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Composition operators on H2 cannot—except trivially—be Toeplitz, or even “Toeplitz plus com-
pact.” However there are natural ways in which they can be “asymptotically Toeplitz.” We show
here that the study of such phenomena leads to surprising results and interesting open problems.

Introduction

Each holomorphic function ϕ that takes the open unit disc U into itself in-
duces a linear composition operator Cϕ on the space Hol (U) of all functions
holomorphic on U in the following way:

Cϕf = f ◦ ϕ (f ∈ Hol (U)).

A consequence of Littlewood’s Subordination Principle [10] is the (not at all
obvious) fact that every composition operator restricts to a bounded operator
on the Hardy space H2 (see also [5, Theorem 1.7, page 10] or [16, pp. 13–15]),
and this in turn has inspired a lively enterprise connecting complex function
theory with operator theory, the goal being to understand how properties Cϕ

are related to those of ϕ (see [3, 7, 16] for more on this).
The work we will describe here has its roots in the paper [1] of Barŕıa and

Halmos, who introduced the notion of “asymptotic Toeplitz operator.” One
can think of a Toeplitz operator on H2 as a bounded linear operator whose
matrix, relative to the orthonormal basis of monomials {zn : n ≥ 0}, has
constant diagonals. Such operators T can be characterized by the equation
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S∗TS = T , where S is the forward shift on H2 (Szn = zn+1, n ≥ 0)), and S∗,
its Hilbert space adjoint, is easily seen to be the backward shift (S∗zn = zn−1

if n > 0, and = 0 if n = 0). The point here, as noted by Barŕıa and Halmos,
is that composing with S on the right erases the first column of your matrix,
while composing with S∗ on the left erases the first row. Thus passing from T
to S∗TS moves the matrix of T one step up the main diagonal, and so leaves
the matrix unchanged if and only each diagonal is constant.

Barŕıa and Halmos called an operator T on H2 asymptotically Toeplitz if
the sequence of operators {S∗nTSn} converges strongly (i.e. pointwise) on H2.
Feintuch [6] pointed out that one needn’t rule out either weak or norm (i.e.
uniform) operator convergence; hence there are actually three different kinds
of “asymptotic toeplitzness:” weak, strong (the original one), and uniform.

This paper attempts to characterize the composition operators on H2 that
possess each of these asymptotic notions of toeplitzness. This goal is achieved
in two cases: (1) uniform asymptotic toeplitzness (thanks to Feintuch’s charac-
terization of such operators as just the compact perturbations of the Toeplitz
operators), and (2) the case ϕ(0) = 0. For weak and strong asymptotic toeplitz-
ness, however, investigation of the case ϕ(0) 6= 0 leads to surprises and inter-
esting open problems.

Here is a more detailed outline of what is to follow. In Section 1 we show that
a composition operator can be uniformly asymptotically Toeplitz only trivially,
that is, only if it is either compact or the identity. Section 2, by contrast,
raises the possibility that all composition operators, except those induced by
rotations, may be weakly asymptotically Toeplitz. While we cannot as yet
prove this, we are able to show that for every composition operator Cϕ the
arithmetic means of the sequence {S∗nCϕS

n} converge in the weak operator
topology (Theorem 2.2).

Strong asymptotic toeplitzness, the original concept introduced by Barŕıa
and Halmos, is the subject of Section 3. Here initial results, proved under
the hypothesis ϕ(0) = 0, suggest that the requirement “|ϕ| < 1 a.e. on ∂U”
might characterize the strongly asymptotically Toeplitz composition opera-
tors. The extreme case (inner functions) provides further support (Theorem
3.3), but, somewhat to our surprise, the conjecture turns out to be false in
general (Theorem 3.4), and we have no simple alternative to offer. The last
section initiates, for composition operators, the study of “conjugate asymp-
totic toeplitzness,” a concept that is interesting only for the strong operator
topology. Our main result here (Theorem 4.2) is that, except for trivial cases,
C∗ϕ is strongly asymptotically Toeplitz whenever ϕ fixes the origin. So far little
of substance is known about what happens when the origin is not fixed.
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to Feintuch’s work [6]. We also thank Paul Bourdon and Valentin Matache for
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1 Uniform Asymptotic Toeplitzness

To state the definition fully: a bounded operator T on H2 is uniformly asymp-
totically Toeplitz provided there is a (necessarily bounded) operator A on H2

such that

lim
n→∞

‖S∗nTSn −A‖ = 0. (1)

This class of operators is easily seen to be a subspace—in fact one that is
closed both in norm and under adjoints—of the space L(H2) of all bounded
linear operators on H2. It contains both the Toeplitz operators, which satisfy
(1) with A = T , and the compact ones, which satisfy (1) with A = 0. Hence
any operator of the form “Toeplitz plus compact” is uniformly asymptotically
Toeplitz. Feintuch assures us that there are no others:

Theorem F [6, Theorem 2.4]. An operator in L(H2) is uniformly asymptoti-
cally Toeplitz if and only if it has the form Toeplitz + compact.

