# **RIESZ COMPOSITION OPERATORS**

Paul S. Bourdon and Joel H. Shapiro

ABSTRACT. We give a sufficient condition for a univalently induced composition operator on the Hardy space  $H^2$  to be a Riesz operator. We then establish that every Riesz composition operator has a Koenigs model and explore connections our work has with the model theory and spectral theory of composition operators.

#### 1 Introduction

If  $\varphi$  is a holomorphic function on the unit disc U with  $\varphi(U) \subset U$  then the composition operator  $C_{\varphi}$  induced by  $\varphi$  is the linear map:

 $C_{\varphi}f = f \circ \varphi$  (f holomorphic on U).

Although  $C_{\varphi}$  is initially defined on the full space H(U) of functions holomorphic on U, a famous result of J.E. Littlewood shows that it takes the Hardy space  $H^2$  into itself, and its restriction to  $H^2$  is a bounded operator [9]. The connection between operator-theoretic properties of  $C_{\varphi}$  and function-theoretic properties of the inducing map  $\varphi$  has led to a rapidly expanding body of research, some major threads of which you can find developed in the recent books [6] and [16].

Much of the recent interest in composition operators arises from connections with function theory that emerge from the study of *compactness* of these operators (see for example [11], [15] and [17]). In this paper the motivating concept from operator theory is the closely related concept of "Rieszness".

A Riesz operator on a Hilbert space is a bounded operator whose essential spectrum is the singleton  $\{0\}$ . We will discuss this condition in more detail in the next section, but right now it is enough to know that the class of Riesz operators includes all operators that have a compact positive power, and that the Riesz operators are "spectrally indistinguishable" from the compact ones in that their nonzero spectral points occur as isolated, finite-multiplicity eigenvalues.

We show here that if  $C_{\varphi}$  is a Riesz operator on  $H^2$  then the mapping  $\varphi$  has to arise from the geometric model associated with Koenigs's solution to Schroeder's functional equation (the eigenfunction equation for  $C_{\varphi}$ ). The corresponding result for compact composition operators has long been known, and forms the basis for the investigation begun in [17] connecting the compactness problem with the geometry of Schroeder-Koenigs models. Our work suggests that in this study it is the question of *Rieszness*, rather than of compactness that should be the main operator-theoretic issue.

The research of both authors was supported in part by the National Science Foundation

Our interest in Riesz operators began with a question posed by Michael Neumann, who asked if the Hardy space  $H^2$  supports a Riesz composition operator that is not power-compact. We answer Neumann's question affirmatively by deriving an easily checked sufficient condition for a univalently induced composition operator on  $H^2$  to be Riesz. The connection with Schroeder-Koenigs models arises when we apply our condition to show that certain non-power-compact examples that motivated the work of [17] are in fact Riesz operators. These matters occupy sections 3 and 4, with the necessary background material collected for the reader's convenience in section 2.

In section 5 we make the general connection between Riesz operators and Schroeder-Koenigs models by showing that if  $C_{\varphi}$  is Riesz, then  $\varphi$  must have an attractive fixed point *a* in *U*. Koenigs' work ([8]) on Schroeder's equation then shows that if, in addition,  $\varphi$  is univalent, then  $\varphi$  has the following model:

$$\varphi = \sigma^{-1} \circ (\varphi'(a)\sigma),$$

where  $\sigma$  is a univalent mapping on U, which is uniquely determined (up to a constant multiple). Our work suggests that the geometry of  $\sigma(U)$  in this Koenigs model for  $\varphi$  determines Rieszness; more specifically it leads us to conjecture that the "no-twisted-sectors" property introduced by Shapiro, Smith, and Stegenga in [17] is equivalent to Rieszness. (After this work was completed Pietro Poggi-Corradini established the validity of this conjecture [12].)

In the final section of this paper we discuss the "no-twisted-sectors" conjecture in more detail, and point out a connection between our work and a recent result of Cowen and MacCluer [5, Corollary 19] concerning composition-operator spectra.

## 2 Background

For completeness of exposition we summarize here some necessary prerequisites.

**2.1 The Hardy space**  $H^2$ . This is the space of functions that are analytic in the unit disc U and whose Taylor coefficients in the expansion about the origin are square summable. Thus  $H^2$  is a Hilbert space isomorphic to  $\ell^2$ , where the norm is defined by:

$$\|f\|^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2,$$

with  $\hat{f}(n)$  denoting the *n*-th Taylor coefficient of f.

**2.2** Riesz operators. For our purposes the class of Riesz operators is best defined to be those bounded operators T on Hilbert space for which the distance between  $T^n$  and the compacts tends to zero super-exponentially. To be more precise it helps to recall that the distance (in the operator norm) from an operator T to the space of compact operators is called the *essential norm* of T, denoted by  $||T||_e$ . To say that T is a *Riesz operator* means that

$$\lim_{n \to \infty} \|T^n\|_e^{1/n} = 0.$$

This definition makes it clear that every power-compact operator is Riesz.

