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Abstract. We give a sufficient condition for a univalently induced composi-
tion operator on the Hardy space H2 to be a Riesz operator. We then establish
that every Riesz composition operator has a Koenigs model and explore connec-
tions our work has with the model theory and spectral theory of composition
operators.

1 Introduction

If ϕ is a holomorphic function on the unit disc U with ϕ(U) ⊂ U then the composition
operator Cϕ induced by ϕ is the linear map:

Cϕf = f ◦ ϕ (f holomorphic on U).

Although Cϕ is initially defined on the full space H(U) of functions holomorphic on
U , a famous result of J.E. Littlewood shows that it takes the Hardy space H2 into
itself, and its restriction to H2 is a bounded operator [9]. The connection between
operator-theoretic properties of Cϕ and function-theoretic properties of the inducing
map ϕ has led to a rapidly expanding body of research, some major threads of which
you can find developed in the recent books [6] and [16].

Much of the recent interest in composition operators arises from connections with
function theory that emerge from the study of compactness of these operators (see
for example [11], [15] and [17]). In this paper the motivating concept from operator
theory is the closely related concept of “Rieszness”.

A Riesz operator on a Hilbert space is a bounded operator whose essential spec-
trum is the singleton {0}. We will discuss this condition in more detail in the next
section, but right now it is enough to know that the class of Riesz operators includes
all operators that have a compact positive power, and that the Riesz operators are
“spectrally indistinguishable” from the compact ones in that their nonzero spectral
points occur as isolated, finite-multiplicity eigenvalues.

We show here that if Cϕ is a Riesz operator on H2 then the mapping ϕ has
to arise from the geometric model associated with Koenigs’s solution to Schroeder’s
functional equation (the eigenfunction equation for Cϕ). The corresponding result
for compact composition operators has long been known, and forms the basis for the
investigation begun in [17] connecting the compactness problem with the geometry
of Schroeder-Koenigs models. Our work suggests that in this study it is the question
of Rieszness, rather than of compactness that should be the main operator-theoretic
issue.
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Our interest in Riesz operators began with a question posed by Michael Neumann,
who asked if the Hardy space H2 supports a Riesz composition operator that is not
power-compact. We answer Neumann’s question affirmatively by deriving an easily
checked sufficient condition for a univalently induced composition operator on H2 to
be Riesz. The connection with Schroeder-Koenigs models arises when we apply our
condition to show that certain non-power-compact examples that motivated the work
of [17] are in fact Riesz operators. These matters occupy sections 3 and 4, with the
necessary background material collected for the reader’s convenience in section 2.

In section 5 we make the general connection between Riesz operators and Schroeder-
Koenigs models by showing that if Cϕ is Riesz, then ϕ must have an attractive fixed
point a in U . Koenigs’ work ([8]) on Schroeder’s equation then shows that if, in
addition, ϕ is univalent, then ϕ has the following model:

ϕ = σ−1 ◦ (ϕ′(a)σ),

where σ is a univalent mapping on U , which is uniquely determined (up to a constant
multiple). Our work suggests that the geometry of σ(U) in this Koenigs model for ϕ
determines Rieszness; more specifically it leads us to conjecture that the “no-twisted-
sectors” property introduced by Shapiro, Smith, and Stegenga in [17] is equivalent
to Rieszness. (After this work was completed Pietro Poggi-Corradini established the
validity of this conjecture [12].)

In the final section of this paper we discuss the “no-twisted-sectors” conjecture
in more detail, and point out a connection between our work and a recent result of
Cowen and MacCluer [5, Corollary 19] concerning composition-operator spectra.

2 Background

For completeness of exposition we summarize here some necessary prerequisites.

2.1 The Hardy space H2. This is the space of functions that are analytic in the
unit disc U and whose Taylor coefficients in the expansion about the origin are square
summable. Thus H2 is a Hilbert space isomorphic to `2, where the norm is defined
by:

‖f‖2 =
∞∑
n=0

|f̂(n)|2,

with f̂(n) denoting the n-th Taylor coefficient of f .

