WHICH LINEAR-FRACTIONAL TRANSFORMATIONS
INDUCE ROTATIONS OF THE SPHERE?

JOEL H. SHAPIRO

ABSTRACT. These notes supplement the discussion of linear fractional
mappings presented in a beginning graduate course in complex analysis.
The goal is to prove that a mapping of the Riemann sphere to itself is
a rotation if and only if the corresponding map induced on the plane
by stereographic projection is a linear fractional whose (two-by-two)
coefficient matrix is unitary.

1. SPHERES, POINTS, AND SUBSPACES

1.1. Point at infinity. Recall that we have discussed two ways of “legit-
imizing” the “point at infinity” for the complex plane:

(a) The Riemann Sphere S? (cf. our textbook [S, pp. 8-11]). Here the
idea is to map the extended plane C onto the Riemann Sphere 52
via the stereographic projection , making oo correspond to the north
pole. Recall also that the stereographic projection

52\ {North Pole} — C

is conformal.

(b) Complex Projective space CP! (cf. [S, p. 25]). We regard this as the
collection of one dimensional subspaces of C2, with the point z € C
identified with the subspace spanned by the column vector [z, 1]
(where the superscript “t” denotes “transpose”), and oo identified
with the one spanned by [1,0]'.

1.2. Notation. Let ? denote the one dimensional subspace of C? spanned
by the vector [z, 1]t if 2 € C, and let o be the subspace spanned by [1,0]%.

1.3. Matrices and LFT’s. We have also made a connection between linear
fractional transformations and matrices. This begins in a purely formal
way by associating each LFT ¢(z) = %+ with the two-by-two complex

cz+d
a

nonsingular matrix [p] = . Z ], noting that actually [p] should not just

stand for one matrix, but for the one-parameter family: all the multiples
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of the above matrix by non-zero complex numbers (reflecting the fact that
if we multiply all the coefficients of a LF'T by the same non-zero complex
number, we don’t change the transformation).

We connect the action of the LFT ¢ on S? with that of any of its matrices

on C? by noting that
a b z | | az+b
c d 1| | ecz+d |’

so making the more proper interpretation of [p] as the collection of all mul-
tiples of any matrix whose coefficients are those of ¢ (including zero now),

we have—in the notation of §1.2—[¢](2) = ¢(z), i.e., for any z € C:

The one dimensional subspace you get by allowing the col-
lection of matrices that represent ¢ (now including the zero-
matriz) to act on Z is just the (one dimensional) subspace

spanned by o(z).

1.4. Corollary. Suppose ¢ is a LFT and z € C. Then the following are
equivalent:

(a) z is a fized point of ¢.
(b) Z is an eigenvector of [¢] (i.e. of each matrix that represents ¢).
(c) [¢] fizes the subspace %.

1.5. Matrices and maps of the sphere. We’ve also discussed, via some
homework problems, the fact that LFT’s can be viewed as conformal maps
of the Riemann sphere. Thus we can view two-by-two complex nonsingu-
lar matrices as acting conformally on the Riemann Sphere. Perhaps most
important of the complex matrices are the unitary ones—the ones whose ad-
joints (i.e., conjugate transposes) are their inverses. The question we wish
to pose is:

What do two-by-two unitary matrices do to S*?

1.6. Example. The LFT ¢(z) = 1/z is given by a unitary matrix (zero
on main diagonal, 1 on the cross-diagonal). It has fixed points £1, and
we saw in a homework problem that its action on S? can be viewed as a
composition of two reflections in orthogonal planes that contain the real
axis. So it’s reflection in the intersection of these planes, i.e., in the real
axis, i.e., it’s rotation by 180° about the real axis!

2. UNITARY MATRICES

For an n x n complex matrix A let A* denote its adjoint. As mentioned
above, “A unitary” means “A is invertible, with inverse equal to A*.” It’s
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easy to see that A is unitary iff its columns form an orthonormal basis for
C™. (Sketch of proof: The (i,7) element of the product of two matrices is
the dot product (no complex conjugates this time) of the i-th row of the
first matrix with the j-th column of the second one.)