**2.3** The essential spectrum. Suppose H is a Hilbert space. The quotient  $\mathcal{B}/\mathcal{K}$  of the algebra  $\mathcal{B}$  of bounded operators on H by the closed ideal  $\mathcal{K}$  of compact operators is called the *Calkin Algebra* of H. The essential norm of an operator  $T \in \mathcal{B}$  is thus revealed as the Calkin Algebra norm of the coset  $T + \mathcal{K}$ . The spectrum of this coset is called the essential spectrum of T. The spectral radius formula, applied to the Calkin Algebra, reveals a spectral interpretation of our definition of Riesz operator:

An operator is Riesz if and only if its essential spectrum is the singleton  $\{0\}$ .

This interpretation, along with a little operator theory, leads to the assertion made in the Introduction that Riesz operators are spectrally indistinguishable from compacts (see [7, Chapter 3] or [18]).

**2.4** Essential norms and angular derivatives. We rely heavily on the formula obtained in [15] for the essential norm of a composition operator. We will discuss this in more detail in section 3, but for now it is enough to know that if  $\varphi$  is univalent then this formula reduces to:

$$||C_{\varphi}||_{e} = \liminf_{|z| \to 1-} \left[\frac{1 - |\varphi(z)|}{1 - |z|}\right]^{-\frac{1}{2}}$$

This equation relates the study of composition operators with classical work on boundary properties of holomorphic self-maps of the disc. In these studies  $\varphi$  is said to have an *angular derivative* at a point  $\zeta \in \partial U$  if two things happen:

- (a)  $\varphi'(z)$  has a finite angular (nontangential) limit as  $z \to \zeta$ , and
- (b) The angular limit of  $\varphi$  (which necessarily exists at  $\zeta$  because of condition (a)) has modulus 1.

We denote the angular limit in (a) by  $\varphi'(\zeta)$ . More generally, whenever f is a complexvalued function defined on U that has an angular limit at  $\zeta \in \partial U$ , then we denote this limit by  $f(\zeta)$ . The Julia-Carathéodory theorem asserts that  $\varphi$  has an angular derivative at  $\zeta \in \partial U$  if and only if

$$\liminf_{z \to \zeta} \frac{1 - |\varphi(z)|}{1 - |z|} < \infty. \tag{1}$$

The theorem also asserts that when the difference quotient in (1) is finite, then:

- The left-hand side of (1) is precisely  $|\varphi'(\zeta)|$ , and
- The angular limit of the difference quotient exists, and equals  $|\varphi'(\zeta)|$

(see e.g.  $[2, \S298-300]$ , [6, page 51] or [16, page 57] for the full story).

The Julia-Carathéodory theorem allows us to think of  $|\varphi'(\zeta)|$  as a function on  $\partial U$  with values in the extended interval  $[0, \infty]$ . Just think of  $|\varphi'(\zeta)|$  as defined by the left-hand side of (1), and make the connection with angular limits of the derivative by interpreting " $|\varphi'(\zeta)| = \infty$ " to mean "the angular limit of  $\varphi'$  either doesn't exist at  $\zeta$ , or it exists and the corresponding angular limit of  $\varphi$  has modulus < 1." Note that that  $|\varphi'|$  is bounded away from zero on  $\partial U$ : for example, if  $\varphi(0) = 0$  then by the Schwarz Lemma and (1),  $|\varphi'| \ge 1$  on  $\partial U$ .

**2.5 Lemma.** The function  $|\varphi'| : \partial U \to (0, \infty]$  is lower semicontinuous.

PROOF. We have to show that for each M > 0 the set  $\{|\varphi'| > M\}$  is open, or equivalently,

$$E_M = \{ \zeta \in \partial U : |\varphi'(\zeta)| \le M \}$$

is closed.

To this end suppose  $\{\zeta_n\}$  is a sequence of points in  $E_M$  that converges to  $\zeta$ . We have to show  $\zeta \in E_M$ . Given  $\epsilon > 0$ , the Julia-Carathéodory Theorem guarantees that for each n there exists a point  $z_n \in U$  at distance less than 1/n from  $\zeta_n$  such that

$$\frac{1-|\varphi(z_n)|}{1-|z_n|} < M+\epsilon \ .$$

Since  $z_n \to \zeta$ , another application of the Julia-Carathéodory theorem shows that the angular derivative of  $\varphi$  exists at  $\zeta$ , and shows that  $|\varphi'(\zeta)| \leq M + \epsilon$ . Since  $\epsilon$  is an arbitrary positive number,  $|\varphi'(\zeta)| \leq M$ , hence  $\zeta \in E_M$ .

Angular derivatives of iterates of  $\varphi$  may be computed via the usual chain rule.

**2.6 Lemma. (The Chain Rule)** Suppose  $\varphi$  is a holomorphic self-map of U and  $\zeta \in U$ . Suppose further that for some positive integer n the iterate  $\varphi_n$  has an angular derivative at  $\zeta$ . Then:

- (a) For each  $1 \leq j \leq n$  the iterate  $\varphi_j$  has an angular derivative at  $\zeta$ .
- (b)  $\varphi$  has an angular derivative at  $\varphi_j(\zeta)$  for  $1 \le j < n$ .
- (c) Letting  $\zeta_j = \varphi_j(\zeta)$ , we have  $\varphi'_n(\zeta) = \prod_{j=0}^{n-1} \varphi'(\zeta_j)$ .

We omit the proof, which is a routine exercise in applying the Julia-Carathéodory Theorem. Note that the "j = n" part of statement (a) is just the hypothesis on  $\varphi_n$ , and that existence of the angular limits  $\zeta_j = \varphi_j(\zeta)$  used in (c) is insured by (a), as is the fact that these limits lie on the unit circle.

