Math 421, Homework #1 Solutions

(1) Let $f, g: [a, b] \to \mathbb{R}$ be bounded functions. (a) Show that

$$(U)\int_{a}^{b}(f(x)+g(x))\,dx \le (U)\int_{a}^{b}f(x)\,dx + (U)\int_{a}^{b}g(x)\,dx.$$

(This is part of problem 5.1.7(a) in the textbook.)

Proof. We start by proving a general fact about the supremum of a sum of functions that we will need. Let $A \subset [a, b]$. It is immediate from the definition of supremum that for any $x \in A$,

$$f(x) \leq \sup_{x \in A} f(x)$$
 and $g(x) \leq \sup_{x \in A} g(x)$,

so adding these two inequalities together we get that

$$f(x) + g(x) \le \sup_{x \in A} f(x) + \sup_{x \in A} g(x).$$

for all $x \in A$. Therefore $\sup_{x \in A} f(x) + \sup_{x \in A} g(x)$ is an upper bound for the values of f(x) + g(x)for $x \in A$. Again using the definition of supremum, we can conclude that

$$\sup_{x \in A} [f(x) + g(x)] \le \sup_{x \in A} f(x) + \sup_{x \in A} g(x).$$

$$\tag{1}$$

Now, let $P = \{x_0, \ldots, x_n\}$ of [a, b]. Using (1) we can conclude that

$$M_{j}(f+g) = \sup_{x \in [x_{j-1}, x_{j}]} (f(x) + g(x))$$

$$\leq \sup_{x \in [x_{j-1}, x_{j}]} f(x) + \sup_{x \in [x_{j-1}, x_{j}]} g(x)$$

$$= M_{i}(f) + M_{i}(g).$$

Multiplying this inequality be $x_j - x_{j-1} \ge 0$ and summing from j = 1 to n allows us to conclude that

$$U(f+g,P) \le U(f,P) + U(g,P),$$

and since $(U) \int_a^b f(x) + g(x) dx \le U(f+g, P)$, we can conclude that

$$(U) \int_{a}^{b} f(x) + g(x) \, dx \le U(f, P) + U(g, P) \tag{2}$$

for any partition P of [a, b].

Next, choose an $\varepsilon > 0$. Using the approximation property of infima, we can find a partition P_f of [a, b] so that

$$U(f, P_f) < (U) \int_a^b f(x) \, dx + \varepsilon$$

and we can find a partition P_g of [a, b] so that

$$U(g, P_g) < (U) \int_a^b g(x) \, dx + \varepsilon.$$

Defining $P = P_f \cup P_g$ to be a common refinement of P_f of P_g , we use Remark 5.7 to conclude that

$$U(f,P) + U(g,P) \le U(f,P_f) + U(g,P_g) < (U) \int_a^b f(x) \, dx + (U) \int_a^b g(x) \, dx + 2\varepsilon.$$

Combining this inequality with (2) we conclude that

$$(U)\int_{a}^{b} f(x) + g(x) \, dx < (U)\int_{a}^{b} f(x) \, dx + (U)\int_{a}^{b} g(x) \, dx + 2\varepsilon.$$

Since we can carry out this argument for any $\varepsilon > 0$, this implies that

$$(U)\int_{a}^{b} f(x) + g(x) \, dx \le (U)\int_{a}^{b} f(x) \, dx + (U)\int_{a}^{b} g(x) \, dx$$

as claimed.

(b) Let $\alpha \geq 0$ be a constant. Show that

$$(U)\int_{a}^{b}\alpha f(x)\,dx = \alpha \left[(U)\int_{a}^{b} f(x)\,dx \right]$$

and that

$$(L)\int_{a}^{b}\alpha f(x)\,dx = \alpha\left[(L)\int_{a}^{b}f(x)\,dx\right].$$

Proof. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b]. Using Theorem 7 part (4) from the sup/inf review sheet, we have that

$$M_{j}(\alpha f) = \sup \{ \alpha f(x) \mid x \in [x_{j-1}, x_{j}] \}$$

= sup \alpha \{ f(x) \| x \in [x_{j-1}, x_{j}] \}
= \alpha \sup \{ f(x) \| x \in [x_{j-1}, x_{j}] \}
= \alpha M_{i}(f).

