
Math 421, Section 2 Test II Solutions April 1, 2009

1. Determine whether each of the following statements is true or false. If a statement is false,
provide a counterexample. (Write out the word “true” or “false” completely! No proof or
explanation is necessary if you answer “true,” and you don’t need to prove your proposed
counterexample is a counterexample if you answer “false.”)

(a) Let f : E ⊂ Rn → Rm be a continuous function. If H ⊂ Rm is compact, then f−1(H)
is compact.

Answer. False. Let f : R→ R, be defined by f(x) = 0 for all x ∈ R. Then {0} ∈ R is
a compact set, but f−1({0}) = R which is not compact.

(b) Let f : Rn → Rm be a continuous function. If U ⊂ Rn is an open set, then f(U) ⊂ Rm

is an open set.

Answer. False. Let f : R→ R be defined by f(x) = x2. Then (−1, 1) is open in R, but
f ((−1, 1)) = [0, 1) is not an open set.

(c) Let E ⊂ Rn be a closed set. Let {xk}k∈N be a sequence with xk ∈ E for all k ∈ N, and
assume limk→∞ xk = x. Then x ∈ E.

Answer. True. Since E is closed, E contains all its limit points (see Theorem 9.8), so
x ∈ E.

(d) Let U , V ⊂ Rn be connected sets. Then U ∩ V is connected.

Answer. False. Let f : R→ R2 be defined by f(t) = (cos t, sin t), and let U = f([0, 3π
2 ]),

and V = f([π, 5π
2 ]). Then U and V are connected, since they are each the continous

image of a connected set (Theorem 9.30), but U ∩ V = f([0, π2 ]) ∪ f([π, 3π
2 ]) is not

connected.
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2. (a) Define what it means for a set E ⊂ Rn to be connected.

Answer. A set E ⊂ Rn is said to be disconnected if there exist subsets U ⊂ E, and
V ⊂ E so that:

• U and V are each nonempty,
• U and V are each relatively open in E,
• U ∪ V = E, and
• U ∩ V = ∅.

If E is not disconnected, then E is said to be connected.

(b) Assume that E ⊂ Rn is connected. Prove that the closure E is also connected.

Proof. Assume that E is not connected. Then there exist subsets U , V of E so that U and
V are disjoint (U ∩ V = ∅), nonempty, relatively open in E, and so that E = U ∪ V .

Define U ′ = E ∩U , and V ′ = E ∩ V . We claim that U ′ and V ′ are nonempty, relatively open
in E, and satisfy E = U ′ ∪ V ′, and U ′ ∩ V ′ = ∅, and thus E is not connected if E is not
connected. Indeed, using that E ⊂ E, we find

U ′ ∪ V ′ = (E ∩ U) ∪ (E ∩ V ) = E ∩ (U ∪ V ) = E ∩ E = E

and further
U ′ ∩ V ′ = (E ∩ U) ∩ (E ∩ V ) = E ∩ (U ∩ V ) = E ∩ ∅ = ∅,

so U ′ ∪ V ′ = E and U ′ ∩ V ′ = ∅, as claimed.

To see that U ′ is relatively open in E, we note that since U is relatively open in E, there
exists an open set A ⊂ Rn so that U = E ∩A. Then,

U ′ = E ∩ U = E ∩ (E ∩A) = (E ∩ E) ∩A = E ∩A

so U ′ is relatively open in E since A is open. An identical argument shows that V ′ is relatively
open in E.

Finally we claim that U ′ is nonempty. We saw above that there is an open set A so that
U ′ = E ∩ A and U = E ∩ A 6= ∅. Suppose that U ′ = E ∩ A is empty. Then E ⊂ Ac, and
since A is open Ac is closed. But since Ac is a closed set containing E, Theorem 8.32 (iii)
tells us that E ⊂ Ac. This in turn implies that U = E ∩ A = ∅, in contradiction to the fact
that U 6= ∅. Therefore U ′ is nonempty. An identical arguement shows that V ′ = E ∩ V is
nonempty since V is nonempty and relatively open in E.

In conclusion, we have shown that if E is not connected, then E is not connected. Therefore,
if E is connected, E must be connected as well.
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3. Let E ⊂ Rn be a closed set, and assume that a /∈ E. Prove that

inf
x∈E
‖x− a‖ > 0.

