Math 421, Homework #10 Solutions

(1) (11.1.4) Assume that f : [a,b] X [¢,d] — R is continuous and that g : [a,b] — R is integrable. Prove
that

Aﬂw=/g@ﬁ@www

is uniformly continuous on [c, d].

Proof. Let ¢ > 0.
Since ¢ is assumed to be integrable on [a,b], g is bounded on [a,b]. Let M > 0 be a number
satisfying
lg(x)] < M for all z € [a,b]. (1)
Since f is assumed to be continuous on [a,b] X [¢,d] and [a,b] X [¢,d] is compact, it follows from
Theorem 9.25 that f is uniformly continuous on [a,b] X [¢,d]. We can therefore choose a § > 0 so
that for (z1,41), (z2,y2) € [a,b] X [¢,d] with ||(z1,y1) — (z2,y2)]] <
5
— —_—. 2
|f(m1)y1) f($2792)| < 2M(b—a) ( )
Then if |y; — yo2| < 0 it follows that ||(z,y1) — (x,y2)|| = |y1 — y2| < ¢ for all © € [a,b] so we find
that

b b
F(y) — Flyn)| = / o(2)f () de — / 9(2) (2, y2) de

linearity of the integral

b
/ o(@) [f (@) — Fla,y)) da

b
< [ lote) o) — S o Theorem 5.22
b
< /a MW_&) dx Thm. 5.21 with and .
T
=Z<e

Therefore F is uniformly continuous on [c, d). d



(2) (11.2.6) Prove that if o > 1, then

ey log(2® + %) (x,y) # (0,0)
f(w,y)—{o (z.y) =

is differentiable at (0, 0).

Proof. We have that
2(0)|%log(z® + (0)2) =z #0
0y = [ PO 08+ 0) w2
0 z=0
so f(z,0) =0 for all z € R and hence f;(0,0) = 0. Similarly f(0,y) is identically 0 so f,(0,0) = 0.

Let € > 0. Since o > 1/2 we can use L’Hopital’s rul to show that lim, ,o+ t* */2logt = 0. We
can therefore choose d; > 0 so that

273 [logt| =

t“_%logt—ol <e for0<t<id.

Define § = /&,. Then when 0 < /22 + 42 = |(z,y)|| < 4, it follows that 0 < 22 4 y? < 6% = §;.
We can therefore use that |z| < /22 4+ 42, ly| < a2+ y?, and that « > 1/2 > 0, to find for
0 < ||(z,y)]] < d that
|f(a,y) = £(0,0) = Df(0,0)(z,y)| _ |lzy|" log(z* +y*) — 0 — (0,0) - (z, )]
1z, ) 1z, )
ey log(2% + ?)|
T
_ (@ +y°) [log(a® + )|
S s
= (2% + %)% [log(a® + 4)|
<e.

Therefore

f(x7y) — f(0,0) — Df(0,0)(x,y)

lim =0
(@,9)—(0,0) (@, y)
so f is differentiable at (0,0).
([l
1 Since logt — —o0 and tl/2=a 4 tooast — 0T L’Hopital’s rule says that
d
logt = (logt
lim ¢*—1/2 logt = lim o8t _ lim M
t—0+ 0+ t1/27a o+ L (¢l/2-a)

as long as the limit on the right exists. We have

d _
logt t—1
ddt( g?) = — =(1/2—a) Y2 50 ast— 0t sincea—1/2>0
E(tl/Q—a) (5 ,a)tl/Q—a—l

so lim, o+ te=1/2logt = 0.



(3) Determine whether or not the function

flz,y) = {iiizi (z,y) # (0,0)

0 (z,y) = (0,0)

is differentiable at (0,0) and prove that your answer is correct.