**2.7 The Denjoy-Wolff Theorem.** If a holomorphic self-map  $\varphi$  of U fixes a point  $a \in U$  then the Schwarz Lemma guarantees that  $|\varphi'(a)| \leq 1$ , with equality if and only if  $\varphi$  is an elliptic automorphism (i.e. conformally equivalent to a rotation). In case  $|\varphi'(a)| < 1$  the fixed point is *attractive* in the sense that the sequence  $(\varphi_n : n \geq 1)$  converges to the constant function a uniformly on compact subsets of U.

The Denjoy-Wolff Theorem asserts that something similar happens even if  $\varphi$  fixes no point of U. In this case there is a unique point  $\alpha \in \partial U$ , called the Denjoy-Wolff point of  $\varphi$  such that  $\varphi_n \to \alpha$  uniformly on compact subsets of U. In addition,  $\varphi$  has remarkable regularity at  $\alpha$ . For example,  $\varphi(\alpha) = \alpha$  in the sense of angular limits, so  $\alpha$ serves as a "boundary fixed point" for  $\varphi$ . Moreover,  $\varphi$  has some degree of smoothness at  $\alpha$  in the sense that the angular derivative exists there. Although not required for the sequel, it is worth noting the angular derivative of  $\varphi$  at the Denjoy-Wolff point is a strictly positive number that is  $\leq 1$ . For complete details see e.g. [16, Chapter 5].

### 3 Sufficient Condition for Rieszness

As usual, the symbol  $\varphi$  denotes a holomorphic self-map of U, and as in the proof of Lemma 2.5,  $E_M = \{\zeta \in \partial U : |\varphi'(\zeta)| \leq M\}$ . We also continue with the convention of extending  $\varphi$  to  $\partial U$  by defining  $\varphi(\zeta)$  to be the angular limit of  $\varphi$  at  $\zeta \in \partial U$ , whenever this limit exists. Recall that by Fatou's theorem, this limit exists at (Lebesgue) almost every point of  $\partial U$ , and (as pointed out in the preceding section) at every point where the map  $\varphi$  has an angular derivative.

**3.1 Theorem.** Suppose  $\varphi$  is univalent, and that for every M > 0 there exists a positive integer N = N(M) such that

$$n \ge N \quad \Rightarrow \quad \varphi_n(E_M) \cap E_M = \emptyset .$$

Then  $C_{\varphi}$  is a Riesz operator (i.e., its essential spectrum is  $\{0\}$ ).

**PROOF.** We know from [15] that the essential norm of  $C_{\varphi}$  on  $H^2$  is given by the formula

$$\|C_{\varphi}\|_{e}^{2} = \limsup_{|w| \to 1^{-}} \frac{N_{\varphi}(w)}{\log \frac{1}{|w|}}$$
(2)

where  $N_{\varphi}$  is the Nevanlinna counting function of  $\varphi$ :

$$N_{\varphi}(w) = \sum_{z \in \varphi^{-1}\{w\}} \log \frac{1}{|z|}$$

the sum being interpreted as 0 when  $w \notin \varphi(U)$ . Now if  $\varphi$  is univalent, then the sum has just one term; hence, using the notation  $w = \varphi(z)$  (and interpreting  $\log(1/|z|)$  to be 0 whenever  $w \notin \varphi(U)$ ), we have, as advertised in section 2.4,

$$\|C_{\varphi}\|_{e}^{2} = \limsup_{|w| \to 1^{-}} \frac{\log \frac{1}{|z|}}{\log \frac{1}{|w|}} = \limsup_{|z| \to 1^{-}} \frac{1 - |z|}{1 - |\varphi(z)|} = \left[\liminf_{|z| \to 1^{-}} \frac{1 - |\varphi(z)|}{1 - |z|}\right]^{-1}$$

Upon applying the Julia-Carathéodory Theorem to the term on the right, and noting that by lower semicontinuity  $|\varphi'|$  attains its infimum on  $\partial U$ , we obtain

$$\|C_{\varphi}\|_{e}^{2} = \left[\min_{\zeta \in \partial U} |\varphi'(\zeta)|\right]^{-1} .$$
(3)

Our goal is to show that the essential spectral radius of  $C_{\varphi}$  is zero, i.e.;

$$\lim_{n \to \infty} \|C_{\varphi}^n\|_e^{1/n} = \{0\},\$$

which in view of (3) above, means

$$\lim_{n \to \infty} \min_{\zeta \in \partial U} |\varphi'_n(\zeta)|^{1/n} = \infty .$$
(4)

To prove (4) for our mapping  $\varphi$ , fix M > 1 and recall that by hypothesis there exists a positive integer N such that  $\varphi_n(E_M)$  is disjoint from  $E_M$  whenever  $n \ge N$ .

Now fix  $n \ge 2N$ . We are going to show that the quantity on the left-hand side of (4) is  $> \sqrt{M}$ , which will establish (4), and prove that  $C_{\varphi}$  is a Riesz operator.

