
Math 421, Homework #1 Solutions

(1) Let f , g : [a, b]→ R be bounded functions.
(a) Show that

(U)

∫ b

a

(f(x) + g(x)) dx ≤ (U)

∫ b

a

f(x) dx+ (U)

∫ b

a

g(x) dx.

(This is part of problem 5.1.7(a) in the textbook.)

Proof. We start by proving a general fact about the supremum of a sum of functions that we
will need. Let A ⊂ [a, b]. It is immediate from the definition of supremum that for any x ∈ A,

f(x) ≤ sup
x∈A

f(x) and g(x) ≤ sup
x∈A

g(x),

so adding these two inequalities together we get that

f(x) + g(x) ≤ sup
x∈A

f(x) + sup
x∈A

g(x).

for all x ∈ A. Therefore supx∈A f(x)+supx∈A g(x) is an upper bound for the values of f(x)+g(x)
for x ∈ A. Again using the definition of supremum, we can conclude that

sup
x∈A

[f(x) + g(x)] ≤ sup
x∈A

f(x) + sup
x∈A

g(x). (1)

Now, let P = {x0, . . . , xn} of [a, b]. Using (1) we can conclude that

Mj(f + g) = sup
x∈[xj−1,xj ]

(f(x) + g(x))

≤ sup
x∈[xj−1,xj ]

f(x) + sup
x∈[xj−1,xj ]

g(x)

= Mj(f) +Mj(g).

Multiplying this inequality be xj−xj−1(≥ 0) and summing from j = 1 to n allows us to conclude
that

U(f + g, P ) ≤ U(f, P ) + U(g, P ),

and since (U)
∫ b
a
f(x) + g(x) dx ≤ U(f + g, P ), we can conclude that

(U)

∫ b

a

f(x) + g(x) dx ≤ U(f, P ) + U(g, P ) (2)

for any partition P of [a, b].
Next, choose an ε > 0. Using the approximation property of infima, we can find a partition

Pf of [a, b] so that

U(f, Pf ) < (U)

∫ b

a

f(x) dx+ ε

and we can find a partition Pg of [a, b] so that

U(g, Pg) < (U)

∫ b

a

g(x) dx+ ε.

Defining P = Pf ∪ Pg to be a common refinement of Pf of Pg, we use Remark 5.7 to conclude
that

U(f, P ) + U(g, P ) ≤ U(f, Pf ) + U(g, Pg) < (U)

∫ b

a

f(x) dx+ (U)

∫ b

a

g(x) dx+ 2ε.

Combining this inequality with (2) we conclude that

(U)

∫ b

a

f(x) + g(x) dx < (U)

∫ b

a

f(x) dx+ (U)

∫ b

a

g(x) dx+ 2ε.
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Since we can carry out this argument for any ε > 0, this implies that

(U)

∫ b

a

f(x) + g(x) dx ≤ (U)

∫ b

a

f(x) dx+ (U)

∫ b

a

g(x) dx

as claimed. �

(b) Let α ≥ 0 be a constant. Show that

(U)

∫ b

a

αf(x) dx = α

[
(U)

∫ b

a

f(x) dx

]
and that

(L)

∫ b

a

αf(x) dx = α

[
(L)

∫ b

a

f(x) dx

]
.

Proof. Let P = {x0, . . . , xn} be a partition of [a, b]. Using Theorem 7 part (4) from the sup/inf
review sheet, we have that

Mj(αf) = sup {αf(x) |x ∈ [xj−1, xj ]}
= supα {f(x) |x ∈ [xj−1, xj ]}
= α sup {f(x) |x ∈ [xj−1, xj ]}
= αMj(f).

Multiplying by (xj − xj−1) and summing, we can conclude that

U(αf, P ) = αU(f, P )

for any partition P of [a, b], which is equivalent to saying that

{U(αf, P ) |P a partition of [a, b]} = {αU(f, P ) |P a partition of [a, b]}
= α {U(f, P ) |P a partition of [a, b]} .