Since [6] may not be readily accessible to all readers, we outline the proof at
the end of this section. Right now let’s address the main point of this section:
Which composition operators are uniformly asymptotically Toeplitz?

First a more basic question: Which composition operators are Toeplitz? This
one is easy: only the identity operator. Indeed, the matrix of Cϕ has as its
columns the Maclaurin coefficients of the successive powers 1 = ϕ0, ϕ, ϕ2, . . .
of ϕ. So if the diagonals of this matrix are constant, then upon looking first
at the main diagonal and then at the successive subdiagonals we see that
ϕ̂(1) = 1 and ϕ̂(n) = 0 for n > 1, where “ ̂ ” denotes “Maclaurin coefficient.”
A look at the first superdiagonal shows that

ϕ̂(0) = ϕ̂2(1) = 2ϕ̂(0)ϕ̂(1) = 2ϕ̂(0),

hence ϕ̂(0) = 0. Thus ϕ(z) ≡ z, i.e., Cϕ is the identity operator on H2.
Consequently, the only composition operators that are obviously uniformly

asymptotically Toeplitz are the compact ones (of which there are many, see
[3, 15, 16] for example) and the identity. Thanks to Feintuch’s Theorem and
some standard tools of composition operator technology, we can show that
there are no others.
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Theorem 1.1 A composition operator on H2 is uniformly asymptotically
Toeplitz if and only if it is either compact or the identity.

Proof Given the discussion above, we need only show that if Cϕ is neither
compact nor the identity, then its difference with any Toeplitz operator fails
to be compact.

For this we use the fact that Toeplitz operators on H2 are those of the form

Tbf = P (bf) (f ∈ H2)

where b is a bounded measurable function (called the “symbol” of the operator)
on the unit circle ∂U, and P is the orthogonal projection of L2 = L2(∂U) onto
H2, where now we view H2 as the closed subspace of L2 consisting of functions
whose Fourier coefficients of negative index are all zero [4, Chapter 7, page
177]. Fix a composition operator Cϕ, neither the identity nor compact, and a
Toeplitz operator Tb, and set ∆ = Tb − Cϕ. We claim ∆ is not compact.

We may as well assume b is not a.e. zero on ∂U, since otherwise Tb is the
zero-operator and then ∆ = −Cϕ, which we are assuming noncompact. It is
enough to show that the adjoint operator ∆∗ = T ∗b − C∗ϕ is not compact; for
this employ a convenient collection of unit vectors: ka = Ka/‖Ka‖, where Ka

is the reproducing kernel for the point for a ∈ U:

Ka(z) =
1

1− az
(z ∈ U).

The nomenclature comes from the“reproducing property”

〈f, Ka〉 = f(a) (f ∈ H2),

which in turn leads to the norm computation

‖Ka‖2 = 〈Ka, Ka〉 = Ka(a) =
1

1− |a|2
(a ∈ U).

From this it follows easily that the “normalized reproducing kernels” ka con-
verge weakly to zero as |a| → 1−. Another easy consequence of the reproducing
property is the Adjoint Formula:

C∗ϕKa = Kϕ(a) (a ∈ U). (2)

This is all standard fare that can be found, for example, in [16, pp. 43–44].
To show ∆∗ is not compact it suffices to show, thanks to the weak conver-

gence of ka to zero, that {‖∆∗ka‖} does not converge to zero as |a| → 1−.
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We’ll prove something even better: {〈∆∗ka, ka〉} does not converge to zero.
Using (2) and the fact that T ∗b = Tb (see [4, Proposition 7.4, page 178], for

example) we have

〈∆∗ka, ka〉 = 〈Tb ka, ka〉 − 〈C∗ϕ ka, ka〉

= 〈P (bka), ka〉 − (1− |a|2)〈Kϕ(a), Ka〉

= 〈bka, Pka〉 − (1− |a|2)Kϕ(a)(a)

= 〈bka, ka〉 −
1− |a|2

1− ϕ(a)a
,

where in the final two lines we used, successively, the self-adjointness of the
projection P and the fact that ka is in H2, the range of this projection. Now

〈bka, ka〉 =
∫

∂U
b|ka|2 dm =

∫
∂U
b(ζ)

1− |a|2

|1− aζ|2
dm(ζ) ,

where dm denotes Lebesgue measure on ∂U, normalized to have total mass one.
The final integral here is just P

[
b
]
(a), the Poisson integral of the function b,

evaluated at the point a. Putting everything together, we have

〈∆∗ka, ka〉 = P
[
b
]
(a)− 1− |a|2

1− ϕ(a)a
(a ∈ U). (3)

Since Cϕ is not the identity operator on H2, the map ϕ is not the identity on
U. By the “boundary uniqueness” property of bounded holomorphic functions
( [5, Theorem 2.2, page 17], [14, Theorem 17.18, page 345]) the set

E = {ζ ∈ U : ϕ(ζ) 6= ζ}

therefore has full measure: m(E) = 1, where ϕ(ζ) denotes the radial limit
of ϕ at ζ (which exists at m-a.e. point of ∂U, see [5, Theorem 1.3, page 6]
or [14, Theorem 17.11, page 340]). Recall that we are assuming b is not a.e.
zero on ∂U, i.e., that the set

