MATH 421, SECTION 2 TEST II SOLUTIONS APRIL 1, 2009

1. Determine whether each of the following statements is true or false. If a statement is false,
provide a counterexample. (Write out the word “true” or “false” completely! No proof or
explanation is necessary if you answer “true,” and you don’t need to prove your proposed
counterexample is a counterexample if you answer “false.”)

(a)

Let f: E C R® — R™ be a continuous function. If H C R™ is compact, then f~1(H)
is compact.

Answer. False. Let f: R — R, be defined by f(x) =0 for all x € R. Then {0} € R is
a compact set, but f~1({0}) = R which is not compact. O

Let f: R™ — R™ be a continuous function. If U C R™ is an open set, then f(U) C R™
is an open set.

Answer. False. Let f : R — R be defined by f(z) = 2. Then (—1,1) is open in R, but
f((—1,1)) =[0,1) is not an open set. O

Let £ C R" be a closed set. Let {x;},.n be a sequence with x;, € E for all k € N, and
assume limy_, o X = X. Then x € F.

Answer. True. Since E is closed, E contains all its limit points (see Theorem 9.8), so
xec k. O

Let U, V C R™ be connected sets. Then U NV is connected.

Answer. False. Let f : R — R? be defined by f(t) = (cost,sint), and let U = f([0, %)),
and V = f([r,2]). Then U and V are connected, since they are each the continous
image of a connected set (Theorem 9.30), but U NV = £([0,3]) U f([m, 3%]) is not
connected. O



2.

(a) Define what it means for a set £ C R™ to be connected.

Answer. A set E C R™ is said to be disconnected if there exist subsets U C F, and
V C FE so that:

e U and V are each nonempty,

e U and V are each relatively open in F,

e UV =F, and

e UNV =10.

If F is not disconnected, then E is said to be connected. O

(b) Assume that E C R™ is connected. Prove that the closure E is also connected.

Proof. Assume that E is not connected. Then there exist subsets U, V' of E so that U and
V are disjoint (U N'V = {)), nonempty, relatively open in F, and so that E=UUV.

Define U' = ENU, and V' = ENV. We claim that U’ and V' are nonempty, relatively open
in F, and satisfy £ = U'UV’, and U' NV’ = (), and thus E is not connected if E is not
connected. Indeed, using that £ C E, we find

UuV' =(ENU)U(ENV)=EN(UUV)=ENE=E
and further

UnNnV =(EnU)N(ENV)=ENnUNV)=En{) =0,
soU'UV'=FE and U' NV’ =0, as claimed.

To see that U’ is relatively open in E, we note that since U is relatively open in E, there
exists an open set A C R" so that U = F N A. Then,

U=EnNU=EN(ENA)=(ENE)NA=ENA

so U’ is relatively open in F since A is open. An identical argument shows that V'’ is relatively
open in F.

Finally we claim that U’ is nonempty. We saw above that there is an open set A so that
U =EnNnAand U =FENA# (. Suppose that U’ = EN A is empty. Then E C A€, and
since A is open A€ is closed. But since A€ is a closed set containing F, Theorem 8.32 (iii)
tells us that £ C A°. This in turn implies that U = EN A = (), in contradiction to the fact
that U # (). Therefore U’ is nonempty. An identical arguement shows that V/ = ENV is
nonempty since V is nonempty and relatively open in E.

In conclusion, we have shown that if E is not connected, then E is not connected. Therefore,
if E is connected, E must be connected as well.

O]



3. Let E C R™ be a closed set, and assume that a ¢ E. Prove that

inf ||x —a|l > 0.
xek

Proof. The assumption a ¢ FE is equivalent to a € E°. Since E is closed, E° is open, so
there exists an € > 0 so that B.(a) C E¢. Therefore, given x € E, x ¢ E¢, and consequently
x ¢ Bc(a). This implies that

|Ix—al| >cforallx € £

and we can conclude that
inf ||[x —al > >0.
xEFE

Alternative proof. If E = (), then
}11612 |Ix —al| = 400 >0,
so the result holds in this case.
Assume that F is nonempty, and let x; € E be sequence so that

lim ||x; — al| = inf ||x — a|.
k—o0 xel

Then the sequence {x;} is bounded, since
%]l < lxx —all + [all

SO
sup [|xx[| < sup [|x; —al + [a]]

k€oo k€oco

and the right hand side of this inequality is finite since
li —all = inf ||x —
Jim |x; —af| = inf ||lx —all

which is finite since F is nonempty.

Applying the Bolzano-Weierstrass theorem, we can find a subsequence {xkj} and an x € R"
so that

lim x;. = X.
Jj—00 7

Further, we know that x € F since E is closed, and therefore contains all of its limit points
(Theorem 9.8). We then have that

Jnf [lx —af| = lim [lx —alf = lim |x, —al| = lim xi; —af =[x —al|

and we must have that ||x —al| > 0 since x € F and a ¢ E, so x # a. We therefore have that
infxer [|x — al| > 0 as claimed. O



4. Let U C R™ be an open set, and let a € U. Assume that the function f: U \ {a} — R™ is
uniformly continuous on U \ {a}. Prove that

lim f(x)

X—a

exists. (Hint: Use the sequential characterization of limits.)

Proof. By the sequential characterization of limits, the limit

lim f(x)

X—a

exists if there exists an L € R™ so that for every sequence {Xj},n With x; € U \ {a} and
limg_, o X = a, we have that

lim f(xy) = L.

k—o00

(Note that the fact that there exist sequences x;, € U \ {a} with limy_, x; = a follows from
the fact that U is an open set.)

Choose a sequence x;, € U \ {a} satisfying limy_,o, x; = a. We claim that f(xy) is a Cauchy
sequence, and therefore is convergent. To see this, choose € > 0. Then, since f is uniformly
continuous on U \ {a}, we can find a 6 > 0 so that

[x —yll <dand x,y € U\{a} = [ f(x) = f(y)ll <e. (1)
Choosing such a § > 0, we then choose an N so that & > N implies that
|xx —al| < d/2.
Then for k, j > N, we have that
I — 311 =[x — & — ;]| < [lxe — all + la— x| < 6/2+8/2 = 5

and therefore,
1 (k) = f(x5)]] <e.
Therefore f(xy) is a Cauchy sequence, and converges to some L € R™.

In order to complete the proof, we need to show that any other sequence y; € U \ {a} with
limg oo yx = a, also satisfies limg_,o f(yx) = L. Let yx € U \ {a} be a second sequence
satisfying limyg_,oo ¥x = a. By the argument of the previous paragraph, the sequence f(yx)
converges. Defining
L' = lim f(yw),
k—o0
we need to show that L = L/, which, since

L—L'= lim f(x) = lim f(yx) = lim f(xx) = f(yr)



is equivalent to showing limy_, f(xx) — f(yx) = 0. Given € > 0, choose § so that (1) holds,
and choose N so that k£ > NN implies that

Ixx —al| < /2 and |y —a|| < /2.
Then, for kK > N, we have that
[k = yill < [lxx —al + la—yxl| <6/2+6/2=0

which, by (1), implies that
1 (xx) = flyw)ll <e.
We thus conclude that
dim f(xi) = f(yr) =0

and hence L = L/ as claimed. O



