
Math 421, Section 2 Test I Solutions February 18, 2009

1. Determine whether each of the following statements is true or false. If a statement is false,
provide a counterexample. (Write out the word “true” or “false” completely!)

(a) Let f , g : [a, b]→ R be integrable functions. Assume that f(x) ≥ g(x) for all x ∈ [a, b],
and that there exists a point c ∈ [a, b] so that f(c) > g(c). Then

∫ b
a f(x) dx >

∫ b
a g(x) dx.

Answer: False. Let [a, b] = [−1, 1], let g(x) = 0, and let

f(x) =

{
1 if x = 0
0 if x 6= 0.

Then f(x) ≥ g(x) for all x ∈ [−1, 1], f(0) > g(0), but
∫ 1
−1 f(x) dx =

∫ 1
−1 g(x) dx = 0.

(Note that the statement would be true if we were to add the assumption that f − g
were continuous; then we could apply the results of problem 4 on page 115 of the
textbook.)

(b) Let f : (a, b) → R be a locally integrable function. Then |f | is a locally integrable
function.

Answer: True. If f is locally integrable, then by definition f is integrable on any interval
[c, d] ⊂ (a, b). Using Theorem 5.22, it follows that |f | is integrable on any interval
[c, d] ⊂ (a, b), which by definition means that |f | is locally integrable.

(c) Let f : [a, b]→ R be a function, and assume that |f | is integrable. Then f is integrable.

Answer: False. Let [a, b] = [0, 1], and let

f(x) =

{
1 if x ∈ Q
−1 if x /∈ Q.

Then f is not integrable on [0, 1], but |f(x)| = 1 for all x ∈ [0, 1], so |f | is integrable on
[0, 1].

(d) Let f : [0,∞)→ R be a locally integrable function. Then f is improperly integrable on
[0,∞) if and only if limx→∞ f(x) = 0.

Answer: False. Let f(x) = 1
1+x . Then f is continous, and so, locally integrable,

limx→∞ f(x) = 0, but f is not improperly integrable.

(e) Let x, y, w ∈ Rn, and assume that x ·y = x ·w, where · denotes the dot product. Then
y = w.

Answer: False. Let x = (1, 0), y = (0, 1), w = (0,−1). Then x · y = 0 = x ·w.
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2. (a) Let P = {x0, . . . , xn} be a partition of [a, b], and let f : [a, b]→ R be a bounded function.
State the definitions of the upper and lower Riemann sums, U(f, P ) and L(f, P ), of f
over P .

Answer:

U(f, P ) =
n∑
j=1

Mj(f)(xj − xj−1)

and

L(f, P ) =
n∑
j=1

mj(f)(xj − xj−1)

where
Mj(f) := sup

x∈[xj−1,xj ]
f(x)

and
mj(f) := inf

x∈[xj−1,xj ]
f(x).

(b) Define what it means for a function f : [a, b]→ R to be Riemann integrable.

Answer: A function f : [a, b]→ R is said to be Riemann integrable if:

(i) f is bounded, and
(ii) for any ε > 0, there exists a partition P of [a, b] so that

U(f, P )− L(f, P ) < ε.
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(c) Prove that the function f : R→ R defined by

f(x) =

{
0 if x ≤ 0
sin 1

x if x > 0

is Riemann integrable on [0, 1].

Proof. First note that f is continous on any interval that does not contain 0, and therefore
that f is integrable on any closed bounded interval that does not contain 0.

Let ε > 0. By the previous comment, f is integrable on the interval [ε/4, 1], and by the
definition of integrability, we can choose a partition P1 of [ε/4, 1] so that

U(f, P1)− L(f, P1) < ε/2.

Define a partition P of [0, 1] by P = {0} ∪ P1. Then

U(f, P )− L(f, P ) =

(
sup

x∈[0,ε/4]
f(x)− inf

x∈[0,ε/4]
f(x)

)
(ε/4− 0) + U(f, P1)− L(f, P1)

= (1− (−1)) ε/4 + U(f, P1)− L(f, P1)
= ε/2 + U(f, P1)− L(f, P1)
< ε/2 + ε/2 = ε,

and therefore f is integrable on [0, 1].
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3. Let f : R→ R be a continuous function. Prove that

lim
δ→0+

1
2δ

∫ x0+δ

x0−δ
f(x) dx = f(x0).

Proof 1. In order to prove that

lim
δ→0+

1
2δ

∫ x0+δ

x0−δ
f(x) dx = f(x0).

we need to show that for any ε > 0, there exists a δ′ so that

δ ∈ (0, δ′) ⇒
∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣ < ε.