F = {ζ ∈ ∂U : b(ζ) 6= 0}

has positive measure. Thus E ∩ F has positive measure, and in particular is
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not empty. Fix a point ζ ∈ E ∩ F . We have, as r → 1−,

P[b](rζ) → b(ζ) 6= 0 and
1− r2

1− ϕ(rζ)rζ
→ 0

1− ϕ(ζ)ζ
= 0,

(the denominator of the last fraction is not zero because ϕ(ζ) 6= ζ). This
combines with (3) to show that

lim
r→1−

〈∆∗krζ , krζ〉 = b(ζ) 6= 0,

thus establishing that ∆∗, and therefore ∆, is not compact. �

Feintuch’s proof of Theorem F. We have already noted that every compact
perturbation of a Toeplitz operator is uniformly asymptotically Toeplitz. For
the converse, suppose that T is uniformly asymptotically Toeplitz, i.e., that
(1) holds for some A ∈ L(H2). Note that A is a Toeplitz operator: S∗AS = A,
hence

S∗nTSn −A = S∗n(T −A)Sn

for each n. Let Pn denote the orthogonal projection taking H2 onto the closed
linear span of the monomials {zk : k ≥ n}, and observe that ‖S∗nf‖ = ‖Pnf‖
and that Pn = SnS∗n. Putting it all together:

‖Pn(T −A)Pn‖ = ‖S∗n(T −A)SnS∗n‖ ≤ ‖S∗n(T −A)Sn‖

hence

lim
n→∞

‖Pn(T −A)Pn‖ = 0 (4)

Now Pn = I −Qn, where Qn is the orthogonal projection onto the linear span
of {zk, 0 ≤ k < n}. Thus

Pn(T −A)Pn = (I −Qn)(T −A)(I −Qn) = T −A+ Fn

where Fn is a finite-rank operator. Viewed this way, (4) tells us that T −A is a
norm-limit of finite rank operators, hence is compact. Thus T has the desired
form “Toeplitz plus compact.” �
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2 Weak Asymptotic Toeplitzness

Recall that we define T ∈ L(H2) to be weakly asymptotically Toeplitz (hence-
forth “WAT”) whenever the sequence of operators {S∗nTSn} converges in the
weak operator topology of H2, i.e., whenever there exists A ∈ L(H2) such that

lim
n→∞

〈S∗nTSnf, g〉 = 〈Af, g〉 ∀ f, g ∈ H2. (5)

Remarks. (a) In (5) it’s clearly enough to consider f and g to be monomi-
als, from which we see that an operator is weakly asymptotically Toeplitz if
and only if its matrix (with respect to the monomial basis for H2) has con-
vergent diagonals. In summary: “constant diagonals” means “Toeplitz,” while
“convergent diagonals” means “weakly asymptotically Toeplitz.”

(b) As in the previous section, the operator A satisfies the equation S∗AS =
A, i.e., it is Toeplitz. Its symbol is called the asymptotic symbol of T . For
example, compact operators have asymptotic symbol ≡ 0, so according to
Theorem 1.1, for uniformly asymptotically Toeplitz composition operators the
only possible asymptotic symbols are the constants 1 (for the identity operator)
and 0 (for compacts). This “zero-one dichotomy” for asymptotic symbols will
pervade the rest of our work.

(c) If ϕ is a nontrivial rotation, then Cϕ is not weakly asymptotically
Toeplitz.

Proof We have ϕ(z) ≡ ωz for some ω ∈ ∂U\{1}. Thus

〈S∗nCϕS
nf, g〉 = ωn〈f ◦ ϕ, g〉 (f, g ∈ H2), (6)

and since the scalar sequence {ωn} does not converge, neither does the operator
sequence {S∗nCϕS

n} (weakly). Thus Cϕ is not WAT. �

We show next that the notions of weak and uniform asymptotic toeplitzness
pick out dramatically different classes of composition operators.

Proposition 2.1 Suppose ϕ, neither the identity nor a rotation, fixes the
origin. Then Cϕ is weakly asymptotically Toeplitz with asymptotic symbol ≡ 0.

Proof Since ϕ fixes the origin and is neither the identity nor a rotation, the
function ψ defined on U by ψ(z) = ϕ(z)/z is a nonconstant holomorphic
selfmap of U. In particular, |ϕ| < 1 at every point of U. Now for f, g ∈ H2,

〈S∗nCϕS
nf, g〉 = 〈ϕn · (f ◦ϕ), zng〉 = 〈ψn · (f ◦ϕ), g〉 =

∫
∂U
ψn · (f ◦ϕ) g dm .

(7)
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The sequence {ψn · (f ◦ ϕ)} is bounded in H2, and convergent pointwise to
zero, hence it converges weakly to zero in H2, i.e., the left hand side of (7)
converges to zero for each pair of functions f and g in H2. Thus Cϕ ∈ WAT
with asymptotic symbol ≡ 0. �

WAT Conjecture. If ϕ is neither a rotation nor the identity map, then Cϕ

is weakly asymptotically Toeplitz with asymptotic symbol ≡ 0.