Here a set of vectors in C™ is said to be “orthonormal” if its elements
all have norm one, and are “pairwise orthogonal” with respect to the inner
product of C™ (defined like the “real dot product,” but with elements of the
second vector conjugated; see [A, Chapter 6]). One checks easily that for
any n X n complex matrix A,

(Av, w) = (v, A*w) Yo, w € C",

and from this it’s easy to check that unitary matrices preserve norms and
inner products:

2.1. Proposition. If A is an n xn unitary matrix, then for any pair of vec-
tors v, w € C™ we have (Av, Aw) = (v, w). In particular ||Av|| = ||lv|]] Vv €
c".

For more details on this, and other aspects of unitary matrices and operators,
see [A, Chapter 7] (where the term “isometry” is used instead of “unitary
operator”).

In what follows we take a path that emphasizes the action of a unitary
matrix as a linear transformation on C", and prove the spectral theorem for
such matrices. For an alternate, more computational, way of proceeding that
emphasizes the two-by-two case and does not mention linear transformations
see §4 below. Either of these routes will provide, for each unitary matrix A,
a crucial decomposition of C? into orthogonal eigensubspaces of A.

For a subspace M of C" let M denote the “orthogonal complement”
of M, i.e. the set of vectors in C” orthogonal to M. It’s easy to check
that (M+)+ = M, and that the direct sum of M+ and M is all of C*. A
special property of unitary matrices is this, where we now view matrices as
linear transformations acting on C" (viewed as the space of all n-dimensional
column vectors):

2.2. Proposition. If M is a subspace of C" and A is an n X n unitary
matriz with A(M) C M, then A(M*) Cc M*.

In other words, for a unitary matrix, every invariant subspace reduces the
linear transformation represented by the matrix, in the sense that C" can
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be decomposed into the orthogonal direct sum of two nontrivial subspaces
that are invariant ! for the transformation.

Proof. Suppose v € M~'; we want to show Av € M. Let w be any vector
in M. Then

(Av, w) = (v, A*w) = (v, A" w).
Now A is invertible, so A(M) has the same dimension as M, and since it
is contained in M it must equal M (finite dimensionality is crucial here!).
Thus A='M = M, hence in the above inner-product equation A~ w € M,
so the last inner product is zero. Thus Av € M1, as desired. O

This sets the stage for the most important result about unitary matrices:

2.3. The Spectral Theorem for Unitary Matrices. For each unitary
n X n matriz A there is an orthonormal basis for C™ consisting entirely of
eigenvalues of A.

Proof. The characteristic equation det(A) — AI = 0 is an n-th degree poly-
nomial in A with complex coefficients, so it has a complex solution A\; (by
the Fundamental Theorem of Algebra). Thus the matrix A— A/ is singular,
so it left-multiplies some non-zero vector v to the zero-vector. Thus v; is
an eigenvector of A (with A; the corresponding eigenvalue).

The subspace of C™ spanned by the eigenvector v is invariant under
A, hence, by the last Proposition, so is its orthogonal complement M;. If
M, = {0} then n = 1 and we are done. Otherwise, restrict the linear trans-
formation induced by A to M; and repeat the “characteristic polynomial”
argument of the last paragraph, with the operator (represented by the ma-
trix) A replaced by its restriction to M;. This produces an eigenvector vy
that lies in M7, and so is orthogonal to v;. The subspace of C™ spanned
by v1 and vy is again invariant for A; if it’s all of C™ then we’re done (with
n = 2). Otherwise the orthogonal complement M this subspace consists
of more than the zero-vector, and is also invariant under A, so as before it
contains an eigenvector vz for A, necessarily orthogonal to v1 and vy. Keep
going until you get n of these! O