2.2 Riesz operators. For our purposes the class of Riesz operators is best defined
to be those bounded operators T on Hilbert space for which the distance between T n

and the compacts tends to zero super-exponentially. To be more precise it helps to
recall that the distance (in the operator norm) from an operator T to the space of
compact operators is called the essential norm of T , denoted by ‖T‖e. To say that T
is a Riesz operator means that

lim
n→∞

‖T n‖1/n
e = 0.
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This definition makes it clear that every power-compact operator is Riesz.

2.3 The essential spectrum. Suppose H is a Hilbert space. The quotient B/K of
the algebra B of bounded operators on H by the closed ideal K of compact operators
is called the Calkin Algebra of H. The essential norm of an operator T ∈ B is thus
revealed as the Calkin Algebra norm of the coset T +K. The spectrum of this coset is
called the essential spectrum of T . The spectral radius formula, applied to the Calkin
Algebra, reveals a spectral interpretation of our definition of Riesz operator:

An operator is Riesz if and only if its essential spectrum is the singleton
{0}.

This interpretation, along with a little operator theory, leads to the assertion made in
the Introduction that Riesz operators are spectrally indistinguishable from compacts
(see [7, Chapter 3] or [18]).

2.4 Essential norms and angular derivatives. We rely heavily on the formula
obtained in [15] for the essential norm of a composition operator. We will discuss this
in more detail in section 3, but for now it is enough to know that if ϕ is univalent
then this formula reduces to:

‖Cϕ‖e = lim inf
|z|→1−

[
1− |ϕ(z)|

1− |z|

]− 1
2

.

This equation relates the study of composition operators with classical work on bound-
ary properties of holomorphic self-maps of the disc. In these studies ϕ is said to have
an angular derivative at a point ζ ∈ ∂U if two things happen:

(a) ϕ′(z) has a finite angular (nontangential) limit as z → ζ, and

(b) The angular limit of ϕ (which necessarily exists at ζ because of condition (a))
has modulus 1.

We denote the angular limit in (a) by ϕ′(ζ). More generally, whenever f is a complex-
valued function defined on U that has an angular limit at ζ ∈ ∂U , then we denote
this limit by f(ζ). The Julia-Carathéodory theorem asserts that ϕ has an angular
derivative at ζ ∈ ∂U if and only if

lim inf
z→ζ

1− |ϕ(z)|
1− |z| <∞. (1)

The theorem also asserts that when the difference quotient in (1) is finite, then:

• The left-hand side of (1) is precisely |ϕ′(ζ)|, and

• The angular limit of the difference quotient exists, and equals |ϕ′(ζ)|
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(see e.g. [2, §298–300], [6, page 51] or [16, page 57] for the full story).

The Julia-Carathéodory theorem allows us to think of |ϕ′(ζ)| as a function on ∂U
with values in the extended interval [0,∞]. Just think of |ϕ′(ζ)| as defined by the
left-hand side of (1), and make the connection with angular limits of the derivative
by interpreting “|ϕ′(ζ)| = ∞” to mean “the angular limit of ϕ′ either doesn’t exist
at ζ, or it exists and the corresponding angular limit of ϕ has modulus < 1.” Note
that that |ϕ′| is bounded away from zero on ∂U : for example, if ϕ(0) = 0 then by the
Schwarz Lemma and (1), |ϕ′| ≥ 1 on ∂U .

2.5 Lemma. The function |ϕ′| : ∂U → (0,∞] is lower semicontinuous.

Proof. We have to show that for each M > 0 the set {|ϕ′| > M} is open, or
equivalently,

EM = {ζ ∈ ∂U : |ϕ′(ζ)| ≤M}
is closed.

To this end suppose {ζn} is a sequence of points in EM that converges to ζ. We
have to show ζ ∈ EM . Given ε > 0, the Julia-Carathéodory Theorem guarantees that
for each n there exists a point zn ∈ U at distance less than 1/n from ζn such that

1− |ϕ(zn)|
1− |zn|

< M + ε .

Since zn → ζ, another application of the Julia-Carathéodory theorem shows that the
angular derivative of ϕ exists at ζ, and shows that |ϕ′(ζ)| ≤ M + ε. Since ε is an
arbitrary positive number, |ϕ′(ζ)| ≤M , hence ζ ∈ EM . ///

Angular derivatives of iterates of ϕ may be computed via the usual chain rule.