To this end, we need only consider those  $\zeta \in \partial U$  for which  $|\varphi'_n(\zeta)| < \infty$ . The idea is to use the Chain Rule (part (c) of Lemma 2.6) to compute  $|\varphi'_n(\zeta)|$ . At this point it is convenient to assume that  $\varphi(0) = 0$ , so that (as we observed just before stating Lemma 2.5)  $|\varphi'| \ge 1$  on  $\partial U$ . We will show in Theorem 5.3 that no loss of generality results from the assumption  $\varphi(0) = 0$ .

To estimate the size of the product on the right-hand side of the chain rule formula, let

$$J(\zeta) = \{ 0 \le j < n : \varphi_j(\zeta) \notin E_M \} .$$

That is,  $J(\zeta)$  is the set of indices in [0, n-1] for which  $|\varphi'_j(\zeta)| > M$ . Observe that our choice of N guarantees that the number of indices in  $J(\zeta)$  is  $\geq n-N$  for every  $\zeta \in \partial U$ . Thus by the Chain Rule (using the notation  $\zeta_i = \varphi_i(\zeta)$ , and writing  $J = J(\zeta)$ ),

$$|\varphi_n'(\zeta)| = \prod_{j=0}^{n-1} |\varphi'(\zeta_j)| \ge \prod_{j \in J} |\varphi'(\zeta_j)| \ge M^{n-N}$$

from which follows

$$|\varphi_n'(\zeta)|^{1/n} \ge M^{1-\frac{N}{n}}$$

so  $|\varphi'_n(\zeta)|^{1/n} \ge \sqrt{M}$  if  $n \ge 2N$ , as promised.

Here is an easy-to-use special case of Theorem 3.1 that we will apply in the next section to construct a Riesz composition operator that is not power-compact.

**3.2** Corollary. Suppose  $\varphi$  is a holomorphic self-map of U that is univalent on U and extends continuously to  $\overline{U}$  (the closed unit disc). Suppose further that

- (a) At each fixed point on the unit circle,  $\varphi$  does not have an angular derivative, and
- (b) If  $\zeta \in \partial U$  is not a fixed point of  $\varphi$  then  $\varphi_n(\zeta) \in U$  for some positive integer n.

Then  $C_{\varphi}$  is a Riesz operator on  $H^2$ .

///

PROOF. Let FP denote the (possibly empty) set of fixed points of  $\varphi$  on  $\partial U$ . Fix M > 0 and note that by hypothesis (a) we have  $E_M \subset \partial U \setminus FP$ . Note that for each nonnegative integer n, the set

$$G_n = \{\zeta \in \partial U : \varphi_n(\zeta) \in U\} = \varphi_n^{-1}(U) \cap \partial U$$

is open (continuity of  $\varphi$ ), and that  $(G_n)$  is an increasing sequence whose union contains  $\partial U \setminus FP$  (by hypothesis (b)). Thus this union contains the compact set  $E_M$  and there is a positive integer N such that  $G_n \supset E_M$  whenever  $n \ge N$ . In particular:

$$n \ge N \quad \Rightarrow \quad |\varphi'| \equiv \infty \quad on \quad \varphi_n(E_M) \quad \Rightarrow \quad \varphi_n(E_M) \cap E_M = \emptyset,$$

so  $C_{\varphi}$  is Riesz by Theorem 3.1.

#### 4 A Non-Power-Compact Riesz Composition Operator

**4.1** A strip with a bulge. Our example is a holomorphic self-map of U that played a key role in the work of [17]. Let G be the union of the open unit disc and the open horizontal strip of unit width whose lower boundary is the real axis. So G is a strip with a bulge that contains the origin, and  $\frac{1}{2}G \subset G$ . Let  $\sigma$  be the univalent holomorphic mapping of U onto G that fixes the origin and has derivative > 0 there (Riemann Mapping Theorem). Define  $\varphi$  on U by

$$\varphi(z) = \sigma^{-1}(\frac{1}{2}\sigma(z)) \qquad (z \in U).$$
(5)

We think of  $\varphi$  in the following way: its action on U is conformally similar, via  $\sigma$ , to the action of the mapping  $M_{1/2}$  of "multiplication by 1/2" acting on G. We think of  $M_{1/2}: G \to G$  as a "model" for  $\varphi: U \to U$ , and deduce the properties of  $\varphi$  from properties of the model. In particular, by going back and forth between U and G it is easy to check that  $\varphi$  extends continuously to  $\overline{U}$  and has two fixed points on  $\partial U$ , which correspond to "the points at plus and minus infinity on the boundary of G".

**4.2 Theorem.** For the mapping  $\varphi$  just described,  $C_{\varphi}$  is a Riesz operator on  $H^2$  that is not power-compact.

PROOF. The fact that  $C_{\varphi}$  is not power-compact was noted in [17]. For completeness we review the argument. Let L denote the half-line  $(2, \infty)$  on the real axis, and note that  $M_{1/2}(L) \subset \partial G$ . Let  $I = \sigma^{-1}(L)$ , an open arc of  $\partial U$ . The behavior of the model translates into the fact that  $\varphi(I) \subset \partial U$ , in particular  $\varphi$  has radial limits of modulus one on the arc I. It is a standard result about composition operators that whenever the inducing map has radial limits of modulus one on a subset of  $\partial U$  having positive measure, the induced composition operator is not compact (see e.g. [17, §2.5, page 32]). Thus our operator  $C_{\varphi}$  is not compact.