We already know the conjecture holds (trivially) for maps ϕ that induce
compact composition operators, and by Proposition 2.1 it holds also for maps
that fix the origin. At the end of this section, and in the next one, we’ll show
that it holds for many maps ϕ that neither fix the origin nor induce compact
composition operators. But first we prove a weaker version of the conjecture.
To state this result efficiently, let’s say that T ∈ L(H2) is “mean weakly
asymptotically Toeplitz” (henceforth: “MWAT”) if the arithmentic means of
the sequence {S∗nTSn} converge in the weak operator topology of H2. One
checks easily that when this happens the limit operator is Toeplitz, so each
MWAT operator has an asymptotic symbol.

Theorem 2.2 Every composition operator on H2 is MWAT. Except for the
identity, each has asymptotic symbol ≡ 0.

Proof Note first that, by (6), non-trivial rotations induce MWAT composition
operators with asymptotic symbol zero.

Suppose ϕ is neither the identity nor a rotation. ForN a non-negative integer
let

ΓN =
1

N + 1

N∑
n=0

S∗nCϕS
n .

As in the previous proof, it’s enough to check weak operator convergence by
using only monomials in the inner product, so our goal is to show that for
each pair α, β of non-negative integers,

〈Γzα, zβ〉 =

〈
1

N + 1

N∑
n=0

(S∗nCϕS
n)zα, zβ

〉
→ 0 (n→∞). (8)

To this end, fix non-negative integers α, β, and n, and observe that

〈S∗nCϕS
nzα, zβ〉 =

∫
∂U
ϕn+α(ζ) ζn+β dm(ζ) =

∫
∂U
ψn+α dµ (9)
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where ψ : ∂U → U is defined by

ψ(ζ) := ζϕ(ζ) = ϕ(ζ)/ζ (ζ ∈ ∂U), (10)

(cf. the proof of Proposition 2.1) and µ is the measure defined on the Borel
sets of ∂U by

dµ(ζ) := ζα−β dm(ζ) . (11)

Let E := ϕ−1(∂U) ∩ ∂U, i.e.,

E = {ζ ∈ ∂U : |ϕ(ζ)| = 1} = {ζ ∈ ∂U : |ψ(ζ)| = 1}.

Since ψn → 0 pointwise on ∂U\E we have, thanks to the Bounded Convergence
Theorem,

lim
n→∞

∫
∂U\E

ψn dµ = 0,

so by (9), to prove (8) we need only show that

lim
n→∞

1
N + 1

N∑
n=0

∫
E
ψn dµ = 0. (12)

Let ν denote the restriction of the measure µ to E. Since ψ(E) ⊂ ∂U, the
pullback measure νψ−1 is a Borel measure on ∂U, so the change of variable
formula yields for each non-negative integer n:∫

E
ψn dµ =

∫
∂U
ψn dν =

∫
∂U
ζn dνψ−1(ζ) = ν̂ψ−1(−n), (13)

where “ ̂ ” now denotes “Fourier coefficient.”
The crucial observation about the measure νψ−1 is that it has no mass

point. Indeed, since ϕ is a bounded analytic function on U that is neither the
identity nor a rotation, the “boundary uniqueness theorem” that anchored the
proof of Theorem 1.1 insures that for each point ω ∈ ∂U the set

ψ−1({ω}) = {ζ ∈ ∂U : ψ(ζ) = ω} = {ζ ∈ ∂U : ϕ(ζ) = ωζ}

has Lebesgue measure zero. Since ν << m we see that νψ−1({ω}) = 0, as
claimed.
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Thus by Weiner’s Mass Point Theorem (see [8, page 42], for example)

lim
N→∞

1
2N + 1

N∑
n=−N

|ν̂ψ−1(n)|2 = 0,

from which we require only the weaker statement

lim
N→∞

1
2N + 1

N∑
n=−N

|ν̂ψ−1(n)| = 0,

which, by (13), implies (12). �

Note that if we can prove νψ−1 to be absolutely continuous with respect
to Lebesgue measure, then, by the Riemann-Lebesgue Lemma, we will have
established the truth of the WAT Conjecture. Here is a special case in which
we can do this.

Proposition 2.3 Suppose ϕ is neither the identity nor a rotation. If |ϕ| = 1
on an open subset V of ∂U, and |ϕ| < 1 a.e. on ∂U\V , then Cϕ is WAT with
essential symbol ≡ 0.

Proof Fix non-negative integers α and β. By analogy with the proof of Theo-
rem 2.2 it will be enough to prove that

lim
n→∞

〈S∗nCϕS
nzα, zβ〉 = 0.

