Name:____

Instructions:

- No calculators, books, notes, or electronic devices may be used during the exam.
- You have 50 minutes.
- There are 4 problems, some with multiple parts. Complete all problems, and write all solutions in the space provided on the exam.
- Unless indicated otherwise, you may use any theorem proved in the lecture, or any theorem from single variable differential calculus. When applying a theorem, you should explicitly verify that all necessary hypotheses are met.
- Additional scratch paper is provided at the end of the exam.

Good Luck!

Problem 1 (15 points)	
Problem 2 (15 points)	
Problem 3 (10 points)	
Problem 4 (10 points)	
Total (50 points)	

- 1. Determine whether each of the following statements is true or false. If a statement is false, provide a counterexample. (Write out the word "true" or "false" completely!)
 - (a) Let $f, g: [a, b] \to \mathbf{R}$ be integrable functions. Assume that $f(x) \ge g(x)$ for all $x \in [a, b]$, and that there exists a point $c \in [a, b]$ so that f(c) > g(c). Then $\int_a^b f(x) \, dx > \int_a^b g(x) \, dx$.

(b) Let $f:(a,b)\to \mathbf{R}$ be a locally integrable function. Then |f| is a locally integrable function.

(c) Let $f:[a,b] \to \mathbf{R}$ be a function, and assume that |f| is integrable. Then f is integrable.

(d) Let $f: [0, \infty) \to \mathbf{R}$ be a locally integrable function. Then f is improperly integrable on $[0, \infty)$ if and only if $\lim_{x\to\infty} f(x) = 0$.

(e) Let $\mathbf{x}, \mathbf{y}, \mathbf{w} \in \mathbf{R}^n$, and assume that $\mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{w}$, where \cdot denotes the dot product. Then $\mathbf{y} = \mathbf{w}$.

2. (a) Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b], and let $f : [a, b] \to \mathbf{R}$ be a bounded function. State the definitions of the upper and lower Riemann sums, U(f, P) and L(f, P), of f over P.

(b) Define what it means for a function $f:[a,b] \to \mathbf{R}$ to be Riemann integrable.

(c) Prove that the function $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ \sin \frac{1}{x} & \text{if } x > 0 \end{cases}$$

is Riemann integrable on [0, 1].

3. Let $f:\mathbf{R}\to\mathbf{R}$ be a continuous function. Prove that

$$\lim_{\delta \to 0^+} \frac{1}{2\delta} \int_{x_0 - \delta}^{x_0 + \delta} f(x) \, dx = f(x_0).$$

4. Let $f, g: [0, \infty) \to \mathbf{R}$ be locally integrable functions, and assume that $g(x) \ge 0$ for all $x \in [0, \infty)$. Assume that the limit f(x)

$$L := \lim_{x \to \infty} \frac{f(x)}{g(x)}$$

exists and satisfies $L \in (0, \infty)$. Prove that f is improperly integrable on $[0, \infty)$ if and only if g is improperly integrable on $[0, \infty)$.

(scratch paper)

(scratch paper)