Now if n is a positive integer, then the n-th iterate  $\varphi_n$  of  $\varphi$  is obtained by changing the multiplier 1/2 in the definition (5) of  $\varphi$  to  $1/2^n$ . The same analysis shows that  $C_{\varphi}^n = C_{\varphi_n}$  is not compact. Thus  $C_{\varphi}$  is not power-compact.

///

To show that  $C_{\varphi}$  is a Riesz operator we check that  $\varphi$  satisfies the hypotheses of Corollary 3.2. We have already noted that  $\varphi$  is univalent on U and extends continuously to  $\overline{U}$ . Since every (finite) point of  $\partial G$  is eventually taken into G by successive multiplications by 1/2, we see that each non-fixed point of  $\partial U$  is taken into U by some iterate of  $\varphi$ , so hypothesis (b) of Corollary 3.2 is satisfied.

It remains to show that hypothesis (a) is satisfied, i.e. that  $\varphi$  does not have an angular derivative at either of its boundary fixed points. For this we require a crucial result of [17], which states that whenever a self-map  $\varphi$  of U defined by a formula like (5) has an angular derivative at a boundary fixed point, then the "model domain" G contains a "twisted sector"

$$S_{\epsilon}(\Gamma) = \bigcup_{w \in \Gamma} \{ z : |z - w| < \epsilon |w| \},\$$

for some  $\epsilon > 0$  and some simple arc  $\Gamma$  that connects the origin to  $\infty$  ([17, Proposition 3.3], see also [16, §9.6]). We will say more about twisted sectors in the final section, but for now it is enough to note that the strip-like region G in our present example doesn't contain one. Thus  $\varphi$  does not have an angular derivative at either of its boundary fixed points.

We have shown that  $C_{\varphi}$  satisfies all the hypotheses of Corollary 3.2, so it is therefore a Riesz operator. ///

4.3 Remarks. The construction of  $\varphi$  can be refined to create non-power-compact Riesz composition operators whose inducing functions have infinitely many fixed points on the unit circle. For this, take a sequence of rays emanating from the origin, and making angles with the real axis that decrease to zero. For definiteness, suppose also that these angles are  $\langle \pi/2 \rangle$  (you can also symmetrize the situation with respect to the real axis to increase its aesthetic appeal). Make each ray the top edge of a little open strip, taking care to make the strips thin enough so that they don't intersect outside the unit disc. Let G be the union of this countable collection of strips and the unit disc, and proceed just as before.

A bit more work, using Theorem 3.1 directly, shows that the examples of nonpower-compact composition operators constructed in [17] from "jellyfish models" also induce Riesz operators.

#### 5 Riesz Operators and Koenigs Models

5.1 Koenigs Models. The method we used in §4 to construct our non-powercompact Riesz composition operator is actually part of a much more general scheme. If  $\lambda$  is any complex number of modulus < 1 and G a simply connected plane domain with  $0 \in G$  and  $\lambda G \subset G$ , then the Riemann Mapping Theorem provides a univalent map  $\sigma$  of U onto G with  $\sigma(0) = 0$ , and just as in the last section we can use  $\sigma$  to define a holomorphic self-map  $\varphi$  of U. This time the formula is

$$\varphi(z) = \sigma^{-1}(\lambda \sigma(z)) \qquad (z \in U) . \tag{6}$$

Once again  $\sigma$  establishes a conformal similarity between the action of  $\varphi$  on U and that of the mapping  $M_{\lambda}$  of "multiplication-by- $\lambda$ " on G. We call  $M_{\lambda} : G \to G$  the Koenigs Model for  $\varphi$ , and observe that the subtleties of how  $\varphi$  acts on U are now coded into the geometry of G.

Classical work of Gabriel Koenigs [8, 1884] shows that:

Every univalent self-map of U with an attractive fixed point in U has a Koenigs model, which is uniquely determined (up to a constant multiple of the model domain G).

More generally Koenigs showed that if  $\varphi$  is any holomorphic self-map of U with a fixed point in U, say  $\varphi(0) = 0$  without loss of generality, and if  $0 < |\varphi'(0)| < 1$ , then there is a holomorphic function  $\sigma$  on U such that

$$\sigma(\varphi(z)) = \varphi'(0)\sigma(z) \qquad (z \in U). \tag{7}$$

Koenigs showed further that  $\sigma$  is unique up to multiplication by a constant, and is univalent whenever  $\varphi$  is univalent (see e.g., [16, §6.1] for an exposition of these matters). Thus if  $\varphi$  is univalent then (7), which is usually called *Schroeder's equation*, can be rewritten in the form (6), with  $\lambda = \varphi'(0)$ . Note that the Schwarz Lemma guarantees that  $|\varphi'(0)| \leq 1$  for any holomorphic self-map of U that fixes the origin by insisting on strict inequality we simply prevent  $\varphi$  from being a rotation.

**5.2 Koenigs eigenfunctions.** We continue to assume that  $\varphi$  is a holomorphic self-map of U that fixes the origin, and that  $0 < |\varphi'(0)| < 1$ . The map  $\sigma$  discussed above is often called the *Koenigs eigenfunction* of  $\varphi$ . This terminology comes from observing that equation (7) can be rewritten

$$C_{\varphi}\sigma = \varphi'(0)\sigma ,$$

hence  $\sigma$  is an eigenfunction of the operator  $C_{\varphi} : H(U) \to H(U)$ . The essential uniqueness of  $\sigma$  says that the eigenvalue  $\varphi'(0)$  has multiplicity one. Upon raising both sides of (7) to the *n*-th power we see that  $\sigma^n$  is an eigenfunction and  $\varphi'(0)^n$  the corresponding eigenvalue (n = 0, 1, 2, ...). Koenigs showed that all these eigenvalues have multiplicity one.