By (9) we have:

lim
n→∞

〈S∗nCϕS
nzα, zβ〉 =

∫
V

+
∫

∂U\V
ψn+α dµ,

where ψ is given by (10) and µ by (11).
Since |ψ| = |ϕ| < 1 a.e. on ∂U\V , the Lebesgue bounded convergence the-

orem sends the second integral to zero as n → ∞. Thus we need only show
that

lim
n→∞

∫
V
ψn+α dµ = 0. (14)

For this it is more convenient to work on the real line. Let V ∗ be the relatively
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open subset of [0, 2π) that is sent to V by the map t→ eit, and let

dµ∗(t) = ei(α−β)t dt

2π
,

the measure that corresponds under this map to dµ.
Because its values have modulus one on the open subset V of ∂U, the map

ϕ extends by reflection analytically over V . Thus for t ∈ V ∗ we have

ϕ(eit) = eiγ(t) and ψ(eit) = eiγ(t)−t ≡ eiδ(t),

with γ, and hence δ, real-analytic on V ∗. The change-of-variable formula now
yields

∫
V
ψn+α dµ =

∫
V ∗
einδ(t) dµ∗(t) =

∫
δ(V ∗)

eins dµ∗δ−1(s) .

Thus to prove (14) we need only show that on δ(V ∗) the measure µ∗δ−1 is
absolutely continuous with respect to Lebesgue measure.

For this, note that V ∗ is an at most countable disjoint union of intervals,
hence δ(V ∗) is the union of the δ-images of these intervals, each of which is
also an interval. Each such image interval is exhausted by the images of the
compact subintervals of the pre-image interval, so it is enough to prove that
µ∗δ−1 is absolutely continuous with respect to Lebesgue measure on each of
the subintervals δ(I), where I is a compact subinterval of V ∗. Since δ is real-
analytic on a neighborhood of I, its derivative has at most finitely many sign
changes on I, hence I splits into a finite collection of contiguous subintervals,
on each of which δ is strictly monotonic. On each of these subintervals the de-
sired absolute continuity of µ∗δ−1 follows from the change-of-variable formula
of elementary Calculus. �

Proposition 2.3 is particularly appealing when applied to inner functions.
Recall that the singular set of an inner function is the closed subset of ∂U
consisting of points over which the function has no analytic continuation. It
is the union of the limit points of zeros of the Blaschke factor and the closed
support of the measure associated with the singular factor.

Corollary 2.4 Suppose ϕ, neither the identity nor a rotation, is an inner
function with singular set of measure zero. Then Cϕ is weakly asymptotically
Toeplitz with asymptotic symbol ≡ 0.
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3 Strong Asymptotic Toeplitzness

To say that an operator T ∈ L(H2) is strongly asymptotically Toeplitz (hence-
forth: “SAT”) means that the operator sequence {S∗nTSn} converges strongly
on H2, i.e. there exists a (necessarily Toeplitz) operator A on H2 such that

lim
n→∞

‖S∗nTSnf −Af‖ = 0

for every f ∈ H2.

Proposition 3.1 Suppose |ϕ| < 1 a.e. on ∂U. Then Cϕ is strongly asymp-
totically Toeplitz with asymptotic symbol ≡ 0.

Proof Fix f ∈ H2 and observe that, because ‖S∗‖ = 1,

‖S∗nCϕS
nf‖2 ≤ ‖CϕS

nf‖2 = ‖ϕnf ◦ ϕ‖2 =
∫

∂U
|ϕ|2n|f ◦ ϕ|2 dm.

The hypothesis on ϕ guarantees that |ϕ|n → 0 a.e. on ∂U so, because f ◦ ϕ ∈
H2, we see that ‖S∗nCϕS

nf‖2 → 0 by the Lebesgue Dominated Convergence
Theorem. Thus Cϕ is SAT and its asymptotic symbol is ≡ 0. �

Here is a partial converse to Proposition 3.1 which shows that many com-
position operators fail to be strongly asymptotically Toeplitz.

Proposition 3.2 Suppose ϕ, not the identity map, fixes the origin. If Cϕ is
strongly asymptotically Toeplitz then |ϕ| < 1 a.e. on ∂U.

Proof Suppose ϕ is asymptotically Toeplitz. Since ϕ is not the identity map,
Proposition 2.1 insures that the essential symbol of Cϕ is ≡ 0; in particular

lim
n→∞

‖S∗nCϕS
n1‖ → 0. (15)

As in the proof of Proposition 2.1 write ϕ(z) = zψ(z) where ψ is holomorphic
in U. Our goal is to show that

E = {ζ ∈ ∂U : |ϕ(ζ)| = 1}

has measure zero. For each non-negative integer n:

‖S∗nCϕS
n1‖2 =

∫
∂U
|S∗nϕn|2 dm =

∫
∂U
|S∗nznψn|2 dm

=
∫

∂U
|ψ|2n dm ≥ m(E)
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which, by (15) shows that m(E) = 0. �

Propositions 3.1 and 3.2 lead one to suspect that the hypothesis “|ϕ| = 1
a.e. on a subset of ∂U having positive measure” might always disqualify Cϕ

from being strongly asymptotically Toeplitz. The next two results show that
this embryonic conjecture is in part true, but in larger part false.