Multiplying by $(x_j - x_{j-1})$ and summing, we can conclude that

$$U(\alpha f, P) = \alpha U(f, P)$$

for any partition P of [a, b], which is equivalent to saying that

$$\{U(\alpha f, P) \mid P \text{ a partition of } [a, b]\} = \{\alpha U(f, P) \mid P \text{ a partition of } [a, b]\}$$
$$= \alpha \{U(f, P) \mid P \text{ a partition of } [a, b]\}.$$

Consequently, we can again use Theorem 7 part (4) to conclude that

$$(U) \int_{a}^{b} \alpha f(x) dx = \inf \{ U(\alpha f, P) | P \text{ a partition of } [a, b] \}$$

= $\inf (\alpha \{ U(f, P) | P \text{ a partition of } [a, b] \})$
= $\alpha \inf \{ U(f, P) | P \text{ a partition of } [a, b] \}$
= $\alpha \left[(U) \int_{a}^{b} f(x) dx \right].$

An analogous argument can be used to show that for any partition $P = \{x_0, \ldots, x_n\}$ of [a, b] that

$$m_j(\alpha f) = \alpha m_j(f)$$

and thus

$$L(\alpha f, P) = \alpha L(f, P).$$

Taking suprema on both sides as above and using Theorem 7 part (4) then let's us conclude that

$$(L)\int_{a}^{b} \alpha f(x) \, dx = \alpha \left[(L)\int_{a}^{b} f(x) \, dx \right].$$

(c) Let $\alpha < 0$ be a constant. Show that

$$(U)\int_{a}^{b}\alpha f(x)\,dx = \alpha\left[(L)\int_{a}^{b}f(x)\,dx\right]$$
(3)

and that

$$(L)\int_{a}^{b}\alpha f(x)\,dx = \alpha \left[(U)\int_{a}^{b}f(x)\,dx \right].$$
(4)

Proof. We first consider the case $\alpha = -1$. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b]. Using Theorem 7 part (4) from the sup/inf review sheet, we have that

$$M_{j}(-f) = \sup \{-f(x) \mid x \in [x_{j-1}, x_{j}]\}$$

= sup ((-1) { f(x) \mid x \in [x_{j-1}, x_{j}]})
= - inf { f(x) \mid x \in [x_{j-1}, x_{j}]}
= -m_{j}(f).

Multiplying by $(x_j - x_{j-1})$ and summing then let's us conclude that

$$U(-f,P) = -L(f,P).$$

Again applying Theorem 7 part (4), we have that

$$(U) \int_{a}^{b} -f(x) dx = \inf \{U(-f, P) | P \text{ a partition of } [a, b]\}$$

= $\inf \{-L(f, P) | P \text{ a partition of } [a, b]\}$
= $\inf ((-1) \{L(f, P) | P \text{ a partition of } [a, b]\})$
= $-\sup \{L(f, P) | P \text{ a partition of } [a, b]\}$
= $-(L) \int_{a}^{b} f(x) dx.$

For arbitrary $\alpha < 0$ we use the above with part (b) to write

$$(U)\int_{a}^{b}\alpha f(x) dx = (U)\int_{a}^{b} -|\alpha|f(x) dx = -(L)\int_{a}^{b} |\alpha|f(x) dx$$
$$= -|\alpha|\left[(L)\int_{a}^{b} f(x) dx\right] = \alpha\left[(L)\int_{a}^{b} f(x) dx\right],$$

which proves (3). To prove (4), we apply (3) to $f_1 := \alpha f$ and $\alpha_1 := \frac{1}{\alpha} < 0$ to find

$$(U)\int_{a}^{b} f(x) dx = (U)\int_{a}^{b} \frac{1}{\alpha}(\alpha f(x)) dx = (U)\int_{a}^{b} \alpha_{1}f_{1}(x) dx$$
$$= \alpha_{1}\left[(L)\int_{a}^{b} f_{1}(x) dx\right] = \frac{1}{\alpha}\left[(L)\int_{a}^{b} \alpha f(x) dx\right]$$

which yields (4) after multiplying through by α .