Proof. The assumption a /∈ E is equivalent to a ∈ Ec. Since E is closed, Ec is open, so
there exists an ε > 0 so that Bε(a) ⊂ Ec. Therefore, given x ∈ E, x /∈ Ec, and consequently
x /∈ Bε(a). This implies that

‖x− a‖ ≥ ε for all x ∈ E
and we can conclude that

inf
x∈E
‖x− a‖ ≥ ε > 0.

Alternative proof. If E = ∅, then

inf
x∈E
‖x− a‖ = +∞ > 0,

so the result holds in this case.

Assume that E is nonempty, and let xk ∈ E be sequence so that

lim
k→∞

‖xk − a‖ = inf
x∈E
‖x− a‖.

Then the sequence {xk} is bounded, since

‖xk‖ ≤ ‖xk − a‖+ ‖a‖

so
sup
k∈∞
‖xk‖ ≤ sup

k∈∞
‖xk − a‖+ ‖a‖

and the right hand side of this inequality is finite since

lim
k→∞

‖xk − a‖ = inf
x∈E
‖x− a‖

which is finite since E is nonempty.

Applying the Bolzano-Weierstrass theorem, we can find a subsequence
{
xkj

}
and an x ∈ Rn

so that
lim
j→∞

xkj
= x.

Further, we know that x ∈ E since E is closed, and therefore contains all of its limit points
(Theorem 9.8). We then have that

inf
x∈E
‖x− a‖ = lim

k→∞
‖xk − a‖ = lim

j→∞
‖xkj

− a‖ = ‖ lim
j→∞

xkj
− a‖ = ‖x− a‖

and we must have that ‖x−a‖ > 0 since x ∈ E and a /∈ E, so x 6= a. We therefore have that
infx∈E ‖x− a‖ > 0 as claimed.
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4. Let U ⊂ Rn be an open set, and let a ∈ U . Assume that the function f : U \ {a} → Rm is
uniformly continuous on U \ {a}. Prove that

lim
x→a

f(x)

exists. (Hint: Use the sequential characterization of limits.)

Proof. By the sequential characterization of limits, the limit

lim
x→a

f(x)

exists if there exists an L ∈ Rm so that for every sequence {xk}k∈N with xk ∈ U \ {a} and
limk→∞ xk = a, we have that

lim
k→∞

f(xk) = L.

(Note that the fact that there exist sequences xk ∈ U \ {a} with limk→∞ xk = a follows from
the fact that U is an open set.)

Choose a sequence xk ∈ U \ {a} satisfying limk→∞ xk = a. We claim that f(xk) is a Cauchy
sequence, and therefore is convergent. To see this, choose ε > 0. Then, since f is uniformly
continuous on U \ {a}, we can find a δ > 0 so that

‖x− y‖ < δ and x,y ∈ U \ {a} =⇒ ‖f(x)− f(y)‖ < ε. (1)

Choosing such a δ > 0, we then choose an N so that k > N implies that

‖xk − a‖ < δ/2.

Then for k, j > N , we have that

‖xk − xj‖ = ‖xk − a + a− xj‖ ≤ ‖xk − a‖+ ‖a− xj‖ < δ/2 + δ/2 = δ

and therefore,
‖f(xk)− f(xj)‖ < ε.

Therefore f(xk) is a Cauchy sequence, and converges to some L ∈ Rm.

In order to complete the proof, we need to show that any other sequence yk ∈ U \ {a} with
limk→∞ yk = a, also satisfies limk→∞ f(yk) = L. Let yk ∈ U \ {a} be a second sequence
satisfying limk→∞ yk = a. By the argument of the previous paragraph, the sequence f(yk)
converges. Defining

L′ = lim
k→∞

f(yk),

we need to show that L = L′, which, since

L− L′ = lim
k→∞

f(xk)− lim
k→∞

f(yk) = lim
k→∞

f(xk)− f(yk)
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is equivalent to showing limk→∞ f(xk)− f(yk) = 0. Given ε > 0, choose δ so that (1) holds,
and choose N so that k > N implies that

‖xk − a‖ < δ/2 and ‖yk − a‖ < δ/2.

Then, for k > N , we have that

‖xk − yk‖ ≤ ‖xk − a‖+ ‖a− yk‖ < δ/2 + δ/2 = δ

which, by (1), implies that
‖f(xk)− f(yk)‖ < ε.

We thus conclude that
lim
k→∞

f(xk)− f(yk) = 0

and hence L = L′ as claimed.
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