Theorem 3.3 If ϕ is an inner function other than the identity map, then Cϕ

is not strongly asymptotically Toeplitz.

Proof The case ϕ(0) = 0 has already been handled by Proposition 3.2. So we
assume from now on that ϕ(0) = a 6= 0.

As in the proof of Proposition 3.2 it will suffice to show—this time thanks to
Theorem 2.2—that the norms of the vectors S∗nCϕS

n1 = S∗nϕn are bounded
away from zero, i.e.,

inf
n

∞∑
k=n

|ϕ̂n(k)|2 > 0. (16)

It turns out that we need only prove this for conformal automorphisms of
the unit disc. Indeed, let ψ be an automorphism of U with ψ(0) = a. Then
ω = ψ−1 ◦ ϕ is an inner function that fixes the origin, so ϕ = ψ ◦ ω, hence
also ϕn = ψn ◦ ω for each non-negative integer n. A corollary of Littlewood’s
Subordination Theorem [11, Theorem 215, page 168] now asserts that

n∑
k=0

|ϕ̂n(k)|2 ≤
n∑

k=0

|ψ̂n(k)|2 (n = 0, 1, 2, . . .).

This, and the fact that ‖ϕn‖ = ‖ψn‖ = 1 (both ϕn and ψn are inner) shows
that

∞∑
k=n

|ψ̂n(k)|2 ≤
∞∑

k=n

|ϕ̂n(k)|2 (n = 0, 1, 2, . . .) (17)

(see also [13, page 254] and [12, pp. 368–369]).
Thus we need only show that the sum on the left-hand side of (17) is bounded

away from zero. For this, observe first that, since ψ is a conformal automor-
phism of U, it is analytic across the unit circle, so

1 = normalized arclength of ψ(∂U) =
∫

∂U
|ψ′| dm,
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hence by the Cauchy-Schwarz inequality, 1 <
∫
∂U |ψ

′|2 dm, the strict inequality
arising from the fact that |ψ′| 6= 1 a.e. on ∂U (from the assumption that
ψ(0) 6= 0). To say this another way: There exists a constant d > 0 such that∫

∂U
|ψ′|2 dm = 1 + d. (18)

Now fix a positive integer n and temporarily set f = ψn. Then on ∂U:

|f ′| = |nψn−1ψ′| = n|ψ′|,

which, along with (18) yields

∞∑
k=1

k2 |ψ̂n(k)|2 =
∫

∂U
|f ′|2 dm = n2

∫
∂U
|ψ′|2dm = n2(1 + d). (19)

Finally, observe that upon estimating
∫
∂U |f

′′|2 dm by using the analyticity of
ψ across ∂U to bound |ψ′| and |ψ′′| on ∂U, we obtain a constant A, which does
not depend on n, such that

∞∑
k=1

k4 |ψ̂n(k)|2 ≤ An4. (20)

Fix a positive integer α with

α2 >
2A
d

. (21)

We will show that for each n:

αn∑
k=n

|ψ̂n(k)|2 > d

2α2
, (22)

thus establishing the lower bound (16) with ψ in place of ϕ, and so, by in-
equality (17), finishing the proof.

For this, let σn denote the sum on the left-hand side of (22), and observe
that

(αn)2σn ≥
αn∑

k=n

k2 |ψ̂n(k)|2
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=

{ ∞∑
k=1

−
n−1∑
k=1

−
∞∑

k=αn+1

}
k2 |ψ̂n(k)|2

≡ Σ1 − Σ2 − Σ3.

Now Σ1 = n2(1 + d) by (19), while clearly

Σ2 ≤ n2
n−1∑
k=1

|ψ̂n(k)|2 ≤ n2
∞∑

k=1

|ψ̂n(k)|2 = n2‖ψn‖ = n2.

Finally, by (20),

Σ3 ≤
∞∑

k=αn+1

k4

(αn)2
|ψ̂n(k)|2 ≤ A

α2
n2.

Putting this all together and using (21):

(αn)2σn ≥ (d− A

α2
)n2 >

d

2
n2

which establishes (22) and finishes the proof. �

The next result shows that for maps ϕ that do not fix the origin, the condi-
tion of having radial limits of modulus one on a set of positive measure—even
on a nontrivial arc—does not rule out strong asymptotic toeplitzness. For
convenience we use the notation ‖f‖∞ to denote the supremum of |f(z)| over
z ∈ U.

Theorem 3.4 Suppose ϕ extends continuously to a nontrivial closed arc J of
∂U which it maps into ∂U. Suppose further that |ϕ| < 1 a.e. on ∂U\J , and
that ‖ϕ′‖∞ < 1. Then Cϕ is strongly asymptotically Toeplitz.

Remarks (a) The condition ‖ϕ′‖∞ < 1 insures that ϕ cannot fix the origin (if
ϕ did fix the origin, we would obtain, upon representing ϕ(z) as the integral on
the ray from 0 to z of ϕ′, the inequality |ϕ(z)| ≤ ‖ϕ′‖∞, hence the contradiction
‖ϕ‖∞ ≤ ‖ϕ′‖∞ < 1), so there is no obvious conflict between Theorem 3.4 and
Proposition 3.2.

