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WEAK TOPOLOGIES ON SUBSPACES OF C(S)

BY
JOEL H. SHAPIRO

Abstract. Let S be a locally compact Hausdorff space, E a linear subspace of C(S).
It is shown that the unit ball of E is compact in the strict topology if and only if both
of the following two conditions are satisfied: (1) E is the Banach space dual of
M(S)/E° in the integration pairing, and (2) the bounded weak star topology on E
coincides with the strict topology. This result is applied to several examples, among
which are /® and the space of bounded analytic functions on a plane region.

The space C(S) of bounded, continuous, complex valued functions on the
locally compact Hausdorff space S is paired by integration with M (S), the space of
regular Borel measures on S having finite variation. We call a vector subspace of
C(S) weakly normal if its unit ball is compact in the weak topology of this pairing,
and normal if its unit ball is compact in the strict topology (see §1 for definitions).

In §1 of this paper we show that every normal subspace of C(S) is weakly
normal, every weakly normal subspace is norm closed; and that a subspace is
normal if and only if its unit ball is compact in the compact-open topology. We
discuss several examples of normal subspaces, in particular the spaces H®(G) of
bounded analytic functions on the plane region G, and /°(I") of bounded complex
valued functions on the index set I.

If E is a linear subspace of C(S), and E° is its annihilator in M (S), then it is
easy to see that the mapping which takes fin E to the linear functional

m+E® f fdm  (min M(S))

is a linear isometry of E into the dual of M(S)/E°. We show that E is weakly
normal if and only if this map is onto.

In the second section we prove our main result (Theorem 2): A subspace E of
C(S) is normal if and only if it is weakly normal and the bounded weak star
topology induced on it by M (S)/E° coincides with the strict topology.

In the last section we show that if S is separable and E is a normal subspace of
C(S), then a subset of E is strictly closed if and only if it is strictly sequentially
closed. This result was first proved by Paul Hessler for H*(G).

Our work continues that of Rubel and Shields [10] and Rubel and Ryff [9], who
studied the particular class of normal subspaces H>(G). The coincidence of the
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strict and bounded weak star topologies on H®(G) is due to Rubel and Ryff
[9, §2]; indeed this paper arises from our attempt to better understand their result.
We also make contact with the work of Collins [2] on [/*(T") in the strict topology.

We wish to thank the referee for a number of insightful comments which im-
proved the exposition and shortened the proofs of Theorem 1 and Proposition 7.

1. Normal and weakly normal subspaces. In this section we discuss some
preliminary facts about normal and weakly normal subspaces, and give several
examples. We begin with some definitions. If <E, F) is a dual pair of vector spaces,
the weak topology induced on E by F is denoted by w(E, F). A vector topology
t on E is said to be consistent with the pairing (E, F) if F is the ¢-dual of E in the
sense that a linear functional A on E is t-continuous if and only if there is a unique
f in F with Me)=<e, f,» for each e in E. If E and F are Banach spaces and the
mapping A — f; is an isometry of E’, the dual of E, onto F; then we say F is iso-
metric to E’ in the pairing { , .

Throughout our work S denotes a locally compact Hausdorff space. C(S) is
the space of bounded, continuous, complex valued functions on S; Cy(S) is the
subspace of C(S) consisting of functions which vanish at infinity, and M (S) is the
space of regular complex Borel measures on S of finite variation. C(S) is a Banach

space in the supremum norm | |l., and Co(S) is a closed subspace. M(S) is a
Banach space in the variation norm | |, and is isometric to the dual of Cy(S) in
the pairing

(1.1) omd = ffdm.

The strict topology B on C(S) is the locally convex topology defined by the
seminorms

Ifle = Ikl (fin C(S)),
where k runs through Cy(S). The strict topology is Hausdorff, complete, and
consistent with the pairing (1.1) between C(S) and M(S) [1, Theorems 1 and 2].
Moreover, it coincides with the norm topology if and only if S is compact [I,
Theorem 1]. We write a=w(C(S), M(S)).
The following elementary fact is used repeatedly:

THEOREM A. Suppose t, and t, are Hausdorff topologies on a set X. If t, <t, and
(X, ty) is compact, then (X, ty) is compact and t,=t,.

