Cauchy Riemann in polar coordinates.

Suppose f is a complex valued function that is differentiable at a point z_{0} of the complex plane. The idea here is to modify the method that resulted in the "cartesian" version of the Cauchy-Riemann equations derived in $\S 17$ to get the polar version.

To this end, suppose $z_{0} \neq 0$, write $z=r e^{i \theta}, z_{0}=r_{0} e^{i \theta_{0}}$ and express the real and imaginary parts of f as functions of r and θ :

$$
f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta) .
$$

Step I. In the definition of "differentiable at z_{0}," let $z \rightarrow z_{0}$ along the ray $\theta=\theta_{0}$ (draw a picture to illustrate this!). Then the following limit exists:

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{r \rightarrow r_{0}} \frac{f\left(r e^{i \theta_{0}}\right)-f\left(r_{0} e^{i \theta_{0}}\right)}{r e^{i \theta_{0}}-r_{0} e^{i \theta_{0}}} \\
& =\frac{1}{e^{i \theta_{0}}} \lim _{r \rightarrow r_{0}} \frac{u\left(r, \theta_{0}\right)-u\left(r_{0}, \theta_{0}\right)+i\left[v\left(r, \theta_{0}\right)-v\left(r_{0}, \theta_{0}\right)\right]}{r-r_{0}} \\
& =e^{-i \theta_{0}}\left[\lim _{r \rightarrow r_{0}} \frac{u\left(r, \theta_{0}\right)-u\left(r_{0}, \theta_{0}\right)}{r-r_{0}}+i \lim _{r \rightarrow r_{0}} \frac{v\left(r, \theta_{0}\right)-v\left(r_{0}, \theta_{0}\right)}{r-r_{0}}\right] .
\end{aligned}
$$

Both limits in the last line exist because the limit in the first line does (and a complex function has a limit at a point if and only if its real and imaginary parts do). Now these limits equal the respective partial derivatives of u and v with respect to r, at the polar coordinates $\left(r_{0}, \theta_{0}\right)$. The result is:

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left[\frac{\partial u}{\partial r}\left(r_{0}, \theta_{0}\right)+i \frac{\partial v}{\partial r}\left(r_{0}, \theta_{0}\right)\right] \tag{1}
\end{equation*}
$$

Step II. In the definition of "differentiable at z_{0}," let $z \rightarrow z_{0}$ along the circle $r=r_{0}$ (draw another picture to illustrate this new situation!), so that the following is true:

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\theta \rightarrow \theta_{0}} \frac{f\left(r_{0} e^{i \theta}\right)-f\left(r_{0} e^{i \theta_{0}}\right)}{r_{0} e^{i \theta}-r_{0} e^{i \theta_{0}}} \\
& =\frac{1}{r_{0}} \lim _{\theta \rightarrow \theta_{0}}\left[\frac{u\left(r_{0}, \theta\right)-u\left(r_{0}, \theta_{0}\right)}{e^{i \theta}-e^{i \theta_{0}}}+i \frac{v\left(r_{0}, \theta\right)-v\left(r_{0}, \theta_{0}\right)}{e^{i \theta}-e^{i \theta_{0}}}\right] \\
& =\frac{1}{r_{0}} \lim _{\theta \rightarrow \theta_{0}}\left\{\left[\frac{u\left(r_{0}, \theta\right)-u\left(r_{0}, \theta_{0}\right)}{\theta-\theta_{0}}+i \frac{v\left(r_{0}, \theta\right)-v\left(r_{0}, \theta_{0}\right)}{\theta-\theta_{0}}\right] \times \frac{\theta-\theta_{0}}{e^{i \theta}-e^{i \theta_{0}}}\right\} .
\end{aligned}
$$

As $\theta \rightarrow \theta_{0}$ the difference quotients in the square brackets converge - if they converge at all-to the partial derivatives of u and v with respect to θ, evaluated at the polar
coordinates $\left(r_{0}, \theta_{0}\right)$. This much-desired convergence will happen if we can prove that the last fraction has a limit as $\theta \rightarrow \theta_{0}$ (make sure you understand why this is true!). Now the reciprocal of the fraction whose convergence we hope to establish is:

$$
\frac{e^{i \theta}-e^{i \theta_{0}}}{\theta-\theta_{0}}=\frac{\cos \theta-\cos \theta_{0}}{\theta-\theta_{0}}+i \frac{\sin \theta-\sin \theta_{0}}{\theta-\theta_{0}},
$$

which, as $\theta \rightarrow \theta_{0}$, tends to

$$
\left[\frac{d}{d \theta} \cos \theta\right]_{\theta=\theta_{0}}+i\left[\frac{d}{d \theta} \sin \theta\right]_{\theta=\theta_{0}}=-\sin \theta_{0}+i \cos \theta_{0}=i e^{i \theta_{0}} .
$$

Putting it all together:

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{i r_{0} e^{i \theta_{0}}}\left[\frac{\partial u}{\partial \theta}\left(r_{0}, \theta_{0}\right)+i \frac{\partial v}{\partial \theta}\left(r_{0}, \theta_{0}\right)\right]
$$

which, after a little complex arithmetic, becomes:

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\frac{e^{-i \theta_{0}}}{r_{0}}\left[\frac{\partial v}{\partial \theta}\left(r_{0}, \theta_{0}\right)-i \frac{\partial u}{\partial \theta}\left(r_{0}, \theta_{0}\right)\right] \tag{2}
\end{equation*}
$$

Step III. Equations (1) and (2) give two expressions for $f^{\prime}\left(z_{0}\right)$. Upon equating the real and imaginary parts of the right-hand sides of these equations we arrive at the Polar - auchy-Riemann Equations-

$$
\begin{equation*}
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} \tag{3}
\end{equation*}
$$

where, for aesthetic reasons, I've left as understood the fact that everything is supposed to be evaluated at the polar coordinates $\left(r_{0}, \theta_{0}\right)$.

Summary. If $f=u+i v$ is differentiable at $z_{0}=r_{0} e^{i \theta_{0}} \neq 0$, then the polar CauchyRiemann equations (3) hold at (r_{0}, θ_{0}). In addition, we have these formulas for the derivative of f :

$$
f^{\prime}\left(z_{0}\right)=e^{-i \theta_{0}}\left[\frac{\partial u}{\partial r}\left(r_{0}, \theta_{0}\right)+i \frac{\partial v}{\partial r}\left(r_{0}, \theta_{0}\right)\right]=\frac{e^{-i \theta_{0}}}{r_{0}}\left[\frac{\partial v}{\partial \theta}\left(r_{0}, \theta_{0}\right)-i \frac{\partial u}{\partial \theta}\left(r_{0}, \theta_{0}\right)\right] .
$$