(b) Maps ϕ that satisfy the hypotheses of Theorem 3.4 are easy to construct.
For example, let Ω be a C2 Jordan domain in the open upper half-plane Π+,
whose boundary intersects the real line in an interval I. Let ψ be a Riemann
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map taking U onto Ω, so ψ extends C1 to the unit circle1, takes some closed arc
J of ∂U onto I, and takes the rest of ∂U into U. Let τ(w) = (1+ iw)/(1− iw),
a Möbius map taking Π+ onto U and, for a > 0 to be chosen shortly, set
ϕ(z) = τ(aψ(z)). Then ϕ maps U univalently onto τ(aΩ), and so takes the arc
J onto a nontrivial arc of ∂U while sending the rest of the closed unit disc into
U. Moreover, |τ ′| < 2 on Π+, so by the Chain Rule, for a sufficiently small:

‖ϕ′‖∞ ≤ 2a‖ψ′‖∞ < 1,

hence ϕ satisfies the hypotheses of Theorem 3.4.

Proof of Theorem 3.4 It is enough to prove that for each non-negative integer
α,

lim
n→∞

‖S∗nCϕS
nzα‖ = 0.

By Proposition 2.3 we know that Cϕ ∈ WAT, so for each non-negative integer
j,

ϕ̂n+α(n+ j) = 〈S∗nCϕS
nzα, zj〉 → 0

as n→∞. Thus

‖S∗nCϕS
nzα‖2 =

∞∑
k=n

|ϕ̂n+α(n+ k)|2

=

{
n+α−1∑

k=n

+
∞∑

k=n+α

}
|̂ϕn+α(n+ k)|2

= o(1) +
∞∑

k=n+α

|ϕ̂n+α(k)|2

as n→∞. It therefore suffices to show that

lim
n→0

∞∑
k=n

|ϕ̂n(k)|2 = 0 (23)

(i.e., that limn ‖S∗nCϕS
n1‖ = 0).

1See, e.g., [9]. If Ω has C∞ boundary then the extension is C∞ on ∂U; this is the classical theorem
of Painlevé—for a nice exposition see [2].
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Now let ε > 0 be given. Choose a closed arc J1 of ∂U that lies in the interior
of the (closed) arc J so that m(J\J1) < ε/4. Set J2 = J\J1 and J3 = ∂U\J .
Thus ∂U is the disjoint union of J1, J2, and J3, and for each n there is a
corresponding decomposition of ϕn into three pieces:

Φn,j := ϕnIj (j = 1, 2, 3),

where Ij is the indicator (or “characteristic”) function of Jj .
We will consider in turn each of the sums

Σj,n :=
∞∑

k=n

|Φ̂j,n(k)|2 (j = 1, 2, 3).

Recall that m(J2) < ε/4, hence for all n:

Σ2,n ≤
∞∑

k=0

|Φ̂2,n(k)|2 =
∫

J2

|ϕ|2n dm ≤ ε/4. (24)

Since |ϕ| < 1 on J3 we have

Σ3,n ≤
∞∑

k=0

|Φ̂3,n(k)|2 =
∫

J3

|ϕ|2n dm→ 0

as n→∞, hence there exists N3 > 0 such that

n ≥ N3 ⇒ Σ3,n < ε/4. (25)

The interesting sum is Σ1,n. Since ϕ maps J to a nontrivial arc of the unit
circle, it extends by reflection to a function analytic in a neighborhood of J ,
hence for eit ∈ J

ϕ(eit) = eiθ(t)

where θ is a real-analytic on the interior of J—or rather on the interior of the
interval of [0, 2π] that corresponds to J , which we henceforth identify with J .
By the chain rule,

|θ′(t)| = |ϕ′(eit)| ≤ ‖ϕ′‖∞ < 1

whenever t ∈ J . Moreover, θ′′, being also real-analytic in J , has only finitely
many sign changes—say ν of them—in the closed subarc J1, hence J1 decom-
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poses into ν subarcs K1, . . . ,Kν on each of which θ′ is monotonic. Now for n
and k non-negative integers,

Φ̂1,n(k) =
∫

J1

eiβ(t) dt,

where

β(t) := nθ(t)− kt,

also real-analytic with derivative monotonic on each of the intervals Kj (j =
1, . . . , ν). Thus van der Corput’s Lemma (see, e.g., [17, Proposition 2(ii), page
332]) applies on each of the intervals Kj , and yields∣∣∣∣∣

∫
Kj

eiβ(t) dt

∣∣∣∣∣ ≤ 3
min

Kj
|β′|

(j = 1, . . . ν). (26)

Now for t ∈ J and k ≥ n:

|β′(t)| = |nθ′(t)− k| ≥ k − n|θ′(t)| ≥ k − n‖ϕ′‖∞ ≥ k(1− ‖ϕ′‖∞),

so by (26) ∣∣∣∣∣
∫

Kj

eiβ(t) dt

∣∣∣∣∣ ≤ C

k
(j = 1, . . . ν),

with C = 3/(1− ‖ϕ′‖∞). Thus

|Φ̂1,n(k)| ≤ Cν

k
(k ≥ n)

from which it follows that

Σ1,n ≤ (Cν)2
∞∑

k=n

1
k2

≤ (Cν)2

n− 1
.