(d) Show that

$$(L)\int_{a}^{b} (f(x) + g(x)) \, dx \ge (L)\int_{a}^{b} f(x) \, dx + (L)\int_{a}^{b} g(x) \, dx.$$

(This is the other part of problem 5.1.7(a) in the textbook. A short proof can be constructed using parts (a) and (c)).

Proof. Using part (a) on the bounded functions -f and -g we have that

$$(U)\int_{a}^{b}(-f(x)) + (-g(x))\,dx \le (U)\int_{a}^{b}(-f(x))\,dx + (U)\int_{a}^{b}(-g(x))\,dx$$

By part (c) we know that

$$(U) \int_{a}^{b} (-f(x)) + (-g(x)) dx = -(L) \int_{a}^{b} f(x) + g(x) dx,$$
$$(U) \int_{a}^{b} (-f(x)) dx = -(L) \int_{a}^{b} f(x) dx,$$

and

$$(U)\int_{a}^{b}(-g(x))\,dx = -(L)\int_{a}^{b}g(x)\,dx.$$

Substituting into the above inequality yields

$$-(L)\int_{a}^{b} (f(x) + g(x)) \, dx \le -(L)\int_{a}^{b} f(x) \, dx + -(L)\int_{a}^{b} g(x) \, dx.$$

which yields

$$(L) \int_{a}^{b} (f(x) + g(x)) \, dx \ge (L) \int_{a}^{b} f(x) \, dx + (L) \int_{a}^{b} g(x) \, dx.$$

after multiplying both sides by -1.

г		٦
L		1
L		

- (2) Let $f, g: [a, b] \to \mathbb{R}$ be integrable functions, and let $\alpha \in \mathbb{R}$ be a constant. Use problem (1) and Theorem 5.15 to prove:
 - (a) that f + g is integrable on [a, b] and that

$$\int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Proof. The assumption that f and g are integrable imply by Theorem 5.15 that

$$(U)\int_{a}^{b} f(x) \, dx = (L)\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx \tag{5}$$

and

$$(U) \int_{a}^{b} g(x) \, dx = (L) \int_{a}^{b} g(x) \, dx = \int_{a}^{b} g(x) \, dx.$$

Problem (1) parts (a) and (d) with Remark 5.14 then yield

$$\begin{split} \int_{a}^{b} f(x) \, dx &+ \int_{a}^{b} g(x) \, dx = (L) \int_{a}^{b} f(x) \, dx + (L) \int_{a}^{b} g(x) \, dx \\ &\leq (L) \int_{a}^{b} (f(x) + g(x)) \, dx \\ &\leq (U) \int_{a}^{b} (f(x) + g(x)) \, dx \\ &\leq (U) \int_{a}^{b} f(x) \, dx + (U) \int_{a}^{b} g(x) \, dx \\ &= \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx. \end{split}$$

We conclude that

$$(L)\int_{a}^{b}(f(x)+g(x))\,dx = (U)\int_{a}^{b}(f(x)+g(x))\,dx = \int_{a}^{b}f(x)\,dx + \int_{a}^{b}g(x)\,dx.$$

Theorem 5.15 then implies that f + g is integrable on [a, b] and that

$$\int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

(b) that αf is integrable on [a, b] and that

$$\int_{a}^{b} \alpha f(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx$$

(consider the cases $\alpha \ge 0$ and $\alpha < 0$ separately).