Consequently, we can again use Theorem 7 part (4) to conclude that

(U)

∫ b

a

αf(x) dx = inf {U(αf, P ) |P a partition of [a, b]}

= inf (α {U(f, P ) |P a partition of [a, b]})
= α inf {U(f, P ) |P a partition of [a, b]}

= α

[
(U)

∫ b

a

f(x) dx

]
.

An analogous argument can be used to show that for any partition P = {x0, . . . , xn} of
[a, b] that

mj(αf) = αmj(f)

and thus
L(αf, P ) = αL(f, P ).

Taking suprema on both sides as above and using Theorem 7 part (4) then let’s us conclude
that

(L)

∫ b

a

αf(x) dx = α

[
(L)

∫ b

a

f(x) dx

]
.

�
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(c) Let α < 0 be a constant. Show that

(U)

∫ b

a

αf(x) dx = α

[
(L)

∫ b

a

f(x) dx

]
(3)

and that

(L)

∫ b

a

αf(x) dx = α

[
(U)

∫ b

a

f(x) dx

]
. (4)

Proof. We first consider the case α = −1. Let P = {x0, . . . , xn} be a partition of [a, b]. Using
Theorem 7 part (4) from the sup/inf review sheet, we have that

Mj(−f) = sup {−f(x) |x ∈ [xj−1, xj ]}
= sup ((−1) {f(x) |x ∈ [xj−1, xj ]})
= − inf {f(x) |x ∈ [xj−1, xj ]}
= −mj(f).

Multiplying by (xj − xj−1) and summing then let’s us conclude that

U(−f, P ) = −L(f, P ).

Again applying Theorem 7 part (4), we have that

(U)

∫ b

a

−f(x) dx = inf {U(−f, P ) |P a partition of [a, b]}

= inf {−L(f, P ) |P a partition of [a, b]}
= inf ((−1) {L(f, P ) |P a partition of [a, b]})
= − sup {L(f, P ) |P a partition of [a, b]}

= −(L)

∫ b

a

f(x) dx.

For arbitrary α < 0 we use the above with part (b) to write

(U)

∫ b

a

αf(x) dx = (U)

∫ b

a

−|α|f(x) dx = −(L)

∫ b

a

|α|f(x) dx

= −|α|

[
(L)

∫ b

a

f(x) dx

]
= α

[
(L)

∫ b

a

f(x) dx

]
,

which proves (3). To prove (4), we apply (3) to f1 := αf and α1 := 1
α < 0 to find

(U)

∫ b

a

f(x) dx = (U)

∫ b

a

1
α (αf(x)) dx = (U)

∫ b

a

α1f1(x) dx

= α1

[
(L)

∫ b

a

f1(x) dx

]
= 1

α

[
(L)

∫ b

a

αf(x) dx

]
which yields (4) after multiplying through by α. �
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(d) Show that

(L)

∫ b

a

(f(x) + g(x)) dx ≥ (L)

∫ b

a

f(x) dx+ (L)

∫ b

a

g(x) dx.

(This is the other part of problem 5.1.7(a) in the textbook. A short proof can be constructed
using parts (a) and (c)).

Proof. Using part (a) on the bounded functions −f and −g we have that

(U)

∫ b

a

(−f(x)) + (−g(x)) dx ≤ (U)

∫ b

a

(−f(x)) dx+ (U)

∫ b

a

(−g(x)) dx.

By part (c) we know that

(U)

∫ b

a

(−f(x)) + (−g(x)) dx = −(L)

∫ b

a

f(x) + g(x) dx,

(U)

∫ b

a

(−f(x)) dx = −(L)

∫ b

a

f(x) dx,

and

(U)

∫ b

a

(−g(x)) dx = −(L)

∫ b

a

g(x) dx.