2.4. Remark. The norm-preserving property guarantees that for a uni-
tary matrix, each eigenvalue must have modulus one. The Spectral The-
orem above says that every unitary matrix has n eigenvalues (multiplicity
counted). Thus the determinant of any unitary matriz has modulus one (it’s
the product of the eigenvalues). This can be seen more directly by noting

170 say a subspace M of a vector space is “invariant” for a linear transformation A
means that AM C M. The proof of Proposition 2.2 shows that for unitary transformations
A we have AM = M for each invariant subspace.
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that if A is unitary and A = det A, then A = det A* = det A=} = 1/A,
hence 1 = AA = |A|%

3. UNITARY MATRICES AND LFT’s

Suppose now that an LF'T ¢ is represented by a unitary two-by-two matrix
A. By the Spectral Theorem, A has orthogonal eigenvectors v; and v in
C?. These correspond to points z; and 2y of the extended plane @, and by
Corollary 1.4 we know that these two points are fized points of p. What
does the orthogonality of their corresponding C2-subspaces say about these
points?

3.1. Lemma. For z; and z5 in C, the following are equivalent:

(a) The C?-subspaces 71 and 7y are orthogonal.

(b) The stereographic projections 27 and z5 are antipodal (i.e., zf = —z3
in R3).

(c) 20 =—1/71.

Proof. Recall that for z € C we’ve defined 2 to be the subspace spanned by
the vector 5 & [2,1]" | so if 21 and zy are finite, then (7, 22) = 2123 + 1,
which establishes the equivalence of (a) and (c) for finite z’s. If (say) z1 = oo
then 7 is the subspace spanned by the vector [1,0]%, hence 2 L 7 iff % is
spanned by [0, 1], i.e. iff zo = 0. Thus (a) and (c) are equivalent in any case.
The equivalence of (c¢) and (b) was noted in a previous homework problem
(see Problem Set IIT). O

3.2. Corollary. If a LFT ¢ has a unitary matriz then ¢ has two distinct
fized points in C, and these correspond, via stereographic projection, to an-
tipodal points of the Riemann Sphere.

What about the distance-preserving property of unitary matrices? For
a two-by-two unitary does this get reflected somehow in the action of the
corresponding LFT on the extended plane? The next result says “yes”!

3.3. Theorem. If ¢ is a LFT given by a unitary matriz, then @ preserves
the spherical metric, i.e., p(p(z),p(w)) = p(z,w) for every pair of points
z,w € C.

Proof. Let’s continue with the notation z = [z, 1] for z € C, and co = [1, 0]".
Then the formula for spherical metric [S, page 11] can be rewritten (for z, w
finite):

def 2|z — w| 2||z — ||

(1) plz,w) = =

VIR FL e+ lE
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Note also that

P \e) = = )
1 cz+d cr 4 d
that is,
__ 1 R
2 = Az Y .
(2) v(2) i d z zeC

Now let’s put these observations together in an elementary calculation:

p(go(z),<p(w)) 2”‘6(\%) _f\(iu)H _ 2||cz+d cw+d||
lo(2)[[[o(w)]] Il
_ |AZ(cw + d) — Aw(cz + d)||
| AZ]|[| A
B |A{Z(cw + d) — w(cz + d)}|
| AZ| || Aw]]

Since unitary matrices preserve norms (Proposition 2.1), this yields

|Z(cw + d) — w(cz + d)||
(3) p(e(z), p(w)) =2 T
Izl
Let’s work on the numerator of the fraction on the right-hand side of the
last expression:

foew s~ ez + i = || 6623 || =i [ 2]

Now the columns of the unitary matrix A* have norm 1 in C?, so the last
calculation yields:

1Z(cw + d) —w(cz + d)]| = |z — w| = [|Z — @]

Upon putting this together with (3) we obtain:

plo(2) pw)) = 21271

as promised. If one of z, w is 0o the proof is similar, and easier. Alternately,
one could “just take limits” to get to infinity; I leave the details to you. [

2 — wf

)~ )