2.6 Lemma. (The Chain Rule) Suppose ϕ is a holomorphic self-map of U and
ζ ∈ U . Suppose further that for some positive integer n the iterate ϕn has an angular
derivative at ζ. Then:

(a) For each 1 ≤ j ≤ n the iterate ϕj has an angular derivative at ζ.

(b) ϕ has an angular derivative at ϕj(ζ) for 1 ≤ j < n.

(c) Letting ζj = ϕj(ζ), we have ϕ′n(ζ) =
∏n−1
j=0 ϕ

′(ζj) .

We omit the proof, which is a routine exercise in applying the Julia-Carathéodory
Theorem. Note that the “j = n” part of statement (a) is just the hypothesis on ϕn,
and that existence of the angular limits ζj = ϕj(ζ) used in (c) is insured by (a), as is
the fact that these limits lie on the unit circle.
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2.7 The Denjoy-Wolff Theorem. If a holomorphic self-map ϕ of U fixes a point
a ∈ U then the Schwarz Lemma guarantees that |ϕ′(a)| ≤ 1, with equality if and only
if ϕ is an elliptic automorphism (i.e. conformally equivalent to a rotation). In case
|ϕ′(a)| < 1 the fixed point is attractive in the sense that the sequence (ϕn : n ≥ 1)
converges to the constant function a uniformly on compact subsets of U .

The Denjoy-Wolff Theorem asserts that something similar happens even if ϕ fixes
no point of U . In this case there is a unique point α ∈ ∂U , called the Denjoy-Wolff
point of ϕ such that ϕn → α uniformly on compact subsets of U . In addition, ϕ has
remarkable regularity at α. For example, ϕ(α) = α in the sense of angular limits, so α
serves as a “boundary fixed point” for ϕ. Moreover, ϕ has some degree of smoothness
at α in the sense that the angular derivative exists there. Although not required for
the sequel, it is worth noting the angular derivative of ϕ at the Denjoy-Wolff point is
a strictly positive number that is ≤ 1. For complete details see e.g. [16, Chapter 5].

3 Sufficient Condition for Rieszness

As usual, the symbol ϕ denotes a holomorphic self-map of U , and as in the proof of
Lemma 2.5, EM = {ζ ∈ ∂U : |ϕ′(ζ)| ≤ M}. We also continue with the convention of
extending ϕ to ∂U by defining ϕ(ζ) to be the angular limit of ϕ at ζ ∈ ∂U , whenever
this limit exists. Recall that by Fatou’s theorem, this limit exists at (Lebesgue) almost
every point of ∂U , and (as pointed out in the preceding section) at every point where
the map ϕ has an angular derivative.

3.1 Theorem. Suppose ϕ is univalent, and that for every M > 0 there exists a
positive integer N = N(M) such that

n ≥ N ⇒ ϕn(EM) ∩ EM = ∅ .

Then Cϕ is a Riesz operator (i.e., its essential spectrum is {0}).

Proof. We know from [15] that the essential norm of Cϕ on H2 is given by the
formula

‖Cϕ‖2
e = lim sup

|w|→1−

Nϕ(w)

log 1
|w|

(2)

where Nϕ is the Nevanlinna counting function of ϕ:

Nϕ(w) =
∑

z∈ϕ−1{w}
log

1

|z|

the sum being interpreted as 0 when w /∈ ϕ(U). Now if ϕ is univalent, then the sum
has just one term; hence, using the notation w = ϕ(z) (and interpreting log(1/|z|) to
be 0 whenever w /∈ ϕ(U)), we have, as advertised in section 2.4,

‖Cϕ‖2
e = lim sup

|w|→1−

log 1
|z|

log 1
|w|

= lim sup
|z|→1−

1− |z|
1− |ϕ(z)| =

[
lim inf
|z|→1−

1− |ϕ(z)|
1− |z|

]−1

.
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Upon applying the Julia-Carathéodory Theorem to the term on the right, and noting
that by lower semicontinuity |ϕ′| attains its infimum on ∂U , we obtain

‖Cϕ‖2
e =

[
min
ζ∈∂U
|ϕ′(ζ)|

]−1

. (3)

Our goal is to show that the essential spectral radius of Cϕ is zero, i.e.;

lim
n→∞

‖Cn
ϕ‖1/n

e = {0},

which in view of (3) above, means

lim
n→∞

min
ζ∈∂U
|ϕ′n(ζ)|1/n =∞ . (4)

To prove (4) for our mapping ϕ, fix M > 1 and recall that by hypothesis there exists
a positive integer N such that ϕn(EM) is disjoint from EM whenever n ≥ N .