Caughran and Schwartz [3] (proof of their Theorem 3) showed that the point  $\varphi'(0)^n$ always belongs to the spectrum of  $C_{\varphi} : H^2 \to H^2$  (see also [4, Theorem 4.1] and [1]). The subtlety here is that in general  $\sigma^n$  may not belong to  $H^2$ , so  $\varphi'(0)^n$  need not always be an eigenvalue of  $C_{\varphi} : H^2 \to H^2$ . However if  $C_{\varphi}$  is a Riesz operator on  $H^2$ , then  $\varphi'(0)^n$ , being a non-zero spectral point, must be an eigenvalue—of multiplicity one by the work of Koenigs. This forces the corresponding eigenfunction  $\sigma^n$  to lie in  $H^2$ . So if  $C_{\varphi}$  is Riesz, then  $\sigma^n \in H^2$  for every positive integer n. Equivalently:

$$C_{\varphi} \text{ Riesz on } H^2 \Rightarrow \sigma \in \bigcap_{p < \infty} H^p.$$
 (8)

For power-compact operators this result is implicit in the work of Caughran and Schwartz [3, Theorem 3].

In the context of Riesz operators no restriction is imposed by assuming, as we have done above, that  $\varphi$  has an attractive fixed point in U. We show now that this condition is, in fact, necessary for  $C_{\varphi}$  to be Riesz. Consequently:

Every univalently induced Riesz composition operator has a Koenigs model.

**5.3 Theorem.** Suppose  $\varphi$  is a holomorphic self-map of U and  $C_{\varphi}$  is a Riesz operator on  $H^2$ ; then  $\varphi$  fixes a point  $a \in U$ , and  $|\varphi'(a)| < 1$ .

PROOF. Suppose first that  $\varphi$  does not fix any point of U. Will show that the essential norm of  $C_{\varphi}^n$  does not go to zero super-exponentially, and so  $C_{\varphi}$  is not a Riesz operator on  $H^2$  (section 2.2).

For this we employ the boundary fixed point  $\alpha$  guaranteed for  $\varphi$  by the Denjoy-Wolff Theorem (see section 2.7). Recall that  $\varphi$  has an angular derivative at  $\alpha$ , and so by the Julia-Carathéodory Theorem (section 2.4)

$$\lim_{r \to 1^{-}} \frac{\log \frac{1}{r}}{\log \frac{1}{|\varphi(r\alpha)|}} = \lim_{r \to 1^{-}} \frac{1 - r}{1 - |\varphi(r\alpha)|} = \frac{1}{|\varphi'(\alpha)|}$$
(9)

For  $0 \leq r < 1$  write  $w(r) = \varphi(r\alpha)$ , so that

$$N_{\varphi}(w(r)) \ge \log \frac{1}{r} . \tag{10}$$

The essential-norm formula (2) combined with (9) and (10) yields:

$$\|C_{\varphi}\|_{e}^{2} = \limsup_{|w| \to 1-} \frac{N_{\varphi}(w)}{\log \frac{1}{|w|}} \ge \lim_{r \to 1-} \frac{\log \frac{1}{r}}{\log \frac{1}{|w(r)|}} = \frac{1}{|\varphi'(\alpha)|}$$
(11)

Now for each positive integer n we have  $C_{\varphi}^n = C_{\varphi_n}$ . Since the Denjoy-Wolff point of  $\varphi$  is the limit of the sequence of successive iterates of  $\varphi$ , we see that  $\varphi_n$  also does not fix any points of U, and that  $\alpha$  must be *its* Denjoy-Wolff point. Thus  $\varphi_n$  has an angular derivative at  $\alpha$ , and our Chain Rule (Lemma 2.6) shows that  $\varphi'_n(\alpha) = \varphi'(\alpha)^n$ . This allows us to apply the essential-norm estimate (11) to  $\varphi_n$ , obtaining

$$||C_{\varphi}^{n}||_{e}^{2} = ||C_{\varphi_{n}}||_{e}^{2} \ge \frac{1}{|\varphi'(\alpha)|^{n}},$$

from which follows

$$\lim_{n} \|C_{\varphi}^{n}\|_{e}^{1/n} \geq \frac{1}{|\varphi'(\alpha)|^{1/2}} > 0.$$

Thus, by our definition (section 2.2),  $C_{\varphi}$  is not a Riesz operator.

Summary: If  $\varphi$  has no fixed point in U then  $C_{\varphi}$  is not a Riesz operator on  $H^2$ .

Suppose now that  $C_{\varphi}$  is a Riesz operator. Then  $\varphi$  fixes a point of U, which by a standard similarity argument we may assume to be the origin:  $\varphi(0) = 0$ . It remains to show that  $|\varphi'(0)| < 1$ .

The Schwarz Lemma insures that  $|\varphi'(0)| \leq 1$ , and in case of equality that  $\varphi$  has to be a rotation of U. Thus if we do not have the desired strict inequality on  $\varphi'(0)$ , then  $C_{\varphi}$  must be a unitary operator on  $H^2$ . We claim this contradicts the assumption that  $C_{\varphi}$  is Riesz.