Proof. Assume that $\alpha \geq 0$. Using Problem (1) part (b) with (5) lets us conclude

$$(U)\int_{a}^{b}\alpha f(x)\,dx = \alpha \left[(U)\int_{a}^{b}f(x)\,dx \right] = \alpha \int_{a}^{b}f(x)\,dx = \alpha \left[(L)\int_{a}^{b}f(x)\,dx \right] = (L)\int_{a}^{b}\alpha f(x)\,dx$$

so Theorem 5.15 let's us conclude that αf is integrable on [a, b] and that

$$\int_{a}^{b} \alpha f(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx.$$

If $\alpha < 0$ we can similarly use Problem (1) part (c) with (5) to find

$$(U)\int_{a}^{b}\alpha f(x)\,dx = \alpha \left[(L)\int_{a}^{b}f(x)\,dx \right] = \alpha \int_{a}^{b}f(x)\,dx = \alpha \left[(U)\int_{a}^{b}f(x)\,dx \right] = (L)\int_{a}^{b}\alpha f(x)\,dx.$$

We again conclude that αf is integrable on [a, b] and that

$$\int_{a}^{b} \alpha f(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx.$$

г		1
L		L
5	-	•

(3) Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0. \end{cases}$$

prove that f is integrable on [0, 1].

Proof. Let $\varepsilon > 0$. The function f is continuous on the interval $[\frac{\varepsilon}{4}, 1]$, and hence is integrable on $[\frac{\varepsilon}{4}, 1]$ (Theorem 5.10). We can therefore find a partition $P_{\varepsilon} = \{x_1 = \varepsilon/4, x_2, \dots, x_n = 1\}$ of $[\varepsilon/4, 1]$ so that

$$U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon/2.$$

Define a partition P of [0,1] by $P = P_{\varepsilon} \cup \{0\} = \{0, \varepsilon/4, x_2, \dots, 1\}$. We then find that

$$U(f,P) - L(f,P) = \sum_{j=1}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1})$$

= $(M_1(f) - m_1(f))(x_1 - x_0) + \sum_{j=2}^{n} (M_j(f) - m_j(f))(x_j - x_{j-1})$
= $\left(\sup_{x \in [0,\varepsilon/4]} f(x) - \inf_{x \in [0,\varepsilon/4]} f(x)\right)(\varepsilon/4 - 0) + U(f,P_{\varepsilon}) - L(f,P_{\varepsilon}).$

From the definition of f and the properties of the sin function, we know that $-1 \leq f(x) \leq 1$ for all $x \in [0,1]$. Moreover, choosing an $n \in \mathbb{N}$ satisfying $\frac{1}{n} < 2\pi\varepsilon/4$ we have that $f(\frac{1}{2\pi n + \frac{\pi}{2}}) = \sin(2\pi n + \frac{\pi}{2}) = 1$, and $f(\frac{1}{2\pi n + \frac{3\pi}{2}}) = \sin(2\pi n + \frac{3\pi}{2}) = -1$ so we conclude that

$$\sup_{x \in [0, \varepsilon/4]} f(x) = 1 \quad \text{and} \quad \inf_{x \in [0, \varepsilon/4]} f(x) = -1.$$

We thus conclude that

$$U(f,P) - L(f,P) = \left(\sup_{x \in [0,\varepsilon/4]} f(x) - \inf_{x \in [0,\varepsilon/4]} f(x)\right) (\varepsilon/4 - 0) + U(f,P_{\varepsilon}) - L(f,P_{\varepsilon})$$
$$= 2\varepsilon/4 + U(f,P_{\varepsilon}) - L(f,P_{\varepsilon})$$
$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Thus f is integrable on [0, 1].

			ъ
	-	-	

(4) (5.1.4.a) Let $f:[a,b] \to \mathbb{R}$ be a bounded function, and assume that there is a point $x_0 \in [a,b]$ so that f is continuous at x_0 and that $f(x_0) \neq 0$. Show that

$$(L)\int_{a}^{b}|f(x)|\,dx>0.$$

(Be sure to clearly indicate how you use the assumption that f is continuous at x_0 .)