Now fix n ≥ 2N . We are going to show that the quantity on the left-hand side of
(4) is >

√
M , which will establish (4), and prove that Cϕ is a Riesz operator.

To this end, we need only consider those ζ ∈ ∂U for which |ϕ′n(ζ)| <∞. The idea
is to use the Chain Rule (part (c) of Lemma 2.6) to compute |ϕ′n(ζ)|. At this point
it is convenient to assume that ϕ(0) = 0, so that (as we observed just before stating
Lemma 2.5) |ϕ′| ≥ 1 on ∂U . We will show in Theorem 5.3 that no loss of generality
results from the assumption ϕ(0) = 0.

To estimate the size of the product on the right-hand side of the chain rule formula,
let

J(ζ) = {0 ≤ j < n : ϕj(ζ) /∈ EM} .
That is, J(ζ) is the set of indices in [0, n−1] for which |ϕ′j(ζ)| > M . Observe that our
choice of N guarantees that the number of indices in J(ζ) is ≥ n−N for every ζ ∈ ∂U .
Thus by the Chain Rule (using the notation ζj = ϕj(ζ), and writing J = J(ζ)),

|ϕ′n(ζ)| =
n−1∏
j=0

|ϕ′(ζj)| ≥
∏
j∈J
|ϕ′(ζj)| ≥Mn−N

from which follows
|ϕ′n(ζ)|1/n ≥M1−N

n

so |ϕ′n(ζ)|1/n ≥
√
M if n ≥ 2N , as promised. ///

Here is an easy-to-use special case of Theorem 3.1 that we will apply in the next
section to construct a Riesz composition operator that is not power-compact.

3.2 Corollary. Suppose ϕ is a holomorphic self-map of U that is univalent on U
and extends continuously to U (the closed unit disc). Suppose further that

(a) At each fixed point on the unit circle, ϕ does not have an angular derivative,
and

(b) If ζ ∈ ∂U is not a fixed point of ϕ then ϕn(ζ) ∈ U for some positive integer n.

Then Cϕ is a Riesz operator on H2.
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Proof. Let FP denote the (possibly empty) set of fixed points of ϕ on ∂U . Fix
M > 0 and note that by hypothesis (a) we have EM ⊂ ∂U\FP . Note that for each
nonnegative integer n, the set

Gn = {ζ ∈ ∂U : ϕn(ζ) ∈ U} = ϕ−1
n (U) ∩ ∂U

is open (continuity of ϕ), and that (Gn) is an increasing sequence whose union contains
∂U\FP (by hypothesis (b)). Thus this union contains the compact set EM and there
is a positive integer N such that Gn ⊃ EM whenever n ≥ N . In particular:

n ≥ N ⇒ |ϕ′| ≡ ∞ on ϕn(EM) ⇒ ϕn(EM) ∩ EM = ∅,

so Cϕ is Riesz by Theorem 3.1. ///

4 A Non-Power-Compact Riesz Composition Operator

4.1 A strip with a bulge. Our example is a holomorphic self-map of U that
played a key role in the work of [17]. Let G be the union of the open unit disc and
the open horizontal strip of unit width whose lower boundary is the real axis. So G
is a strip with a bulge that contains the origin, and 1

2
G ⊂ G. Let σ be the univalent

holomorphic mapping of U onto G that fixes the origin and has derivative > 0 there
(Riemann Mapping Theorem). Define ϕ on U by

ϕ(z) = σ−1(
1

2
σ(z)) (z ∈ U). (5)

We think of ϕ in the following way: its action on U is conformally similar, via σ, to
the action of the mapping M1/2 of “multiplication by 1/2” acting on G. We think
of M1/2 : G → G as a “model” for ϕ : U → U , and deduce the properties of ϕ from
properties of the model. In particular, by going back and forth between U and G it
is easy to check that ϕ extends continuously to U and has two fixed points on ∂U ,
which correspond to “the points at plus and minus infinity on the boundary of G”.