So far we’ve proved that LFT’s induced by unitary matrices have these
properties, when viewed as 1-1 maps taking the Riemann Sphere onto itself:

e They are conformal (from conformality of LF'T’s on the plane, and
of the stereographic projection).

e They have antipodal fixed points.

e They preserve distances.
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Now rotations of the sphere have the above three properties, and it turns
out—as we prove in §5 below—these are the only such mappings (see also
[N, page 36]). This, along with the work done here, proves one half of the
result these notes have been aiming for:

3.4. Theorem. A mapping of S? into itself is a rotation if and only if it is
induced, via stereographic projection, by a unitarily-represented LFT.

Proof. We’ve already shown (modulo the work of §5) that unitarily-represented
LFTs induce rotations of S?. Suppose conversely that we have a rotation of
the sphere. If the axis of this rotation is the polar one (the line through the
north and south poles), then it’s clear that the map induced on the plane via
stereographic projection is a rotation: ¢(z) = wz for some complex number
w of unit modulus. This ¢ is an LFT represented by the unitary matrix

w 0
0 1 ]|°
Suppose the axis of rotation is not the polar axis. Then the induced map

¢ of C fixes points z; and z; of C\{0}. Write z; = —b/a where |a|? + |b|? =

1 and consider the LFT 9(z) = —aEZ:fa’ which takes 27 to the origin. It

a
b a
hence is unitary. Thus v induces a rotation of S2. Moreover the map
hoporp™! fixes the origin, and its corresponding sphere map is a composition
of rotations, hence is itself a rotation (that a composition of rotations is a
rotation is another geometric result we won’t prove here). Just as in the
previous paragraph, ¥ o p o1 ~! is a rotation of the plane: z — wz for some
unimodular complex number w, hence ¢(z) = ¥~ (wi(2)). This exhibits ¢
as the composition of three unitarily-represented LFT’s, hence it is itself a
LFT that is unitarily represented by the matrix

[v=1] [z—wz] (]
This completes the proof. O

is represented by the matrix [ }, which has orthonormal columns,

3.5. Remark on stereographic conformality. As a curious byproduct
of this connection between linear fractional transformations and rotations
of the sphere we get an easy proof of the conformality of the stereographic
projection. It’s intuitively clear that two smooth plane curves intersecting
at the origin have stereographic images that intersect at the south pole
of S? at the same angle, and with the same sense (this is perhaps most
easily visualized if we think of the complex plane as being the plane tangent
to S? at the south pole, rather than our usual interpretation of C as the
equatorial plane). If the original curves intersect at any other point p of the
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plane, we may, as in the above proof of Theorem 3.4, move p to the origin by
means of a unitarily represented LFT, which is conformal at p and induces
a rotation of S? (also conformal, of course). Thus conformality at p follows
from conformality at the origin. O

4. APPENDIX I: TWO-BY-TWO UNITARIES WITHOUT LINEAR
TRANSFORMATIONS.

Let A be a two-by-two matrix. In the first paragraph of §2 we observed
that A is unitary iff its columns form an orthonormal basis for C2. Thus (as
we observed in the proof of Theorem 3.4 above) every two-by-two matrix of
the form:

(4) A:[_“bb},

a
with |a|? + |b|? = 1, is unitary (with determinant 1).

4.1. Theorem. Fvery two-by-two unitary matrix with determinant 1 has
the form (4), with |a|® + [b]*> = 1

Proof. Suppose { CCL Z ] is unitary with determinant 1. Then

ab+ecd = 0
ad—cb = 1
where the first equation expresses the orthogonality of the columns and the

second the fact that the determinant is 1. In other words the system of
linear equations

br+dy = 0

de —by = 1
has solution z = a,y = c¢. Now the determinant of the coefficients of this
system is —(|b|? + |d|?) = —1 (the term in parentheses is the norm of the

second column of the matrix, which is 1). So the system has a unique
solution which, by Cramer’s Rule (for example), turns out to be z = d,
y = —b, hence a = d and b = —b, so our matrix has the desired form. U

Now we can show that the fixed points of a unitary-induced LFT corre-
spond to antipodal points of the Riemann sphere.
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4.2. Theorem. Suppose ¢ is a LFT whose matrix is unitary. Then ¢ has
two distinct fived points in C. If these are zo and zy then zo = —1/Z7.