So upon choosing N1 sufficiently large we insure that Σ1,n < ε/2 whenever
n ≥ N1. From this, (24), and (25) we see that if n ≥ max (N1, N3) then

∞∑
k=n

|ϕ̂n(k)|2 = Σ1,n + Σ2,n + Σ3,n <
ε

2
+
ε

4
+
ε

4
< ε,
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and we are done. �

4 Adjoint Asymptotic Toeplitzness

Let us recall the flavors of asymptotic toeplitzness discussed so far:

UAT ⇒ SAT ⇒ WAT ⇒ MWAT.

Here is a complement to Proposition 3.1 that provides a simple sufficient con-
dition for the adjoint of a composition operator to be strongly asymptotically
Toeplitz.

Proposition 4.1 If |ϕ| < 1 a.e. on ∂U then C∗ϕ is strongly asymptotically
Toeplitz.

Proof Fix f and n. Then choose g a unit vector inH2 such that ‖S∗nC∗ϕSnf‖ =
〈S∗nC∗ϕSnf, g〉. Thus

‖S∗nC∗ϕSnf‖ = 〈Snf, CϕS
ng〉 = 〈znf, ϕn g ◦ ϕ〉

≤
∫

∂U
|f | |g ◦ ϕ||ϕ|n dm

≤
{∫

∂U
|f |2 |ϕ|2n dm

}1/2 {∫
∂U
|g ◦ ϕ|2 dm

}1/2

≤ ‖Cϕ‖
{∫

∂U
|f |2 |ϕ|2n dm

}1/2

.

Since |ϕ| < 1 a.e. on ∂U, the last integral above converges to 0 as n → ∞,
which establishes that C∗ϕ is SAT. �

It’s easy to check that of all the notions of asymptotic toeplitzness we have
dealt with here, only SAT fails to respect adjoints. In [1] Barŕıa and Halmos
give an example of an operator T that is SAT, but whose adjoint is not. Their
example turns out to be the adjoint of the composition operator induced by
the map ϕ(z) = z2. Our final result generalizes their observation and, because
adjoints preserve weak asymptotic toeplitzness, strengthens Proposition 2.1.

Theorem 4.2 If ϕ fixes the origin but is not a rotation, then C∗ϕ is strongly
asymptotically Toeplitz with asymptotic symbol ≡ 0.

Proof The reproducing kernels {Ka : a ∈ U} introduced in the proof of The-
orem 1.1 have linear span dense in H2, and the operator norms ‖S∗nC∗ϕSn‖
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are uniformly bounded, so it suffices to prove that

lim
n→∞

‖S∗nC∗ϕSnKa‖ = 0 (27)

for each a ∈ U.
Let’s begin by noting that

(SnKa)(z) = znKa(z) =
zn

1− az
=

1
an [Ka(z)− Pn−1(z)],

where Pn−1(z) =
∑n−1

k=0(az)k. This, along with the adjoint formula (2), yields

C∗ϕS
nKa =

1
an [Kϕ(a) − C∗ϕPn−1]. (28)

Since ϕ(0) = 0 the operator Cϕ has lower triangular matrix with respect to
the orthonormal basis {zn}∞0 for H2. Thus C∗ϕ has upper triangular matrix,
i.e., C∗ϕz

k is a polynomial of degree ≤ k for each non-negative integer k. In
particular, S∗nC∗ϕPn−1 = 0, so by (28) above,

S∗nC∗ϕS
nKa =

1
anS

∗nKϕ(a) (29)

for each non-negative integer n and each a ∈ U.
To complete the proof note that S∗Kb = bKb for any b ∈ U, which, along

with (29) yields

‖S∗nC∗ϕSnKa‖ =
∣∣∣∣ϕ(a)
a

∣∣∣∣n ‖Kϕ(a)‖

for each n ≥ 0 and a ∈ U. Since ϕ fixes the origin and is not a rotation, the
Schwarz Lemma guarantees that |ϕ(a)| < |a| for each a ∈ U, which, along with
the last equation, establishes (27). �

Theorems 4.2 and 3.2 show, in particular, that if a non-rotation ϕ fixes the
origin and is inner, or more generally has radial limits of modulus one on a
set of positive measure, then C∗ϕ is strongly asymptotically Toeplitz but Cϕ

is not. As mentioned at the beginning of this section, The original example
of Barŕıa and Halmos is the special case ϕ(z) = z2.

We do not know any non-rotational examples of composition operators
whose adjoints are not strongly asymptotically Toeplitz. Perhaps they all are!



December 1, 2005 8:45 Complex Variables toeplitzness5

Toeplitzness of Composition Operators 21

References
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