4.2 Theorem. For the mapping ϕ just described, Cϕ is a Riesz operator on H2

that is not power-compact.

Proof. The fact that Cϕ is not power-compact was noted in [17]. For completeness
we review the argument. Let L denote the half-line (2,∞) on the real axis, and note
that M1/2(L) ⊂ ∂G. Let I = σ−1(L), an open arc of ∂U . The behavior of the model
translates into the fact that ϕ(I) ⊂ ∂U , in particular ϕ has radial limits of modulus
one on the arc I. It is a standard result about composition operators that whenever
the inducing map has radial limits of modulus one on a subset of ∂U having positive
measure, the induced composition operator is not compact (see e.g. [17, §2.5, page
32]). Thus our operator Cϕ is not compact.

Now if n is a positive integer, then the n-th iterate ϕn of ϕ is obtained by changing
the multiplier 1/2 in the definition (5) of ϕ to 1/2n. The same analysis shows that
Cn
ϕ = Cϕn is not compact. Thus Cϕ is not power-compact.
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To show that Cϕ is a Riesz operator we check that ϕ satisfies the hypotheses of
Corollary 3.2. We have already noted that ϕ is univalent on U and extends continu-
ously to U . Since every (finite) point of ∂G is eventually taken into G by successive
multiplications by 1/2, we see that each non-fixed point of ∂U is taken into U by
some iterate of ϕ, so hypothesis (b) of Corollary 3.2 is satisfied.

It remains to show that hypothesis (a) is satisfied, i.e. that ϕ does not have an
angular derivative at either of its boundary fixed points. For this we require a crucial
result of [17], which states that whenever a self-map ϕ of U defined by a formula like
(5) has an angular derivative at a boundary fixed point, then the “model domain” G
contains a “twisted sector”

Sε(Γ) =
⋃
w∈Γ

{z : |z − w| < ε|w|},

for some ε > 0 and some simple arc Γ that connects the origin to∞ ([17, Proposition
3.3], see also [16, §9.6]). We will say more about twisted sectors in the final section,
but for now it is enough to note that the strip-like region G in our present example
doesn’t contain one. Thus ϕ does not have an angular derivative at either of its
boundary fixed points.

We have shown that Cϕ satisfies all the hypotheses of Corollary 3.2, so it is
therefore a Riesz operator. ///

4.3 Remarks. The construction of ϕ can be refined to create non-power-compact
Riesz composition operators whose inducing functions have infinitely many fixed
points on the unit circle. For this, take a sequence of rays emanating from the
origin, and making angles with the real axis that decrease to zero. For definiteness,
suppose also that these angles are < π/2 (you can also symmetrize the situation with
respect to the real axis to increase its aesthetic appeal). Make each ray the top edge
of a little open strip, taking care to make the strips thin enough so that they don’t
intersect outside the unit disc. Let G be the union of this countable collection of
strips and the unit disc, and proceed just as before.

A bit more work, using Theorem 3.1 directly, shows that the examples of non-
power-compact composition operators constructed in [17] from “jellyfish models” also
induce Riesz operators.

5 Riesz Operators and Koenigs Models

5.1 Koenigs Models. The method we used in §4 to construct our non-power-
compact Riesz composition operator is actually part of a much more general scheme.
If λ is any complex number of modulus < 1 and G a simply connected plane domain
with 0 ∈ G and λG ⊂ G, then the Riemann Mapping Theorem provides a univalent
map σ of U onto G with σ(0) = 0, and just as in the last section we can use σ to
define a holomorphic self-map ϕ of U . This time the formula is

ϕ(z) = σ−1(λσ(z)) (z ∈ U) . (6)
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Once again σ establishes a conformal similarity between the action of ϕ on U and
that of the mapping Mλ of “multiplication-by-λ” on G. We call Mλ : G → G the
Koenigs Model for ϕ, and observe that the subtleties of how ϕ acts on U are now
coded into the geometry of G.

Classical work of Gabriel Koenigs [8, 1884] shows that:

Every univalent self-map of U with an attractive fixed point in U has a
Koenigs model, which is uniquely determined (up to a constant multiple
of the model domain G).