Substituting into the above inequality yields

−(L)

∫ b

a

(f(x) + g(x)) dx ≤ −(L)

∫ b

a

f(x) dx+−(L)

∫ b

a

g(x) dx.

which yields

(L)

∫ b

a

(f(x) + g(x)) dx ≥ (L)

∫ b

a

f(x) dx+ (L)

∫ b

a

g(x) dx.

after multiplying both sides by −1. �

4



(2) Let f , g : [a, b] → R be integrable functions, and let α ∈ R be a constant. Use problem (1) and
Theorem 5.15 to prove:
(a) that f + g is integrable on [a, b] and that∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Proof. The assumption that f and g are integrable imply by Theorem 5.15 that

(U)

∫ b

a

f(x) dx = (L)

∫ b

a

f(x) dx =

∫ b

a

f(x) dx (5)

and

(U)

∫ b

a

g(x) dx = (L)

∫ b

a

g(x) dx =

∫ b

a

g(x) dx.

Problem (1) parts (a) and (d) with Remark 5.14 then yield∫ b

a

f(x) dx+

∫ b

a

g(x) dx = (L)

∫ b

a

f(x) dx+ (L)

∫ b

a

g(x) dx

≤ (L)

∫ b

a

(f(x) + g(x)) dx

≤ (U)

∫ b

a

(f(x) + g(x)) dx

≤ (U)

∫ b

a

f(x) dx+ (U)

∫ b

a

g(x) dx

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

We conclude that

(L)

∫ b

a

(f(x) + g(x)) dx = (U)

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Theorem 5.15 then implies that f + g is integrable on [a, b] and that∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

�
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(b) that αf is integrable on [a, b] and that∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx

(consider the cases α ≥ 0 and α < 0 separately).

Proof. Assume that α ≥ 0. Using Problem (1) part (b) with (5) lets us conclude

(U)

∫ b

a

αf(x) dx = α

[
(U)

∫ b

a

f(x) dx

]
= α

∫ b

a

f(x) dx = α

[
(L)

∫ b

a

f(x) dx

]
= (L)

∫ b

a

αf(x) dx

so Theorem 5.15 let’s us conclude that αf is integrable on [a, b] and that∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx.

If α < 0 we can similarly use Problem (1) part (c) with (5) to find

(U)

∫ b

a

αf(x) dx = α

[
(L)

∫ b

a

f(x) dx

]
= α

∫ b

a

f(x) dx = α

[
(U)

∫ b

a

f(x) dx

]
= (L)

∫ b

a

αf(x) dx.

We again conclude that αf is integrable on [a, b] and that∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx.

�
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(3) Let f : [0, 1]→ R be defined by

f(x) =

{
sin 1

x if x ∈ (0, 1]

0 if x = 0.

prove that f is integrable on [0, 1].

Proof. Let ε > 0. The function f is continuous on the interval [ ε4 , 1], and hence is integrable on [ ε4 , 1]
(Theorem 5.10). We can therefore find a partition Pε = {x1 = ε/4, x2, . . . , xn = 1} of [ε/4, 1] so that

U(f, Pε)− L(f, Pε) < ε/2.

Define a partition P of [0, 1] by P = Pε ∪ {0} = {0, ε/4, x2, . . . , 1}. We then find that

U(f, P )− L(f, P ) =

n∑
j=1

(Mj(f)−mj(f))(xj − xj−1)

= (M1(f)−m1(f))(x1 − x0) +

n∑
j=2

(Mj(f)−mj(f))(xj − xj−1)

=

(
sup

x∈[0,ε/4]
f(x)− inf

x∈[0,ε/4]
f(x)

)
(ε/4− 0) + U(f, Pε)− L(f, Pε).

From the definition of f and the properties of the sin function, we know that −1 ≤ f(x) ≤ 1
for all x ∈ [0, 1]. Moreover, choosing an n ∈ N satisfying 1

n < 2πε/4 we have that f( 1
2πn+π

2
) =

sin(2πn+ π
2 ) = 1, and f( 1

2πn+ 3π
2

) = sin(2πn+ 3π
2 ) = −1 so we conclude that

sup
x∈[0,ε/4]

f(x) = 1 and inf
x∈[0,ε/4]

f(x) = −1.

We thus conclude that

U(f, P )− L(f, P ) =

(
sup

x∈[0,ε/4]
f(x)− inf

x∈[0,ε/4]
f(x)

)
(ε/4− 0) + U(f, Pε)− L(f, Pε)

= 2ε/4 + U(f, Pε)− L(f, Pε)

< ε/2 + ε/2 = ε.