We call a vector subspace of C(S) weakly normal if its unit ball is «-compact, and
normal if its unit ball is B-compact.

PROPOSITION 1. Every normal subspace of C(S) is weakly normal, and every
weakly normal subspace is norm closed.

Proof. If E is normal then its unit ball E; is B-compact. Since B is consistent with
the pairing (C(S), M(S), « is weaker than B. Thus E| is a-compact by Theorem A,
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so E is weakly normal. If E is weakly normal then E, is a-compact, hence «-closed
in C(S). Since « is weaker than the norm topology, E, is norm closed in C(S), and
it follows easily that the same is true of E. .

A weakly normal subspace need not be normal. For example, if S is the closed
unit interval and E is a reflexive infinite-dimensional subspace of C(S), then «
coincides on E with w(E, E’), so the unit ball of E is «-compact. However, E is not
normal, since in this example the strict topology coincides with the norm topology.

The next result gives a useful characterization of normality. Let « denote the
compact-open topology on C(S).

PROPOSITION 2. A vector subspace of C(S) is normal if and only if its unit ball is
equicontinuous and k-closed.

Proof. Let E be a vector subspace of C(S), and E; its unit ball. In view of
[1, Theorem 1], k=B on E;, hence E is normal if and only if E; is k-compact. The
result now follows from the Arzela-Ascoli Theorem and the fact that the unit ball
of C(S) is x-closed in the space of all continuous functions on S.

COROLLARY. H®(G) is a normal subspace of C(G).

Let I' be an index set, and let S denote T in its discrete topology. Then [*(T)
=C(S) is normal, as the following result shows.

PRrROPOSITION 3. The following are equivalent:
(a) S is a discrete space.

(b) C(S) is normal.

(©) C(S) is weakly normal.

Proof. (a) — (b). It follows from (a) that C(S) is the space of all bounded
functions on S, so (b) is an easy consequence of Proposition 2.

(b) — (). Immediate from Proposition 1.

(c) — (a). Suppose C(S) is weakly normal. Fix s in S. Let U be an open set
containing S, and apply Urysohn’s Lemma to the one point compactification of S
to obtain a continuous function fy vanishing on the complement of U, with
fu(s)=1 and 0=fy=<1. Evidently the net (fy) converges pointwise to ¢, the
characteristic function of the singleton {s}. However, (fy) is contained in the
a-compact unit ball of C(S), so there is a function g in C(S) and a subnet of (fy)
which is «-convergent, hence pointwise convergent, to g. Thus g=¢,, so ¢ is
continuous on S. It follows that {s} is open in S, which completes the proof.

The next example was pointed out to us by D. L. Williams. Let A be a compact
subset of n-dimensional Euclidean space R", and let E(A) denote the space of
bounded measurable functions on R™ with spectrum [4, p. 227] contained in A.
Every such function is the restriction to R™ of an entire function on C" of expo-
nential type, and the Bernstein inequality guarantees that

lgrad fle = A|f]  (fin E(A)),
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for some A >0 independent of £ [4, p. 227]. It follows from the mean value theorem
in R" that

|f(7)—fx)| < |lgrad fllw|y—x|  (x,yin R

for fin C*(R"). Thus for fin the unit ball of E(A), the Bernstein inequality yields
| f(»)—f(x)| £ 4| y— x|, where 4 is independent of £, x, and y. The unit ball of E(A)
is therefore equicontinuous. That it is x-closed follows from a routine argument
involving Fourier transforms of temperate distributions. By Proposition 2, E(A)
is therefore a normal subspace of C(R™).

Finally let Lip (X, d) denote the space of Lipschitz functions on the compact
metric space (X, d). More explicitly, Lip (X, d) consists of all those continuous
complex-valued functions on X for which

«f(x, ) = (fx)—f(¥)/d(x, y)
is bounded for x#y (x, y in X). Let

lefllw = sup {Jaf(x, )| : x,yin X, x # y}.

In the norm | f|| =max {|| f||w, |«f]~}, Lip (X, d) is a Banach space. Following
de Leeuw [3] and Johnson [7, Lemma 3.1] we show that it can be regarded as a
normal subspace of an appropriate C(S).