More generally Koenigs showed that if ϕ is any holomorphic self-map of U with a
fixed point in U , say ϕ(0) = 0 without loss of generality, and if 0 < |ϕ′(0)| < 1, then
there is a holomorphic function σ on U such that

σ(ϕ(z)) = ϕ′(0)σ(z) (z ∈ U). (7)

Koenigs showed further that σ is unique up to multiplication by a constant, and
is univalent whenever ϕ is univalent (see e.g., [16, §6.1] for an exposition of these
matters). Thus if ϕ is univalent then (7), which is usually called Schroeder’s equation,
can be rewritten in the form (6), with λ = ϕ′(0). Note that the Schwarz Lemma
guarantees that |ϕ′(0)| ≤ 1 for any holomorphic self-map of U that fixes the origin—
by insisting on strict inequality we simply prevent ϕ from being a rotation.

5.2 Koenigs eigenfunctions. We continue to assume that ϕ is a holomorphic
self-map of U that fixes the origin, and that 0 < |ϕ′(0)| < 1. The map σ discussed
above is often called the Koenigs eigenfunction of ϕ. This terminology comes from
observing that equation (7) can be rewritten

Cϕσ = ϕ′(0)σ ,

hence σ is an eigenfunction of the operator Cϕ : H(U) → H(U). The essential
uniqueness of σ says that the eigenvalue ϕ′(0) has multiplicity one. Upon raising
both sides of (7) to the n-th power we see that σn is an eigenfunction and ϕ′(0)n the
corresponding eigenvalue (n = 0, 1, 2, . . .). Koenigs showed that all these eigenvalues
have multiplicity one.

Caughran and Schwartz [3] (proof of their Theorem 3) showed that the point ϕ′(0)n

always belongs to the spectrum of Cϕ : H2 → H2 (see also [4, Theorem 4.1] and [1]).
The subtlety here is that in general σn may not belong to H2, so ϕ′(0)n need not
always be an eigenvalue of Cϕ : H2 → H2. However if Cϕ is a Riesz operator on H2,
then ϕ′(0)n, being a non-zero spectral point, must be an eigenvalue—of multiplicity
one by the work of Koenigs. This forces the corresponding eigenfunction σn to lie in
H2. So if Cϕ is Riesz, then σn ∈ H2 for every positive integer n. Equivalently:

Cϕ Riesz on H2 ⇒ σ ∈
⋂
p<∞

Hp. (8)

For power-compact operators this result is implicit in the work of Caughran and
Schwartz [3, Theorem 3].
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In the context of Riesz operators no restriction is imposed by assuming, as we
have done above, that ϕ has an attractive fixed point in U . We show now that this
condition is, in fact, necessary for Cϕ to be Riesz. Consequently:

Every univalently induced Riesz composition operator has a Koenigs model.

5.3 Theorem. Suppose ϕ is a holomorphic self-map of U and Cϕ is a Riesz operator
on H2; then ϕ fixes a point a ∈ U , and |ϕ′(a)| < 1.

Proof. Suppose first that ϕ does not fix any point of U . Will show that the essential
norm of Cn

ϕ does not go to zero super-exponentially, and so Cϕ is not a Riesz operator
on H2 (section 2.2).

For this we employ the boundary fixed point α guaranteed for ϕ by the Denjoy-
Wolff Theorem (see section 2.7). Recall that ϕ has an angular derivative at α, and
so by the Julia-Carathéodory Theorem (section 2.4)

lim
r→1−

log 1
r

log 1
|ϕ(rα)|

= lim
r→1−

1− r
1− |ϕ(rα)| =

1

|ϕ′(α)| (9)

For 0 ≤ r < 1 write w(r) = ϕ(rα), so that

Nϕ(w(r)) ≥ log
1

r
. (10)

The essential-norm formula (2) combined with (9) and (10) yields:

‖Cϕ‖2
e = lim sup

|w|→1−

Nϕ(w)

log 1
|w|
≥ lim

r→1−

log 1
r

log 1
|w(r)|

=
1

|ϕ′(α)| (11)

Now for each positive integer n we have Cn
ϕ = Cϕn . Since the Denjoy-Wolff point of ϕ

is the limit of the sequence of successive iterates of ϕ, we see that ϕn also does not fix
any points of U , and that α must be its Denjoy-Wolff point. Thus ϕn has an angular
derivative at α, and our Chain Rule (Lemma 2.6) shows that ϕ′n(α) = ϕ′(α)n. This
allows us to apply the essential-norm estimate (11) to ϕn, obtaining

‖Cn
ϕ‖2

e = ‖Cϕn‖2
e ≥

1

|ϕ′(α)|n ,

from which follows

lim
n
‖Cn

ϕ‖1/n
e ≥ 1

|ϕ′(α)|1/2 > 0.