More generally:

# Every linear isometry of Hilbert space into itself has essential spectral radius = 1.

This is well-known, but to keep our exposition complete, here is a proof. Suppose T is a Hilbert-space isometry. We begin by showing that the essential norm of T is 1. Since the essential norm is just the distance to the subspace of compact operators, it is clear that  $||T||_e \leq ||T|| \leq 1$ . To prove the opposite inequality, fix a compact operator K, and an orthonormal sequence  $(e_n)$ . Since T is an isometry,  $||Te_n|| = 1$  for each n, so it follows that for each positive integer n:

$$||T - K|| \ge ||(T - K)e_n|| \ge ||Te_n|| - ||Ke_n|| = 1 - ||Ke_n|| .$$
(12)

Now every orthonormal sequence converges weakly to zero, so because K is compact,  $||Ke_n|| \to 0$  as  $n \to \infty$ . Thus upon letting  $n \to \infty$  in the right-hand side of (12), we see that  $||T - K|| \ge 1$ , hence  $||T||_e \ge 1$ , as desired.

Since every Hilbert-space isometry T has essential norm one, and since every power of T is again an isometry, it follows from the last paragraph that  $||T^n||_e = 1$ for every positive integer n; hence, T cannot be a Riesz operator. In particular, no rotation of the disc can induce a Riesz composition operator. Thus, if  $\varphi$  fixes the origin and induces a Riesz composition operator, then  $|\varphi'(0)| < 1$ . ///

**5.4 Remarks.** (a) The argument given in the first part of Theorem 5.3 shows that if  $\varphi$  fixes no point of U, the essential spectral radius of  $C_{\varphi} : H^2 \to H^2$  is bounded below by  $|\varphi'(\alpha)|^{-1/2}$ , where  $\alpha \in \partial U$  is the Denjoy-Wolff point of  $\varphi$ . For this we could also have referenced [1, Lemma 5.3], where we showed that for this situation  $r_e(C_{\varphi})$ is precisely  $|\varphi'(\alpha)|^{-1/2}$ .

However the argument given above, in addition to offering a more self-contained exposition, can be easily modified to show that for any holomorphic self-map  $\varphi$  of U:

$$r_e(C_{\varphi}) \ge \max_{\zeta \in FP} |\varphi'(\zeta)|^{-1/2}$$
,

where on the right, FP denotes the collection of boundary fixed points of  $\varphi$ . For this we only need to use the general version of the Chain Rule given in [16, Chapter 4, Exercise 10, page 74] to show that if  $\varphi$  has an angular derivative at a boundary fixed point  $\zeta$  then so does every iterate  $\varphi_n$ , and  $\varphi'_n(\zeta) = \varphi'(\zeta)^n$ .

Thus if  $C_{\varphi}$  is a Riesz operator on  $H^2$  then  $\varphi$  cannot have an angular derivative at any boundary fixed point. Since every positive power of a Riesz operator is also Riesz, the same holds for each iterate of  $\varphi$ . Now boundary fixed points of iterates of  $\varphi$  are, in an obvious way, "boundary periodic points" of  $\varphi$ , so we have: If  $C_{\varphi}: H^2 \to H^2$  is a Riesz operator, then  $\varphi$  does not have an angular derivative at any boundary periodic point.

Poggi-Corradini [13] has recently proved the converse of this result for univalent maps  $\varphi$ . In general the converse is false, as shown by the fact that there exist inner functions with no angular derivative at any point of  $\partial U$  (see [16, section 10.2] for example)—the last part of the proof of Theorem 5.3 shows that no inner function can induce a Riesz composition operator. (Every inner function with a fixed point in U is conjugate, via a conformal disc automorphism, to an inner function that vanishes at the origin, and by [10, section 1] such inner functions induce isometries on  $H^2$ . Thus every composition operator induced by an inner function is similar to an isometry, and therefore is not Riesz.)

(b) There is a parallel between the results discussed here and the corresponding ones for compactness. Theorem 5.3 was first obtained in the context of power-compact operators by Caughran and Schwartz [3, 1975]. It has long been known that nonexistence of the angular derivative at every point of  $\partial U$  is necessary for  $C_{\varphi}$  to be compact on  $H^2$ , and that this condition is sufficient if  $\varphi$  is univalent (see [16, Chapter 2] for details and historical notes). Our results, along with those of Poggi-Corradini show that the same is true for *Rieszness* if non-existence of the angular derivative is required not everywhere on the boundary, but only at the *boundary periodic points* of the inducing map.

(c) Shapiro and Taylor [19, 1973] proved that for 0 , a composition $operator is compact on <math>H^p$  if and only if it is compact on  $H^2$ . The same is true for Riesz operators. The notions of essential norm and essential spectral radius, make sense for any Banach space, and more generally for any *p*-Banach space where 0 . Thus Riesz operators can be defined in these more general settings, andit turns out that all the spectral theory that makes Riesz-operator spectra identicalwith compact-operator spectra still holds (see [18]).

