Math 421, Homework #1 Solutions

(1) Let f, g : [a,b] = R be bounded functions.
(a) Show that

b b b
©) [ (f@) +g@)do < ©) [ f@)do+ @) [ gla)da.
(This is part of problem 5.1.7(a) in the textbook.)

Proof. We start by proving a general fact about the supremum of a sum of functions that we
will need. Let A C [a,b]. It is immediate from the definition of supremum that for any = € A,

f(z) <sup f(z)  and  g(z) < supg(x),
z€A r€A
so adding these two inequalities together we get that

f(x) + g(x) < sup f(z) + sup g(z).
€A €A

for all z € A. Therefore sup,¢ 4 f(z)+sup,c4 g(x) is an upper bound for the values of f(z)+g(x)
for z € A. Again using the definition of supremum, we can conclude that

sup[f(z) + g(z)] < sup f(z) + sup g(). (1)
z€A T€A z€A
Now, let P = {zq,...,x,} of [a,b]. Using we can conclude that
M;i(f+g)= sup (f(z)+g(x))

zE€[T; 1,1

< sup  f(x)+  sup  g(x)

x€[xT_1,75] z€[m;—1,7;]
= M;(f) + M;(g).

Multiplying this inequality be z; —z;_1 (> 0) and summing from j = 1 to n allows us to conclude
that

(f+g7P) <U(f,P)+ Uy, P),
and since ( f flx x)dx <U(f+ g, P), we can conclude that
) / f(2) + g(x) dz < U(f.P) + Ulg. P) )

for any partition P of [a, b].
Next, choose an € > 0. Using the approximation property of infima, we can find a partition
Py of [a,b] so that

f, Pf / f de + e
and we can find a partition P, of [a, b] so that
b
U(g.Py) < (V) [ gloydo+2.

Defining P = Py U P, to be a common refinement of P of P, we use Remark 5.7 to conclude
that

U(f,P)+ U(g, P) < U(f,Py) + U(g, P, /f Vi + ( )/ o) da + 2.

Combining this inequality with ([2) we conclude that

b b b
U)/ f(x)+g(:z:)dx<(U)/ f(a:)der(U)/ g(x) dx + 2e.



Since we can carry out this argument for any € > 0, this implies that

b b b
v) / f(@) + g(a) dz < (U) / f(@)dz + (U) / o(x) dz

as claimed. O

Let o > 0 be a constant. Show that

(U)/abaf( dz = a /f ]
()/abozf( /f

Proof. Let P = {xy,...,z,} be a partition of [a,b]. Using Theorem 7 part (4) from the sup/inf
review sheet, we have that

Mj(af) = sup{af(z)|z € [xj-1,2;]}

=supa{f(z)|z € [vj-1,2;]}
=asup{f(z)|z € [z;-1,2,]}
= aM;(f).

Multiplying by (z; — #;—1) and summing, we can conclude that
U(af,P)=aU(f,P)

for any partition P of [a, ], which is equivalent to saying that

{U(af, P)| P a partition of [a,b]} = {aU(f, P)| P a partition of [a, b]}
= a{U(f, P)| P a partition of [a,b]}.

and that

Consequently, we can again use Theorem 7 part (4) to conclude that

b
(U)/ af(x)dr = inf {U(af, P)| P a partition of [a, b]}
= inf (a {U(f, P)| P a partition of [a,b]})
= ainf {U(f, P)| P a partition of [a,b]}

U) /abf(z) da:] .

An analogous argument can be used to show that for any partition P = {zg,...,2,} of
[a, b] that

mj(af) = am;(f)
and thus
L(af, P) = aL(f, P).