Thus, by our definition (section 2.2), Cϕ is not a Riesz operator.
Summary: If ϕ has no fixed point in U then Cϕ is not a Riesz operator on H2.
Suppose now that Cϕ is a Riesz operator. Then ϕ fixes a point of U , which by a

standard similarity argument we may assume to be the origin: ϕ(0) = 0. It remains
to show that |ϕ′(0)| < 1.
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The Schwarz Lemma insures that |ϕ′(0)| ≤ 1, and in case of equality that ϕ has
to be a rotation of U . Thus if we do not have the desired strict inequality on ϕ′(0),
then Cϕ must be a unitary operator on H2. We claim this contradicts the assumption
that Cϕ is Riesz.

More generally:

Every linear isometry of Hilbert space into itself has essential spectral
radius = 1.

This is well-known, but to keep our exposition complete, here is a proof. Suppose T
is a Hilbert-space isometry. We begin by showing that the essential norm of T is 1.
Since the essential norm is just the distance to the subspace of compact operators,
it is clear that ‖T‖e ≤ ‖T‖ ≤ 1. To prove the opposite inequality, fix a compact
operator K, and an orthonormal sequence (en). Since T is an isometry, ‖Ten‖ = 1
for each n, so it follows that for each positive integer n:

‖T −K‖ ≥ ‖(T −K)en‖ ≥ ‖Ten‖ − ‖Ken‖ = 1− ‖Ken‖ . (12)

Now every orthonormal sequence converges weakly to zero, so because K is compact,
‖Ken‖ → 0 as n→∞. Thus upon letting n→∞ in the right-hand side of (12), we
see that ‖T −K‖ ≥ 1, hence ‖T‖e ≥ 1, as desired.

Since every Hilbert-space isometry T has essential norm one, and since every
power of T is again an isometry, it follows from the last paragraph that ‖T n‖e = 1
for every positive integer n; hence, T cannot be a Riesz operator. In particular, no
rotation of the disc can induce a Riesz composition operator. Thus, if ϕ fixes the
origin and induces a Riesz composition operator, then |ϕ′(0)| < 1. ///

5.4 Remarks. (a) The argument given in the first part of Theorem 5.3 shows that
if ϕ fixes no point of U , the essential spectral radius of Cϕ : H2 → H2 is bounded
below by |ϕ′(α)|−1/2, where α ∈ ∂U is the Denjoy-Wolff point of ϕ. For this we could
also have referenced [1, Lemma 5.3], where we showed that for this situation re(Cϕ)
is precisely |ϕ′(α)|−1/2.

However the argument given above, in addition to offering a more self-contained
exposition, can be easily modified to show that for any holomorphic self-map ϕ of U :

re(Cϕ) ≥ max
ζ∈FP

|ϕ′(ζ)|−1/2 ,

where on the right, FP denotes the collection of boundary fixed points of ϕ. For this
we only need to use the general version of the Chain Rule given in [16, Chapter 4,
Exercise 10, page 74] to show that if ϕ has an angular derivative at a boundary fixed
point ζ then so does every iterate ϕn, and ϕ′n(ζ) = ϕ′(ζ)n.

Thus if Cϕ is a Riesz operator on H2 then ϕ cannot have an angular derivative
at any boundary fixed point. Since every positive power of a Riesz operator is also
Riesz, the same holds for each iterate of ϕ. Now boundary fixed points of iterates of
ϕ are, in an obvious way, “boundary periodic points” of ϕ, so we have:
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If Cϕ : H2 → H2 is a Riesz operator, then ϕ does not have an angular
derivative at any boundary periodic point.