Thus f is integrable on [0, 1]. �
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(4) (5.1.4.a) Let f : [a, b] → R be a bounded function, and assume that there is a point x0 ∈ [a, b] so
that f is continuous at x0 and that f(x0) 6= 0. Show that

(L)

∫ b

a

|f(x)| dx > 0.

(Be sure to clearly indicate how you use the assumption that f is continuous at x0.)

Proof. We first observe that since the absolute value function is continuous on R1 that |f | is con-
tinuous at x0 since f is continuous at x0. Therefore we can find a δ > 0 so that if x ∈ [a, b] and
|x− x0| < δ then

||f(x)| − |f(x0)|| < 1

2
|f(x0)|.

This is equivalent to

−1

2
|f(x0)| < |f(x)| − |f(x0)| < 1

2
|f(x0)|

from which we can conclude that

|f(x)| > 1

2
|f(x0)| for all x ∈ [a, b] ∩ (x0 − δ, x0 + δ). (6)

To show that (L)
∫ b
a
|f(x)| dx > 0 it suffices to find a partition P so that L(|f |, P ) > 0 since

(L)
∫ b
a
|f(x)| dx ≥ L(|f |, P ) for any partition P of [a, b]. We consider three cases:

Case 1: x0 ∈ (a, b). In this case, we choose a δ′ < δ small enough so that [x0− δ′, x0 + δ′] ⊂ (a, b),
and define a partition P of [a, b] by P = {a, x0 − δ′, x0 + δ′, b}. Then, since |f(x)| ≥ 0 for all x ∈ [a, b]
we know that

inf
x∈[a,x0−δ′]

|f(x)| ≥ 0 and inf
x∈[x0+δ′,b]

|f(x)| ≥ 0.

Meanwhile, since [x0 − δ′, x0 + δ′] ⊂ [a, b] ∩ (x0 − δ, x0 + δ) we can conclude from (6) that

inf
x∈[x0−δ′,x0+δ′]

|f(x)| ≥ 1

2
|f(x0)|.

We therefore find that

L(|f |, P ) =

[
inf

[a,x0−δ′]
|f |
]

(x0 − δ′ − a) +

[
inf

[x0−δ′,x0+δ′]
|f |
]

([x0 + δ′]− [x0 − δ′])

+

[
inf

x∈[x0+δ′,b]
|f(x)|

]
(b− [x0 + δ′])

≥ 0(x0 − δ′ − a) +
1

2
|f(x0)|2δ′ + 0(b− x0 − δ′)

= δ′|f(x0)| > 0.

Thus L(|f |, P ) > 0 and consequently (L)
∫ b
a
|f(x)| dx > 0.

Case 2: x0 = a. In this case we choose a δ′ < min {δ, b− a} and consider the partition P =
{a, a+ δ′, b}. Again, the fact that [a, a+ δ′] ⊂ [a, b] ∩ (a− δ, a+ δ) used with (6) implies that

inf
x∈[a,a+δ′]

|f(x)| ≥ 1

2
|f(x0)|,

and thus

L(|f |, P ) =

[
inf

[a,a+δ′]
|f |
]

(a+ δ′ − a) +

[
inf

[a+δ′,b]
|f |
]

(b− [a+ δ′])

≥ 1

2
|f(x0)δ′ + 0(b− a− δ′) =

1

2
|f(x0)|δ′ > 0,

1 Uniform continuity of h(x) = |x| on R follows from the triangle inequality

||x| − |y|| ≤ |x− y|.

Given ε > 0 choose δ = ε. Then |x− y| < δ implies that |h(x)− h(y)| = ||x| − |y|| ≤ |x− y| < δ = ε.
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and thus (L)
∫ b
a
|f(x)| dx > 0 in this case.

Case 3: x0 = b. Choose a δ′ < min {δ, b− a} and let P = {a, b− δ′, b}. A similar argument to
that in case 2 shows that

L(|f |, P ) ≥ 1

2
|f(x0)|δ′ > 0

and thus (L)
∫ b
a
|f(x)| dx > 0 in this case as well.
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