Let Y={(x,y) : x,y in X, x#y} be given the relative topology of X x X. Then
the disjoint union W=X U Y in its natural topology is a locally compact Haus-
dorff space. For fin Lip (X, d) define f on W by setting f equal to f on X, and to
wfon Y. The mapping f — fis then a linear isometry of Lip (X, d) onto a subspace
L of C(W), and it is not difficult to show from the Lipschitz condition that the
unit ball of L is equicontinuous. It is clearly x-closed in C(W), so Lip (X, d) may
be regarded as a normal subspace of C(W).

We close this section by characterizing weakly normal subspaces as special
conjugate Banach spaces. For this we need the Krein-Smulian Theorem.

THEOREM B (KREIN-SMULIAN [5, V.5.7]). Let X be a Banach space. A linear
subspace of X' is w(X', X)-closed if and only if its intersection with the X' unit ball
is w(X', X)-closed.

Let E be a vector subspace of C(S), and let E° be the annihilator of E in M(S).
E is paired with the quotient space M (S)/E° by integration:

(1.2) (m+E°f> = f fdm  (min M(S), fin E),
and the linear functional
(1.3) m+E° —{m+E° f)

on M(S)/E° is easily seen to have norm | f|| .. Thus the mapping which takes f'in
E to the linear functional (1.3) is a linear isometry of E onto a weak star dense
subspace of the dual of M(S)/E°.
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THEOREM 1. E is weakly normal if and only if it is isometric in the pairing (1.2)
to the dual of M(S)/E°.

Proof. Let M=M(S) and let E; denote the unit ball of E. If E is isometric to
(M /E®)" in (1.2) then it follows from the Alaoglu Theorem that E; is w(E, M /E°)-
compact. Since w(E, M/E°)=c on E, E is weakly normal.

Conversely, suppose E is weakly normal. Identifying E with its image in (M /E°)’,
we see by weak normality that the unit ball of E is «=w(E, M |E®)-compact, so the
Krein-Smulian Theorem guarantees that E is weak star closed in (M/E°)". But we
have already seen that E is weak star dense in (M/E°)’, so the proof is complete.

2. Normal subspaces and the bounded weak star topology. If X is a Banach
space, then the bounded weak star topology bw(X’, X) on its dual X" is the strongest
topology which coincides with w(X’, X) on bounded subsets. A subset of X’ is
bw(X’, X)-closed if and only if its intersection with every positive multiple of the
X"’ unit ball is w(X’, X)-closed [5, V.5.3]. For example Theorem B can be restated:
a linear subspace of X' is w(X”’, X)-closed if and only if it is bw(X"’, X)-closed. The
bounded weak star topology has the following important characterization:

THEOREM C [5, V.5.4]. If X is a Banach space then bw(X', X) coincides with the
topology of uniform convergence on sequences in X which tend in norm to zero.

We turn to our main result. Recall that a subspace E of C(S) is weakly normal
if and only if it is isometric to the dual of M(S)/E° in the pairing (1.2). Thus if E
is weakly normal, then its predual M(S)/E° induces on it the weak star topology
(which coincides with «), and the bounded weak star topology bw(E, M (S)/E°).

THEOREM 2. A subspace E of C(S) is normal if and only if it is weakly normal and
bw(E, M(S)/E®)=B.

In the proof we rely heavily on the following result of Rubel and Ryff [9, §2].

PRrROPOSITION 4. On C(S) the strict topology is stronger than the topology of
uniform convergence on norm-null sequences in M(S).

