Math 421, Homework #2 Due: Wednesday, February 3

Homework assignments should be submitted during lecture. Please consult the homework rules and guidelines before completing the assignment. In particular:

- Write in compete sentences, organized into paragraphs.
- Leave plenty of room in between problems.
- Write only on the front side of each sheet of paper.
- Staple!
- Write on your assignment the names of any persons or sources consulted during its completion (other than the course text or instructor).
- (1) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Assume that f has a finite number of discontinuities, i.e. assume there exists a finite subset E of [a, b] so that f is continuous at all $x \in [a, b] \setminus E$. Prove that f is integrable on [a, b].
- (2) (a) Consider a function $f : [a, b] \to \mathbb{R}$, and assume that there is a single point at which f is nonzero, i.e. assume that there is a point $c \in [a, b]$ so that f satisfies f(x) = 0 for all $x \in [a, b] \setminus \{c\}$. Prove that f is integrable on [a, b] and that $\int_a^b f(x) dx = 0$.
 - (b) Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $g : [a, b] \to \mathbb{R}$ be a function which agrees with f at all points in [a, b] except for one, i.e. assume there exists a $c \in [a, b]$ so that g(x) = f(x) for all $x \in [a, b] \setminus \{c\}$. Prove that g is integrable on [a, b] and that $\int_a^b g(x) \, dx = \int_a^b f(x) \, dx$.
 - (c) (5.1.6) Let $f : [a,b] \to \mathbb{R}$ be an integrable function, and assume that $g : [a,b] \to \mathbb{R}$ agrees with f except on a finite set, i.e. assume there exists a finite set E so that g(x) = f(x) for all $x \in [a,b] \setminus E$. Prove that g is integrable on [a,b] and that $\int_a^b g(x) \, dx = \int_a^b f(x) \, dx$.
- (3) (5.2.5) Prove that if f is integrable on [0, 1] and $\beta > 0$, then

$$\lim_{n \to \infty} n^{\alpha} \int_0^{1/n^{\beta}} f(x) \, dx = 0$$

for all $\alpha < \beta$.

(4) (5.2.8) Let f be continuous on a closed, nondegenerate interval¹ [a, b], let

$$M = \sup_{x \in [a,b]} |f(x)|,$$

and assume that M > 0.

(a) Prove that if p > 0, then for every $\varepsilon \in (0, M]$ there is a nondegenerate interval $I_{\varepsilon} \subset [a, b]$ such that

$$(M - \varepsilon)^p |I_{\varepsilon}| \le \int_a^b |f(x)|^p \, dx \le M^p (b - a)$$

where $|I_{\varepsilon}|$ denotes the length of the interval I_{ε} .

(b) Prove that $\lim_{p\to\infty} \left(\int_a^b |f(x)|^p dx\right)^{1/p}$ exists and that

$$\lim_{p \to \infty} \left(\int_a^b |f(x)|^p \, dx \right)^{1/p} = M.$$

(Be careful: the I_{ε} from part (a) depends on ε , and $|I_{\varepsilon}|$ may approach 0 as $\varepsilon \to 0$.)

¹ That is to say b > a.