Proof. We claim that f is not differentiable at (0,0). We have that
z24+(0)
x#0
f x,O = z2+4(0)2 =x
(=.0) 0 z=0

so fz(0,0) = 1, and a similar computation shows that f,(0,0) = 1. If f were differentiable at (0,0)
we would have that

i 1®9) = £0,0) - DF(O,0)(z,y) _ (3)
(2.4)=(0.0) I, 9l
However for (z,y) # (0,0) we have that

(@, y) — £(0,0) = DF(0,0)(w,y) Stz —0—(1,1)(z,y)
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3 3
+y
iy — P

(22 + 2)1/2
23— ad —ay? —ya? — P
(22 + y2)3/2
_ —ay(z+y)
- (x2 +y2)3/2'
But then considering the sequence (z,,yn) = (1/n,1/n) — (0,0) we have that
F(U/n1/m) — F0,0) = DFO.0(/m1/n)  —(Q/m)A/n)A/n 1)

lim

n—o0 1(1/n, 1/n)]| n—oo  (1/n? 4+ 1/n?)3/2
so the sequential characterization of limits tells us that can’t be true. Therefore f is not differ-
entiable at (0,0). O



(4) (11.2.8) Consider a linear transformation T € L(R™, R™). Prove that T is differentiable on R" and
that

DT(a)=T forall a € R"™

Proof. Let a € R™. Using that T is linear, we have for any h € R™ \ {0} that
T(a+h)—T(a) - T(h) T(a)+ T(h) - T(a) — T(h)
[[h] - [l
— 0 —
=] =

0

)

and therefore
. T(a+h)—-T(a) — T(h)
lim
h—0 ]
The definition of differentiable then let’s us conclude that T is differentiable at a and that D'T(a)
T.

=0.

Ol



(5) [The Quotient Rule] Let V' C R™ be an open set and assume that f, g : V' — R are differentiable
at a € V and that g(a) # 0. Prove that f/g is defined on an open ball containing a, that f/g is
differentiable at a and that

f 1 a a) — f(a a
D (1)@ = s @D f(@) - S Dg(a)

(see problem 11.3.6 for some guidance about how to break this down into smaller steps).

Proof. First we note that since g is differentiable at a, g is continuous at a. Since we assume that
g(a) # 0 it follows from problem (2) in homework #9 that there exists an € > 0 so that g(x) # 0 for

all x € B.(a). Therefore ﬁ and hence % is defined for all x € B.(a).

We next claim that % is differentiable at a and that D (%) (a) = fﬁDg(a). Indeed since g is
assumed to be differentiable at a we have that
g9(x) —g(a) — Dg(a)(x — a)

Rx) = I —al

—0 asx— a.

We therefore find that for x # a that
Ao L Lpg(a)| (x—a) ks — b — [~ Dg(a)] (x— a)
x—al [x —al
9(a)? — g(x)g(a) + g(x)Dg(a)(x — a)
g9(a)?g(x) [|x — al
l9(x) —g(a)] Dg(a)(x — a) — g(a) [g(x) — g(a) — Dg(a)(x — a)]
g9(a)?g(x) [x — al

_ g(x)—g(a) x—a 1 g9(x)—g(a)—Dg(a)(x—a)
= S@reto P9@) ey — (g<a>g(x>> x—al
R(x).

= T1 (X) —

1
g(a)g(x)

We would like to show that this quantity approaches 0 as x — a. We know that R(x) — 0
as x — a, and hence that mR(x) — 0 as x — a since ¢ is continuous at a and therefore
g(x) = g(a) # 0 as x — a. To understand the first term, T7(x), we use the properties of the
operator normf to conclude that

~lg(x) —g(a) X—a
M= | @0 P9 x—a]
060 (@) x-a
< mw@@>'D“)’nx—ad
~|g(x) —g(a) a

Again using the continuity of g at a and that g(a) # 0, we can use the above inequality with the
squeeze theorem to conclude that Tj(x) — 0 as x — a. Therefore

V90~ 1/9(@) - [~ Dy(a)] (x - a)

= [ —al

=0

so we can conclude that 1/g is differentiable at a and that D(1/g)(a) = —(1/g(a)?)Dg(a).

2 Since g is real-valued we could also use that Dg(a) = Vg(a)” and then use the Cauchy-Schwartz inequality. For any
v € R™ we would have that

|Dg(a)v] = |Vg(a)"v| = |Vg(a) - v| < [IVg (@) |v]].



Finally, we apply the special case of Theorem 11.20 (equation (9)) when the codomain is 1-
dimensional to find that f/g = f(1/g) is differentiable at a and that

i/ @=o(n-(3))@
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