Proof. We repeat the argument of [9]. Let 4=(m,) be a sequence in M (S) which
tends to zero in norm. We must show that, for some k in Cy(S) and >0,

il s o = {7
It is enough to show that there is a nonnegative k in Co(S) with
2.1 C=sup{fk‘1d|m| :minA}<oo.
For then whenever '€ C(S) and | f]|, =1/C, we will have
lffdm' - f(ﬂc)k‘ldm' <1,

which will complete the proof.

ffdm‘ < 1 for all m in A}-
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It remains to prove (2.1). Each member of 4 has sigma-compact support
[1, Lemma 5], and at most a finite number have total variation =1/2. It follows
that there is a compact subset K; of S such that |m|(S—K;) <% for each m in 4.
Similarly, there is a compact set K, whose interior contains K; such that
|m|(S—K3) <% for each m in A. Continuing in this fashion we obtain a sequence
(K,) of compact sets such that K, is contained in the interior of K, ,, and

sup{|m|(S—K,) :mind} £2°* (n=1,2,...).
Let (p,) be a sequence of positive numbers decreasing to 0 such that p, = |m,|
(n=1,2,...)and 3 (p,2")~* <2. It follows from Urysohn’s Lemma that there is a
nonnegative function k in Cy(S) vanishing outside |, K, such that k=p, on 0K,
and p,2k=p,,; on K,,1—K, (n=1,2,...). Thus for each fixed n,

fk—l d|m,|

0

k-t dlm)+ > L ktdm,|
J+1 78Ry

Kn j=n+1

Il l/pn+ i (p2)~*

j=n+1

IIA

I\

1+ (p2)™* < 3,
1

which completes the proof.

Proof of Theorem 2. If E is weakly normal and bw(E, M(S)/E®)=8, then B
coincides with «=w(E, M (S)/E®) on the unit ball E, of E. Thus E, is f-compact,
so E is normal. Conversely, if E is normal then it is weakly normal; and it follows
from Theorem A that «=f on every positive multiple of E; (recall that «<f on
C(S)). Thus B coincides with « on every bounded subset of E, so <
bw(E, M(S)/E®). However it follows immediately from Proposition 4 and Theorem
C that bw(E, M (S)/E®)<p for any weakly normal subspace E; which completes
the proof.

We apply Theorem 2 to the examples discussed in the first section.

COROLLARY 1 [9, §2]. Let E=H>(G), and M= M(G). Then in the pairing

<f,m>=ffdm (fin E, min M),

E is isometric with the dual of M|E° and B=bw(E, M|E®). The same is true if
E=E(A) and M=M(R").

We remark that this result, and its proof, remain valid when G is a region in C™.
COROLLARY 2. Let I be an index set. Then B=>bw(I*(T), I*(T")).
COROLLARY 3. Let E=Lip (X, d) and M= M(S). Then in the pairing

o m =fwfdm (fin E, min M),
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E is isometric to the dual of M|E°, and bw(E, M|E®) coincides with the topology
induced by the seminorms

If e = max {[|f]w, [lef i},
where k runs through Cyo(Y), and

|wf i = sup {|af(P)k(p)| : pin Y}.

We remark that the fact that Lip (X, d) is a conjugate Banach space is a special
case of a result of J. A. Johnson [7, Theorem 4.1].

For a locally convex space X, the equicontinuous weak star topology ew(X’, X)
is defined as the strongest topology on X’ which coincides with w(X’, X) on
equicontinuous sets [6, 5.3, p. 61]. If X is a Banach space then ew(X’, X) coincides
with the bounded weak star topology. If ew(X’, X) coincides with the topology of
uniform convergence on precompact subsets of E, then X is called "an S space
[6, 6.1, p. 71]. It follows from [6, 6.6, Proposition 5] that in the bounded weak star
topology, the dual of a Banach space is a complete S space. Thus Corollary 2
provides another proof of Collins’ observation [2, 4.6] that (I°(T"), B) is a complete
S space. In fact, if S is a locally compact Hausdorff space and E is a normal sub-
space of C(S), then it follows from these remarks and Theorem 2 that (E, B) is a
complete S space.

Finally, we observe that in some sense the bounded weak star topology on the
dual of a Banach space is always a strict topology.

ProPoSITION 5. If E is a Banach space, then there is a set I' and a norm isomor-
phism of E’ onto a w(I*(T"), I*(I"))-closed subspace F of 1°(I"), which is simultaneously
a topological isomorphism of (E', bw(E', E)) onto (F, ).