Poggi-Corradini [13] has recently proved the converse of this result for univalent
maps ϕ. In general the converse is false, as shown by the fact that there exist inner
functions with no angular derivative at any point of ∂U (see [16, section 10.2] for
example)—the last part of the proof of Theorem 5.3 shows that no inner function can
induce a Riesz composition operator. (Every inner function with a fixed point in U is
conjugate, via a conformal disc automorphism, to an inner function that vanishes at
the origin, and by [10, section 1] such inner functions induce isometries on H2. Thus
every composition operator induced by an inner function is similar to an isometry,
and therefore is not Riesz.)

(b) There is a parallel between the results discussed here and the corresponding
ones for compactness. Theorem 5.3 was first obtained in the context of power-compact
operators by Caughran and Schwartz [3, 1975]. It has long been known that non-
existence of the angular derivative at every point of ∂U is necessary for Cϕ to be
compact on H2, and that this condition is sufficient if ϕ is univalent (see [16, Chapter
2] for details and historical notes). Our results, along with those of Poggi-Corradini
show that the same is true for Rieszness if non-existence of the angular derivative is
required not everywhere on the boundary, but only at the boundary periodic points
of the inducing map.

(c) Shapiro and Taylor [19, 1973] proved that for 0 < p < ∞, a composition
operator is compact on Hp if and only if it is compact on H2. The same is true
for Riesz operators. The notions of essential norm and essential spectral radius,
make sense for any Banach space, and more generally for any p-Banach space where
0 < p ≤ 1. Thus Riesz operators can be defined in these more general settings, and
it turns out that all the spectral theory that makes Riesz-operator spectra identical
with compact-operator spectra still holds (see [18]).

Now in [1] we have shown that for any holomorphic self-map ϕ of U , and any
0 < p <∞,

re(Cϕ : Hp → Hp) =
[
re(Cϕ : H2 → H2)

]2/p
.

It follows from this identity that for 0 < p <∞:

Cϕ is a Riesz operator on Hp if and only if it is a Riesz operator on H2.

6 Connections and Conjectures

In [17] Shapiro, Smith, and Stegenga study the relationship between the geometry of
Koenigs models and compactness of composition operators on H2. They establish,
for example, that if the image σ(U) of a (univalent) Koenigs function σ contains a
twisted sector, then σ cannot belong to Hp for all p <∞. Thus in view of the work
of the previous section:

If Cϕ is Riesz, then the image σ(U) of its Koenigs eigenfunction cannot
contain a twisted sector.
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On the other hand, in [11] Pietro Poggi-Corradini shows that if σ(U) contains no
twisted sectors, then σ ∈ Hp for all p < ∞, and raises the problem of describing an
operator-theoretic property of Cϕ that is equivalent to σ(U)’s containing no twisted
sectors. As we have seen, Rieszness of Cϕ is sufficient to ensure no twisted sectors
lie inside σ(U). Analysis of models presented in [17] provides some evidence that the
Riesz property is also necessary: each model having the no-twisted-sector property
(including the “bulging-strip” model we discussed in detail in Section 4) can be shown
by application of Theorem 3.1 to yield a Riesz composition operator on H2. This
observation and further results in papers [1], [17], and [11] lead us to conjecture the
following:

Suppose ϕ is univalent and σ is the Koenigs eigenfunction of ϕ; then
the composition operator Cϕ on H2 is Riesz if and only if σ(U) does not
contain a twisted sector.

More generally, we conjecture that for an arbitrary holomorphic self-map ϕ(U) (sat-
isfying ϕ(0) = 0 and 0 < |ϕ′(0)| < 1), the implication (8) goes both ways:

Cϕ : H2 → H2 is Riesz if and only if σ ∈ Hp for all p <∞.

As we mentioned in the Introduction, Poggi-Corradini [12] has recently established
the first of these conjectures. We have just learned that he has proved the second as
well [14].

We conclude by noting a connection between our work and the study of compo-
sition-operator spectra. In [5], Cowen and MacCluer characterize the spectrum of
Cϕ given that ϕ is univalent but not an automorphism, and ϕ(0) = 0; in particular
they show that the spectrum of Cϕ must contain the disc {z : |z| ≤ re(Cϕ)}, where
re(Cϕ) denotes the essential spectral radius of Cϕ on H2. Our Theorem 3.1 provides
a sufficient condition for this disc to be degenerate (i.e. = {0}), while Theorem 4.2
shows that this can happen non-trivially.
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