Proof. We first observe that since the absolute value function is continuous on \mathbb{R}^1 that |f| is continuous at x_0 since f is continuous at x_0 . Therefore we can find a $\delta > 0$ so that if $x \in [a, b]$ and $|x-x_0| < \delta$ then

$$||f(x)| - |f(x_0)|| < \frac{1}{2}|f(x_0)|.$$

This is equivalent to

$$-\frac{1}{2}|f(x_0)| < |f(x)| - |f(x_0)| < \frac{1}{2}|f(x_0)|$$

from which we can conclude that

$$|f(x)| > \frac{1}{2}|f(x_0)|$$
 for all $x \in [a, b] \cap (x_0 - \delta, x_0 + \delta).$ (6)

To show that $(L) \int_a^b |f(x)| dx > 0$ it suffices to find a partition P so that L(|f|, P) > 0 since $(L) \int_{a}^{b} |f(x)| dx \ge L(|f|, P)$ for any partition P of [a, b]. We consider three cases:

Case 1: $x_0 \in (a, b)$. In this case, we choose a $\delta' < \delta$ small enough so that $[x_0 - \delta', x_0 + \delta'] \subset (a, b)$, and define a partition P of [a, b] by $P = \{a, x_0 - \delta', x_0 + \delta', b\}$. Then, since $|f(x)| \ge 0$ for all $x \in [a, b]$ we know that

$$\inf_{x \in [a,x_0-\delta']} |f(x)| \ge 0 \qquad \text{and} \qquad \inf_{x \in [x_0+\delta',b]} |f(x)| \ge 0$$

Meanwhile, since $[x_0 - \delta', x_0 + \delta'] \subset [a, b] \cap (x_0 - \delta, x_0 + \delta)$ we can conclude from (6) that

$$\inf_{\in [x_0 - \delta', x_0 + \delta']} |f(x)| \ge \frac{1}{2} |f(x_0)|.$$

We therefore find that

$$\begin{split} L(|f|, P) &= \left[\inf_{[a, x_0 - \delta']} |f|\right] (x_0 - \delta' - a) + \left[\inf_{[x_0 - \delta', x_0 + \delta']} |f|\right] ([x_0 + \delta'] - [x_0 - \delta']) \\ &+ \left[\inf_{x \in [x_0 + \delta', b]} |f(x)|\right] (b - [x_0 + \delta']) \\ &\geq 0(x_0 - \delta' - a) + \frac{1}{2} |f(x_0)| 2\delta' + 0(b - x_0 - \delta') \\ &= \delta' |f(x_0)| > 0. \end{split}$$

x

Thus L(|f|, P) > 0 and consequently $(L) \int_a^b |f(x)| dx > 0$. Case 2: $x_0 = a$. In this case we choose a $\delta' < \min{\{\delta, b-a\}}$ and consider the partition P = 0 $\{a, a + \delta', b\}$. Again, the fact that $[a, a + \delta'] \subset [a, b] \cap (a - \delta, a + \delta)$ used with (6) implies that

$$\inf_{x \in [a, a+\delta']} |f(x)| \ge \frac{1}{2} |f(x_0)|,$$

and thus

$$\begin{split} L(|f|,P) &= \left[\inf_{[a,a+\delta']} |f|\right] (a+\delta'-a) + \left[\inf_{[a+\delta',b]} |f|\right] (b-[a+\delta']) \\ &\geq \frac{1}{2} |f(x_0)\delta' + 0(b-a-\delta') = \frac{1}{2} |f(x_0)|\delta' > 0, \end{split}$$

¹ Uniform continuity of h(x) = |x| on \mathbb{R} follows from the triangle inequality

$$||x| - |y|| \le |x - y|.$$

Given $\varepsilon > 0$ choose $\delta = \varepsilon$. Then $|x - y| < \delta$ implies that $|h(x) - h(y)| = ||x| - |y|| \le |x - y| < \delta = \varepsilon$.

and thus $(L) \int_{a}^{b} |f(x)| dx > 0$ in this case. *Case 3:* $x_{0} = b$. Choose a $\delta' < \min \{\delta, b - a\}$ and let $P = \{a, b - \delta', b\}$. A similar argument to that in case 2 shows that

$$L(|f|, P) \ge \frac{1}{2}|f(x_0)|\delta' > 0$$

and thus $(L) \int_{a}^{b} |f(x)| dx > 0$ in this case as well.