Proof. It is well known that there is a norm isomorphism taking E onto a
quotient space /*(I")/N for some I" (see [8, p. 283] for E separable; the proof for
nonseparable E is similar). It follows upon passing to the adjoint that E’ is norm
isomorphic with (/*(I')/N)'=N°, the annihilator of N in /*(I"). Thus F=N°is a
w(l>(I), IY(T")) closed subspace of [°(I"), and it follows from Theorem C that the
isomorphism between E’ and F stays bicontinuous when the spaces are given their
respective bounded weak star topologies. But from Corollary 2, B=bw(I*(T"), I*(T)),
which coincides on F with bw(F, [*(T")/N); and the proof is complete.

3. Hessler’s Theorem. The following result is due to P. Hessler (unpublished).

THEOREM D. A subset of H*(G) is strictly closed if and only if it is strictly
sequentially closed.

Rubel and Ryff have shown that Hessler’s Theorem is a consequence of

THEOREM E [9, §2]. If X is a separable Banach space, then a subset of X' is
closed in the bounded weak star topology if and only if it is sequentially closed.
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Since the restriction of w(X’, X) to the X’ unit ball is metrizable whenever X
is separable, Theorem E follows from the fact that a set is bw(X’, X)-closed if and
only if its intersection with every positive multiple of the unit ball is w(X”’, X)-
closed. Theorem D follows from Theorem E, Corollary 1 of Theorem 2, and the
fact that M (G)/H*(G)° is separable [10, §4].

In this section we use Theorem 2 to prove the following extension of Hessler’s
result.

THEOREM 3. If S is separable and E is a normal subspace of C(S), then a subset of
(E, B) is closed if and only if it is sequentially closed.

This will follow from the next proposition, which is itself useful in applications.

PROPOSITION 7. Let E be a weakly normal subspace of C(S), let V be a norm
closed subspace of M(S), and let EY=E° N V. The following are equivalent:
(a) The mapping

3.1 m+EV —m+E° (minV)

is a linear isometry of V|EV onto M(S)/E°.
(b) E is isometric to the dual of V|E" in the pairing

(3.2) (m+EV,f> = f fdm  (finE min V).

(c) For each fin E,
171 = sup {| [ ram

Proof. Let M=M(S), and let E;, denote the unit ball of E. (a) — (b) follows
immediately from Theorem 1, and (b) — (c) is obvious.

(b) — (a). It follows from (b) and Theorem 1 that |m+E7| coincides with
|m+ E°| for each m in M, so the mapping (3.1) is an isometry taking V'/EV onto a
closed subspace of M /E°. But the image of V/EV is dense, since no nonzero linear
functional on M/E° can annihilate it (Theorem 1 and (b) again). Thus (3.1) maps
V/EV onto M|E°.

(c) — (b). It follows from (c) that the mapping which takes each fin E to the
linear functional

minV, |m| < 1}-

m—>ffdm (min V)

is an isometry of E into V. Since w(E, V) is Hausdorff and weaker than w(E, M)
=q, it follows from Theorem A and weak normality that E, is w(E, V)-compact,
hence w(V’, V)-compact. By Theorem B, E is w(V’, V)-closed, and as in the proof
of Theorem 1, it is w(¥’, V)-dense. Q.E.D.

Proof of Theorem 3. Let 7 be a countable dense subset of S, and let ¥ denote
the space of measures in M (S) which are concentrated on 7. Clearly V'is a separable
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closed subspace of M(S) satisfying (c) of Proposition 7. Thus M(S)/E° is iso-
metrically isomorphic with V/EV. Since V/EV is separable, so is M(S)/E®, and
the proof is completed by appealing to Theorem 2 and Theorem E.

We remark that the spaces H®(G), E(A), [°, and Lip (X, d) all satisfy the
hypotheses of Theorem 3. For Lip (X, d) we must show that the associated locally
compact space W= X U Y is separable. Since X is a compact metric space, it is
separable, as is X' x X. Y is an open subset of X x X, hence is separable; and W is
separable because it is the disjoint union of X and Y.

A form of Proposition 7 was proved for H*(G) by Rubel and Shields [10, §4],
who showed that if E=H®*(G) and V'=L*(G) then E is isometric in the integration
pairing to the dual of V/EV. Note that in this case V clearly satisfies (c) of Proposi-
tion 7. Similarly, taking E=E(A) and ¥'=L*(R"), we obtain the same result.
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