MATH 425 FALL 1998

Cauchy-Riemann in polar coordinates.

Suppose f is a complex valued function that is differentiable at a point zy of the
complex plane. The idea here is to modify the method that resulted in the “cartesian”
version of the Cauchy-Riemann equations derived in §17 to get the polar version.

To this end, suppose zy # 0, write 2 = re?, 25 = r9e’° and express the real and
imaginary parts of f as functions of r and 6:

f(re®y = u(r,0) +iv(r,0).

STEP I. In the definition of “differentiable at zy,” let z — 2y along the ray 8 = 6,
(draw a picture to illustrate this!). Then the following limit exists:

fre®™) — f(roe™)

/ . .
f (ZO) - 711_{90 reifo — T,Oewo
_ 1 lim u(r,0o) — u(rg,00) + i [v(r,00) — v(ro, 6o)]
eito r=ro r—ro
_ 671’90 lim U(T’, 60) — U(TQ, 90) 1 lim ’U(T, 90) — U(’I”o, ‘90)
r—=ro r—7To r—=ro r—To

Both limits in the last line exist because the limit in the first line does (and a complex
function has a limit at a point if and only if its real and imaginary parts do). Now
these limits equal the respective partial derivatives of u and v with respect to r, at
the polar coordinates (rg,6). The result is:
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STEP II. In the definition of “differentiable at zy,” let 2 — 2z along the circle r = r
(draw another picture to illustrate this new situation!), so that the following is true:
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As 6 — 6, the difference quotients in the square brackets converge—if they converge
at all—to the partial derivatives of v and v with respect to #, evaluated at the polar



coordinates (rg, 6p). This much-desired convergence will happen if we can prove that
the last fraction has a limit as § — 6, (make sure you understand why this is true!).
Now the reciprocal of the fraction whose convergence we hope to establish is:
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which, as # — 6y, tends to
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Putting it all together:
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which, after a little complex arithmetic, becomes:
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STEP III. Equations (1) and (2) give two expressions for f’(z). Upon equating the
real and imaginary parts of the right-hand sides of these equations we arrive at the
Polar =“auchy-Riemann Equations-
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where, for aesthetic reasons, I've left as understood the fact that everything is sup-
posed to be evaluated at the polar coordinates (rq, ).

SUMMARY. If f = u +iv is differentiable at zy = roe’® # 0, then the polar Cauchy-
Riemann equations (3) hold at (ro,0y). In addition, we have these formulas for the
derivative of f:
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