Now in [1] we have shown that for any holomorphic self-map  $\varphi$  of U, and any 0 ,

$$r_e(C_{\varphi}: H^p \to H^p) = \left[r_e(C_{\varphi}: H^2 \to H^2)\right]^{2/p}$$

It follows from this identity that for 0 :

 $C_{\varphi}$  is a Riesz operator on  $H^p$  if and only if it is a Riesz operator on  $H^2$ .

#### 6 Connections and Conjectures

In [17] Shapiro, Smith, and Stegenga study the relationship between the geometry of Koenigs models and compactness of composition operators on  $H^2$ . They establish, for example, that if the image  $\sigma(U)$  of a (univalent) Koenigs function  $\sigma$  contains a twisted sector, then  $\sigma$  cannot belong to  $H^p$  for all  $p < \infty$ . Thus in view of the work of the previous section:

If  $C_{\varphi}$  is Riesz, then the image  $\sigma(U)$  of its Koenigs eigenfunction cannot contain a twisted sector.

On the other hand, in [11] Pietro Poggi-Corradini shows that if  $\sigma(U)$  contains no twisted sectors, then  $\sigma \in H^p$  for all  $p < \infty$ , and raises the problem of describing an operator-theoretic property of  $C_{\varphi}$  that is equivalent to  $\sigma(U)$ 's containing no twisted sectors. As we have seen, Rieszness of  $C_{\varphi}$  is sufficient to ensure no twisted sectors lie inside  $\sigma(U)$ . Analysis of models presented in [17] provides some evidence that the Riesz property is also necessary: each model having the *no-twisted-sector property* (including the "bulging-strip" model we discussed in detail in Section 4) can be shown by application of Theorem 3.1 to yield a Riesz composition operator on  $H^2$ . This observation and further results in papers [1], [17], and [11] lead us to conjecture the following:

Suppose  $\varphi$  is univalent and  $\sigma$  is the Koenigs eigenfunction of  $\varphi$ ; then the composition operator  $C_{\varphi}$  on  $H^2$  is Riesz if and only if  $\sigma(U)$  does not contain a twisted sector.

More generally, we conjecture that for an arbitrary holomorphic self-map  $\varphi(U)$  (satisfying  $\varphi(0) = 0$  and  $0 < |\varphi'(0)| < 1$ ), the implication (8) goes both ways:

 $C_{\varphi}: H^2 \to H^2$  is Riesz if and only if  $\sigma \in H^p$  for all  $p < \infty$ .

As we mentioned in the Introduction, Poggi-Corradini [12] has recently established the first of these conjectures. We have just learned that he has proved the second as well [14].

We conclude by noting a connection between our work and the study of composition-operator spectra. In [5], Cowen and MacCluer characterize the spectrum of  $C_{\varphi}$  given that  $\varphi$  is univalent but not an automorphism, and  $\varphi(0) = 0$ ; in particular they show that the spectrum of  $C_{\varphi}$  must contain the disc  $\{z : |z| \leq r_e(C_{\varphi})\}$ , where  $r_e(C_{\varphi})$  denotes the essential spectral radius of  $C_{\varphi}$  on  $H^2$ . Our Theorem 3.1 provides a sufficient condition for this disc to be degenerate (i.e. =  $\{0\}$ ), while Theorem 4.2 shows that this can happen non-trivially.

# References

- [1] P. S. Bourdon and J. H. Shapiro, *Mean growth of Koenigs eigenfunctions*, Journal Amer. Math. Soc., to appear.
- [2] C. Carathéodory, Theory of Functions of a Complex Variable, Vol. 2, Chelsea, New York, 1954.
- [3] J. G. Caughran and H. J. Schwartz, Spectra of compact composition operators, Proc. Amer. Math. Soc. 51 (1975) 127–130.
- [4] C. C. Cowen, Composition operators on  $H^2$ , J. Operator Th. 9 (1983), 77–106.
- [5] C. C. Cowen and B. D. MacCluer, Spectra of some composition operators, J. Functional Analysis 125 (1994), 223–251.

- [6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [7] H. Dowson, Spectral Theory of Linear Operators, Academic Press 1978.
- [8] G. Koenigs, Recherches sur les intégrales de certaines équationes functionelles, Annales Ecole Normale Superior (3) 1 (1884), Supplément, 3–41.
- [9] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925), 481–519.
- [10] E. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449.
- [11] P. Poggi-Corradini, Hardy spaces and twisted sectors for geometric models, Trans. Amer. Math. Soc., 348 (1996), 2503–2518..
- [12] P. Poggi-Corradini, The Hardy class of geometric models and the essential spectral radius of composition operators, preprint.
- [13] P. Poggi-Corradini, Riesz composition operators and their Königs eigenfunctions, preprint.
- [14] P. Poggi-Corradini, The Hardy class of Kœnigs maps, preprint.
- [15] J. H. Shapiro, The essential norm of a composition operator, Annals of Math. 125 (1987), 375–404.
- [16] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, 1993.
- [17] J. H. Shapiro, W. Smith, and D. A. Stegenga, Geometric models and compactness of composition operators, J. Functional Analysis, 127 (1995) 21–62.
- [18] J. H. Shapiro, Essential Fredholm Theory, in preparation.
- [19] J. H. Shapiro and P. D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on H<sup>p</sup>, Indiana Univ. Math. J. 23 (1973), 471–496.

Department of Mathematics Washington and Lee University Lexington, VA 24450

Department of Mathematics Michigan State University East Lansing, MI 48824