b
a
f(x) dx.

Proof. Assume that E = {x1, . . . , xn}. For k ∈ {1, . . . , n− 1}, define functions gk on [a, b] by

gk(x) =

{
f(x) if x ∈ [a, b] \ {x1, . . . , xk}
g(x) if x ∈ {xk+1, . . . , xn},

and define g0 = f and gn = g. Then, it follows immediately from this definition that

gk(x) = gk−1(x) for all x ∈ [a, b] \ {xk}.
We will argue by induction to prove that for all k ∈ {0, 1, . . . , n} that gk is integrable on [a, b]
and that ∫ b

a

gk(x) dx =

∫ b

a

f(x) dx. (1)

Since g = gn, this will prove the desired result. As our base case, we take k = 0, in which case
(1) holds trivially. For our inductive step, we assume that for some k ≥ 0 that gk is integrable
on [a, b] and that (1) holds. Then, since gk+1 agrees with gk except for at xk+1, we can use part
(b) to conclude that gk+1 is integrable on [a, b] and that∫ b

a

gk+1(x) dx =

∫ b

a

gk(x) dx =

∫ b

a

f(x) dx.

�
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(3) (5.2.5) Prove that if f is integrable on [0, 1] and β > 0, then

lim
n→∞

nα
∫ 1/nβ

0

f(x) dx = 0

for all α < β.

Proof. Since f is assumed integrable on [a, b], f must be bounded, i.e. there exists an M > 0 so that

|f(x)| ≤M for all x ∈ [a, b].

Using Theorem 5.22, and the comparison theorem (Theorem 5.21), we can conclude for n > 0 that∣∣∣∣∣nα
∫ 1/nβ

0

f(x) dx

∣∣∣∣∣ ≤ nα
∫ 1/nβ

0

|f(x)| dx

≤ nα
∫ 1/nβ

0

M dx

= Mnα(1/nβ − 0)

= Mnα−β ,

so

0 ≤

∣∣∣∣∣nα
∫ 1/nβ

0

f(x) dx

∣∣∣∣∣ ≤Mnα−β . (2)

Since we assume β > α, we know that nα−β → 0 as n → ∞, it follows from (2) and the squeeze
theorem that

lim
n→∞

nα
∫ 1/nβ

0

f(x) dx = 0.

�

4



(4) (5.2.8) Let f be continuous on a closed, nondegenerate interval[a, b], let

M = sup
x∈[a,b]

|f(x)|,

and assume that M > 0.
(a) Prove that if p > 0, then for every ε ∈ (0,M) there is a nondegenerate interval Iε ⊂ [a, b] such

that

(M − ε)p|Iε| ≤
∫ b

a

|f(x)|p ≤Mp(b− a) (3)

where |Iε| denotes the length of the interval Iε.

Proof. By definition of supremum, we have that

|f(x)| ≤ sup
x∈[a,b]

|f(x)| = M for all x ∈ [a, b],

and since xp is an increasing function on [0,∞), we can raise each term to the p power to
conclude that

|f(x)|p ≤Mp for all x ∈ [a, b].

Integrating on [a, b] and using the comparison theorem (Theorem 5.21), we conclude that∫ b

a

|f(x)|p dx ≤
∫ b

a

Mp dx = Mp(b− a). (4)

Since f is assumed to be continuous, |f | is also continuous, so the extreme value theorem
let’s us conclude that there is an x0 ∈ [a, b] satisfying |f(x0)| = supx∈[a,b] |f(x)| = M . Let ε > 0.

Again using continuity of |f |, there exists a δ > 0 so that for x ∈ [a, b] satisfying |x − x0| < δ,
we will have that ||f(x)| −M | = ||f(x)| − |f(x0)|| < ε. If we choose a closed nondegenerate
interval1 I = [c, d] ⊂ (x0 − δ, x0 + δ) ∩ [a, b] then

||f(x)| −M | < ε for all x ∈ I
which implies that f(x) ≥M − ε ≥ 0 for all x ∈ I. Again using that xp in increasing on [0,∞)
we can conclude that

|f(x)|p > (M − ε)p for all x ∈ I
Using the comparison theorem, it then follows that∫ d

c

|f(x)|p dx ≥
∫ d

c

(M − ε)p dx = (M − ε)p(d− c) = (M − ε)p |I| . (5)

Moreover, using Theorem 5.20 we have that∫ b

a

|f(x)|p dx =

∫ c

a

|f(x)|p dx+

∫ d

c

|f(x)|p dx+

∫ b

d

|f(x)|p dx

≥
∫ d

c

|f(x)|p dx.

Here we’ve used the comparison theorem with |f(x)|p ≥ 0 to conclude that
∫ c
a
|f(x)|p dx ≥ 0

and
∫ b
d
|f(x)|p dx ≥ 0. This with (5) yields∫ b

a

|f(x)|p dx ≥ (M − ε)p |I| . (6)

Together (4) and (6) yield (3). �

1 If x0 ∈ (a, b) we can choose I = [x0 − δ′, x0 + δ′] where δ′ > 0 is δ′ = min {δ/2, b− x0, x0 − a}. If x0 = a we can choose
I = [a, a+ δ′] where δ′ = min {δ/2, b− a} > 0, and if x0 = b we can choose I = [b− δ′, b] where δ′ = min {δ/2, b− a} > 0.
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(b) Prove that limp→∞

(∫ b
a
|f(x)|p dx

)1/p
exists and that

lim
p→∞

(∫ b

a

|f(x)|p dx

)1/p

= M.

Proof. Let ε > 0. According to the definition of limp→∞

(∫ b
a
|f(x)|p dx

)1/p
= M , we must show

that we can find a P ∈ R so that∣∣∣∣∣∣
(∫ b

a

|f(x)|p dx

)1/p

−M

∣∣∣∣∣∣ < ε for p > P . (7)

From part (a) we can find a nondegenerate interval I = Iε/2 ⊂ [a, b] so that(
M − ε

2

)p
|I| ≤

∫ b

a

|f(x)|p dx ≤Mp(b− a).

Raising each term above to the 1/p power and using that x1/p is an increasing function on
[0,+∞), we can conclude that(

M − ε

2

)
|I|1/p ≤

(∫ b

a

|f(x)|p dx

)1/p

≤M(b− a)1/p. (8)

Since b − a > 0 we know that limp→∞(b − a)1/p = 1. Therefore, we can find a P1 ∈ R so
that ∣∣∣(b− a)1/p − 1

∣∣∣ < ε

M
for p > P1

from which we can conclude

(b− a)1/p < 1 +
ε

M
=
M + ε

M
for p > P1. (9)

Similarly, since |I| > 0, we know that limp→∞ |I|1/p = 1 so consequently, there exists a
P2 ∈ R so that ∣∣∣|I|1/p − 1

∣∣∣ < ε/2

M − ε/2
for p > P2

from which we can conclude

|I|1/p > 1− ε/2

M − ε/2
=

M − ε
M − ε/2

for p > P2. (10)

Defining P = max {P1, P2} and combining (8), (9), and (10) let’s us conclude that

M − ε <

(∫ b

a

|f(x)|p dx

)1/p

< M + ε for p > P ,

which is equivalent to (7).
�
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