Taking suprema on both sides as above and using Theorem 7 part (4) then let’s us conclude

that ,
) [ af@)ds [ /f ]
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(c) Let @ < 0 be a constant. Show that

()/abaf( [ /f ] (3)
()/abaf( /f ] (4)

Proof. We first consider the case « = —1. Let P = {xg,...,x,} be a partition of [a,b]. Using
Theorem 7 part (4) from the sup/inf review sheet, we have that

M;(—f) = sup{—f(2) |z € [wj-1,2,]}
=sup ((—1) {f(z) |z € [xj_1,2;]})
—inf {f(z) |z € [z;_1,x;]}

and that

= —m;(f).
Multiplying by (z; — x;—1) and summing then let’s us conclude that
(_fa ) = _L(f7 )

Again applying Theorem 7 part (4), we have that

b
U)/ —f(x)dz = inf {U(—f, P)| P a partition of [a,b]}
' = inf {—L(f, P)| P a partition of [a, b]}
= inf ((=1) {L(f, P) | P a partition of [a, b]})
= —sup {L(f, P)| P a partition of [a, b]}

S L)/abf(x)d:z:

For arbitrary o < 0 we use the above with part (b) to write

) /abaf(:v)dx ) / ~Jalf(z / alf(z
|a|[ /f d:c]alL)/af(w)dx],

which proves (3)). To prove (4)), we apply to f1:=af and ag := é < 0 to find

o [ 10 /b1<af< Ve =@) [ aasiie) e
/ filz di} :E (L)/abaf(x)dx]

which yields after multiplying through by «. O
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(d) Show that
b b

b
(L) / ((2) + g()) dz > (L) / f(x)dz + (L) / o(z) d.

a a

(This is the other part of problem 5.1.7(a) in the textbook. A short proof can be constructed
using parts (a) and (c)).

Proof. Using part (a) on the bounded functions —f and —g we have that

b b b
() / (—f(@)) + (~g(z)) dz < (U) / (—f(2)) da + (1) / (~g(z)) dz.

a

By part (c) we know that

b b
() / (—f(@)) + (~g(x)) dx = —(L) / f(@) + gla) de
b b
) / (—f(2)) dz = —(L) / f(z) dx

b b
() / (~g(x)) dz = —(L) / o(z) de.

Substituting into the above inequality yields

—(L)/ab(f() Vo < — /f )dz + — /()d

which yields

and

b

b b
(L) / (f(2) + g(x)) dz > (L) / f(x)dz + (L) / o(z) dx.

a

after multiplying both sides by —1. O



(2) Let f, g : [a,b] — R be integrable functions, and let a@ € R be a constant. Use problem (1) and
Theorem 5.15 to prove:
(a) that f + g is integrable on [a, b] and that

/:(f(x) +g(x))dx = /ab f(z)dx + /ab g(x) da.

Proof. The assumption that f and g are integrable imply by Theorem 5.15 that

v) /  fla)dr = (1) / ' o) da = / ' fla)dr (5)
(U)/: (x)d:c:(L)/ab (x)dac:/abg(x)dac.

Problem (1) parts (a) and (d) with Remark 5.14 then yield

/f d:c+/ /f )dz + (L /()d

< (1) [ (#0) + o)) o

and

<U>/<f< )+ g(x)) da

/f )dz + (U /()d

- / F(o)dz + / 9(z) dz
We conclude that

b b b b
(L) / (f(x) + g(z)) dz = (1)) / (f(@) + g(x)) dz = / f(@) de + / o(z) d.

Theorem 5.15 then implies that f + g is integrable on [a, b] and that

/ () + (@) da = / e+ / ') da.



(b) that af is integrable on [a,b] and that

Lcﬁ dx*a/f

(consider the cases @ > 0 and « < 0 separately).

Proof. Assume that « > 0. Using Problem (1) part (b) with lets us conclude
b b b
(U)/ af(x)dr =« / fz d;v] —a/ f(z)dr =« L)/ f(x)dx :(L)/ af(z)dx

so Theorem 5.15 let’s us conclude that af is integrable on [a,b] and that

/abaf(x)dac:a/bf(x)dx

If & < 0 we can similarly use Problem (1) part (c) with (5) to find

()KW( [ /fd4w4f /f

We again conclude that af is integrable on [a, b] and that

/Llaf x—a/f

>wam




(3) Let f:[0,1] = R be defined by

sind if x € (0,1]
0 if x =0.

prove that f is integrable on [0, 1].