Remark. As we remarked in proving Lemma 3.1 it follows from a homework
problem that the stereographic mapping of these points onto the Riemann
sphere are antipodal, and from from that Lemma we also know that the
subspaces Z; and 7 of C? corresponding to these points are orthogonal
eigensubspaces. Thus we have the following special case of Theorem 2.3 (the
Spectral Theorem): Every two-by-two unitary matrix has an orthogonal pair
of eigenvectors.

Proof of Theorem. We may assume the matrix of coefficients of ¢ has deter-
minant 1. By Theorem 4.1 this matrix has the form (4) with |a|? + |b]? = 1,
i.e.,

az+b
5 Z) = ———
9 o) = S
Now ¢(0) = 0 iff b = 0, so ¢(z) = (a/a)z, a rotation about the origin.
Therefore oo is the other fixed point.

So suppose b # 0. Then it’s easy to see that the fixed points of ¢ satisfy
the quadratic equation p(z) = 0, where

p(2) =b2* + (a — @)z +b.

A quick calculation shows that

1. —

2p(-2) = 1(2),
hence z(# 0) satisfies p(z) = 0 iff the same is true of —1/z. Thus if z; is a
fixed point of ¢, then so is zo = —1/77. O

It remains to give a proof of Theorem 3.3, the spherical distance-preserving
property of unitary-induced LFT’s. This follows from the representation (4)
(with |a|? + |b|?> = 1) via a direct calculation. I leave this one to you.

5. APPENDIX II: CONFORMAL ISOMETRIES ARE ROTATIONS

To complete our proof that unitarily induced LFTs correspond, via stere-
ographic projection, to rotations of the sphere, we need to show that every
conformal isometry of the sphere with antipodal fixed points is a rotation.
So let T be such a mapping.

STEP 1: Extension to R3. For x € R3\{0} let
o = HiH and T(z) < ||lz|T(").
T
Define T'(0) = 0.
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STEP 2: Preservation of angles. Suppose first that z,y € S? (i.e., they're
unit vectors). Then because T is an isometry on S%: || T(z)—T(y)|| = ||lz—v||.
Upon squaring both sides of this equation,using the fact that the norm-
squared of a vector equals the dot product of that vector with itself, and
then the isometric property again, we see quickly that T'(z) - T'(y) = x - y.
Thus T preserves angles between vectors.

Now suppose = and y are any non-zero vectors in R?. Then using the
definitions and notation of Step 1:

T(x) T(y) = |=llllylIT(=") - T(y) = lzllllyll2" -y =z y.
So, at least for non-zero vectors, 1" preserves dot products. It’s trivial to see
that the same is true if one of z,y is zero (since 70 = 0 by definition).

STEP 3: Linearity. Use the “preservation of dot products” proved in Step 2
to check (by expressing norm-squared in terms of dot product) that for any
z,y € R? and a € R:

IT(@) — T(y) - T(z —y)| =0 and [|aT(x) — T(az)] = 0.

STEP 4: Finale. So now our extended T is a linear isometry on R3, i.e., an
orthogonal linear transformation. Since it also has antipodal fixed points, it
fixes every point of the line through these fixed points. i.e., this line is an
eigensubspace corresponding to the eigenvector 1. The plane orthogonal to
this line is an invariant subspace for T' (same argument we used in the proof
of the Spectral Theorem for Unitary Matrices—Theorem 2.3), and it’s easy
to check that conformality plus orthogonality requires the restriction of T
to this plane to be a rotation. Thus T, acting on R3, is a rotation about the
line through the antipodal fixed points of the original sphere-map. U
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