Let ε > 0. Since f is assumed continous, we can find a δ′ > 0 so that

|x− x0| < δ′ ⇒ |f(x)− f(x0)| < ε.

For δ ∈ (0, δ′), we therefore have that∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣ =
∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

1
2δ

∫ x0+δ

x0−δ
1 dx

∣∣∣∣
=
∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x) dx− 1

2δ

∫ x0+δ

x0−δ
f(x0) dx

∣∣∣∣
=
∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x)− f(x0) dx

∣∣∣∣
≤ 1

2δ

∫ x0+δ

x0−δ
|f(x)− f(x0)| dx

<
1
2δ

∫ x0+δ

x0−δ
ε dx

= ε.

Hence δ ∈ (0, δ′) implies that ∣∣∣∣ 1
2δ

∫ x0+δ

x0−δ
f(x) dx− f(x0)

∣∣∣∣ < ε

as required.

Proof 2. Here we will use the Mean Value Theorem.
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Since f is assumed continous, the Mean Value Theorem for integrals implies that for every
δ > 0, we can choose an xδ ∈ [x0 − δ, x0 + δ] so that

1
2δ

∫ x0+δ

x0−δ
f(x) dx = f(xδ).

Using the squeeze theorem, we see that

lim
δ→0+

xδ = x0

since
x0 − δ ≤ xδ ≤ x0 + δ.

By continuity of f , we then have that

lim
δ→0+

f(xδ) = f(x0),

and therefore

lim
δ→0+

1
2δ

∫ x0+δ

x0−δ
f(x) dx = lim

δ→0+
f(xδ) = f(x0).

Proof 3. Here we will use the Fundamental Theorem of Calculus (FTC). (There is some
danger of circularity here since we needed to prove a result similar to the one here in order
to prove the FTC, but since I did not forbid the use of the FTC in this problem, you were
free to use it.)

Define
F (x) =

∫ x

c
f(t) dt

for any c ∈ R. Note that since f is assumed to be continous, the FTC implies that F is
differentiable, and that F ′(x) = f(x).

We then have that

lim
δ→0+

1
2δ

∫ x0+δ

x0−δ
f(x) dx = lim

δ→0+

1
2δ

(F (x0 + δ)− F (x0 − δ))

=
1
2

(
lim
δ→0+

F (x0 + δ)− F (x0)
δ

+ lim
δ→0+

F (x0 − δ)− F (x0)
−δ

)
=

1
2
(
F ′(x0) + F ′(x0)

)
= F ′(x0) = f(x0).
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4. Let f , g : [0,∞) → R be locally integrable functions, and assume that g(x) ≥ 0 for all
x ∈ [0,∞). Assume that the limit

L := lim
x→∞

f(x)
g(x)

exists and satisfies L ∈ (0,∞). Prove that f is improperly integrable on [0,∞) if and only if
g is improperly integrable on [0,∞).

Proof. According to the definition of limit, the equation

L = lim
x→∞

f(x)
g(x)

means that for any ε > 0, there exists an N , so that x > N implies that∣∣∣∣f(x)
g(x)

− L
∣∣∣∣ < ε.

Since L > 0 is finite, we can, in particular, find an N , so that x > N implies that∣∣∣∣f(x)
g(x)

− L
∣∣∣∣ < L

2
,

or equivalently, so that

0 <
L

2
<
f(x)
g(x)

<
3L
2

for all x > N . Note that this implies that g(x) is nonzero for all x > N , and since g(x) ≥ 0
for all x ≥ 0, we have that g(x) > 0 for all x > N . We can therefore multiply this inequality
through by g(x) to find that

0 <
L

2
g(x) < f(x) <

3L
2
g(x)

for all x > N .

Now, if g is improperly integrable on [0,∞), then 3L
2 g is improperly integrable on [0,∞)

(Theorem 5.42), and therefore 3L
2 g is improperly integrable on [N,∞). The inequality

0 < f(x) <
3L
2
g(x) for all x > N

then allows us to apply the comparison theorem for improper integrals (Theorem 5.43) to
conclude that f is improperly integrable on [N,∞). Since f is assumed locally integrable on
[0,∞), f being improperly integrable on [N,∞) is equivalent to f being improperly integrable
on [0,∞).

Similarly, if f is improperly integrable on [0,∞), we use the inequality

0 <
L

2
g(x) < f(x) for all x > N
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with the comparison theorem for improper integrals to conclude that L
2 g and g are improperly

integrable on [N,∞), which, with the assumption of local integrability of g, implies that g is
improperly integrable on [0,∞).
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