Proof. Let & > 0. The function f is continuous on the interval [, 1], and hence is integrable on [£, 1]
(Theorem 5.10). We can therefore find a partition P. = {x1 = ¢/4,z2,...,2, = 1} of [¢/4,1] so that

U(f, Pe) — L(f, P) <¢/2.
Define a partition P of [0,1] by P = P. U{0} = {0,¢/4,z2,...,1}. We then find that

u(f,p => (M (P)(j — 1)

Jj=1

= (My(f) = ma(f)) (@1 — m0) + Z(Mj(f) —m;(f)(zj — 1)

=< sup f(z) — inf f($)> (e/4=0)+U(f, F:) — L(f, Pe).

z€[0,e/4] z€[0,e/4]

From the definition of f and the properties of the sin function, we know that —1 < f(z) < 1
for all € [0,1]. Moreover, choosing an n € N satisfying 2 < 2me/4 we have that f(zmlJr%) =
sin(2rn + 5) =1, and f(5——== n+3w) =sin(2mn + 2F) = —1 so we conclude that
%5[81716[)/4] flx)=1 and 16335/4] f(z)=-1
We thus conclude that
U(f, P) = L(f, P) = < sup f(z) = inf f($)> (e/4=0)+U(f, F.) — L(f, F.)
z€[0,e/4] z€[0,e/4]

=2e/4+U(f, P.) — L(f, Fe)

<eg/2+¢e/2=c¢.
Thus f is integrable on [0, 1]. O



(4) (5.1.4.a) Let f : [a,b] — R be a bounded function, and assume that there is a point xy € [a,b] so
that f is continuous at xo and that f(zg) # 0. Show that

/ |f(x)] dz > 0.

(Be sure to clearly indicate how you use the assumption that f is continuous at z.)

Proof. We first observe that since the absolute value function is continuous on ]RE| that |f| is con-
tinuous at xg since f is continuous at xzg. Therefore we can find a ¢ > 0 so that if = € [a,b] and
|z — zo| < 0 then

1) = 1 o)ll < 517 wo)l.

This is equivalent to

5| o)l < 1) ~ f(@o)] < 51 (wo)

from which we can conclude that

f(2)] > %\f(xo)\ for all z € [a, 5] N (z0 — 6,70 + ). (6)

To show that (L) f; |f(z)|dx > 0 it suffices to find a partition P so that L(|f],P) > 0 since
L) f: |f(z)|dx > L(|f|, P) for any partition P of [a,b]. We consider three cases:

Case 1: xg € (a,b). In this case, we choose a ¢’ < § small enough so that [zg— ', 29 +0'] C (a,b),
and define a partition P of [a,b] by P = {a,xq — ', 29 + §’,b}. Then, since | f(z)| > 0 for all = € [a, b]
we know that

inf >0 d inf > 0.
et @)= an Ol

Meanwhile, since [zg — &', o + 0'] C [a,b] N (2o — &, T + §) we can conclude from (6] that

inf ()] > 315 o)]

z€[xog—08',x0+0’]
We therefore find that

L P) = |t 1A o= 8 @t | int 1] o 4 8- fro = 8

[xo—6",20+06']

+{ B |f(m)|} (b— [0 + &'])

A m0+5’,b]

1
> O(IQ - (S/ - CL) + §|f(l'o)|25/ + O(b — Ty — 5/)

= d'| f(zo)| > 0.
Thus L(|f], P) > 0 and consequently (L) f: |f(z)| dz > 0.
Case 2: ©y = a. In this case we choose a ¢’ < min{d,b— a} and consider the partition P =
{a,a+ &,b}. Again, the fact that [a,a + ¢'] C [a, b} (a —68,a+ 0) used with () implies that
inf
me[;{;w]l (2)] = 2\f(sco)\

and thus

a,a+6’] a+4’,b]

L<|f|,P>=[[ it 1] (a8 =)+ | inf | 1£1] 6 a4 8

| \/

L7 @) + 00— a— &) = L[ Fao)ls’ >0,

L Uniform continuity of h(z) = |z| on R follows from the triangle inequality
Izl =yl < |z —yl.
Given € > 0 choose § = €. Then |z — y| < § implies that |h(z) — h(y)| = ||z| — |y|| < |z —y| < d =e.
8



and thus (L) f: |f(x)]dz > 0 in this case.
Case 3: o = b. Choose a ' < min{d,b—a} and let P = {a,b—¢',b}. A similar argument to
that in case 2 shows that

1
L7 P) = 21 a)ld > 0
and thus (L) f; |f(z)]dz > 0 in this case as well.



