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Abstract. We work on the Hardy space H2 of the open unit disc U, and consider the
numerical ranges of composition operators Cϕ induced by holomorphic self-maps ϕ of U.
For maps ϕ that fix a point of U we determine precisely when 0 belongs to the numerical
range W of Cϕ, and in the process discover the following dichotomy: either 0 ∈ W or the
real part of Cϕ admits a decomposition that reveals it to be strictly positive-definite . In this
latter case we characterize those operators that are sectorial. For compact composition
operators our work has the following consequences: it yields a complete description of the
corner points of the closure of W , and it establishes when W is closed. In the course
of our investigation we uncover surprising connections between composition operators,
Chebyshev polynomials, and Pascal matrices.

1. Introduction

The study of composition operators turns the lens of operator theory upon the classical
theory of holomorphic self-maps of the open unit disc. Let U denote this disc, and H(U) the
space of all functions holomorphic thereon. The idea is to associate with each holomorphic
ϕ : U → U the composition operator Cϕ defined on H(U) by the equation

Cϕf = f ◦ ϕ (f ∈ H(U)).

The operator so defined is linear on H(U), and continuous in the natural (compact-open)
topology of that space; the goal is to connect the function-theoretic properties of ϕ with
the operator-theoretic behavior of Cϕ.

The subject’s true appeal originates with J.E. Littlewood’s remarkable Subordination
Theorem [24, 1925], which guarantees that each composition operator restricts to a bounded
linear transformation on the Hardy space H2 of U. Littlewood’s Theorem provides a striking
way of connecting the function theory of the unit disc with the theory of bounded linear
operators on Hilbert space. The past three decades have witnessed enthusiastic exploration
of this connection, as partially recorded in the monographs [8] and [32], and the recent
conference proceedings [17].

In this paper we study how the numerical range of a composition operator on H2 is
influenced by the properties of its inducing map. The numerical range of a bounded linear
operator T on a Hilbert space H is the set of complex numbers

W (T ) = {〈Tf, f〉 : f ∈ H, ‖f‖ = 1}.

Some important properties of the numerical range are:
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(a) it lies in the disc {|w| ≤ ‖T‖} (obvious);
(b) it contains every eigenvalue of T (also obvious);
(c) its closure contains the spectrum of T (elementary, see e.g., [15, Theorem 1.2-1, p. 6]

or [18, Problem 214, p. 115])
(d) it is not similarity invariant (elementary, but a major theme in this paper);
(e) it is convex (very mysterious!).

Note in particular that according to property (b) the numerical range of any composition
operator contains the point 1, since 1 is an eigenvalue (composition operators fix constant
functions). Also note that by properties (c) and (e), the convex hull of the spectrum of T
is contained in the closure of W (T ) for any Hilbert space operator T .

Convexity was first proved for the boundary of the numerical range by Toeplitz in 1918
[34], and the result was completed the following year by Hausdorff [19]. This Toeplitz-
Hausdorff Theorem has fascinated mathematicians ever since. Many proofs have been
given, perhaps the simplest being that of Dekker [12] (see [18, Problem 210]), and the most
conceptual that of Davis [9]. However much remains to be understood; for example, the
numerical range is easily seen to be compact if H is finite dimensional, but for H merely
separable the numerical range was only relatively recently shown (by Agler) to be a Borel
set [1, 1982].

In this paper we focus on the following:

Zero-Inclusion Question. For which ϕ does W (Cϕ) contain the origin?

We are drawn to this question for three reasons:
• The numerical range of any composition operator, except for the identity, contains the

origin in its closure (Theorem 3.1 below).
• The numerical range of a compact operator is closed if and only if it contains the origin

[11].
• Resolution of the Zero-Inclusion Question for W (Cϕ) leads to a description of the

corner points of the closure of W (Cϕ) when Cϕ is compact (Theorem 7.5 below).
When Cϕ is compact, ϕ necessarily fixes a point in U (see, e.g., [32, p. 84]). For those sym-

bols ϕ that fix a point p ∈ U we answer the Zero-Inclusion Question completely (Theorem
5.3): 0 does not belong to W (Cϕ) if and only if there is an r ∈ (0, 1] such that

|p| ≤
√

r and ϕ(z) = αp(rαp(z)) (z ∈ U),

where αp is the self-inverse automorphism of U given by αp(z) = (p − z)/(1 − p̄z). In
addition, we show that 0 ∈ W (Cϕ) implies 0 ∈ intW (Cϕ) as long as ϕ doesn’t have the
form ϕ(z) = tz for some t ∈ [−1, 0].

Our work on the Zero-Inclusion Question occupies Sections 3, 4, and 5 of this paper. This
work is completed in Section 5, where we consider composition operators whose symbols
have the form

ϕ = αp ◦ (rαp), for some p ∈ U and r ∈ (0, 1).(1)

We emphasize that for fixed r each of these “conformal dilations” ϕ is conformally conjugate
to the ordinary dilation z → rz; hence, the corresponding composition operators Cϕ are
similar to the simple composition operator f(z) → f(rz) whose numerical range does not
include zero (it is easily seen to be the interval (0, 1]). Despite the similarity of these
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operators, there is, as we indicated in the preceding paragraph, a zero-inclusion dichotomy:
0 /∈ W (Cϕ) if |p| ≤

√
r and 0 ∈ int W (Cϕ) if |p| >

√
r. This points out the crucial role

played in our work by the fact that the numerical range is not similarity-invariant. Both this
lack of invariance and the zero-inclusion dichotomy are illustrated in the following sequence
of figures, the second and third of which are computer-generated approximations. In all
three figures ϕ = αp ◦ (rαp) with r = 1/4: in the first figure p = 0, i.e. ϕ is a dilation; in
the second one p = 3/8, so that p <

√
r; and in the third p = 3/4, illustrating the behavior

for p >
√

r.

Numerical ranges of three similar composition operators

Observe that in Figure 2, W (Cϕ) appears to lie in the open right half-plane. Our work
on the zero-inclusion dichotomy in Section 5 shows that Figure 2 representative: we prove
that that the real part of Cϕ is strictly positive whenever ϕ has the form (1) and |p| ≤

√
r.

In Section 6 we continue our analysis of W (Cϕ) for ϕ conformally conjugate to a positive
dilation. We prove that when ϕ has the form (1) and |p| < r, then not only does W (Cϕ)
lie in the open right half-plane, it lies in a sector {z : | arg(z)| < θ} for some positive acute
angle θ (Figure 2 is, once again, representative). However, we show that when |p| =

√
r,

then W (Cϕ) does not lie in such a sector. We thus obtain a characterization of the sectorial
composition operators (among those whose symbols fix a point in U). Behind our analysis
of the zero-inclusion and sectorial issues at the point p =

√
r lie interesting connections

between composition operators, Pascal’s matrix, and Chebyshev polynomials.
In Section 7 we show how our work on the Zero-Inclusion Question leads to a complete

characterization of the corner points of the closure of W (Cϕ) when Cϕ is compact. (An
element p of a set E ⊂ C is a corner point of E provided E is contained in a half-cone with
vertex p and angular opening less than π.)

In the final section of this paper we discuss the Zero-Inclusion Question for mappings ϕ
that do not fix a point of U. Our work in this section and in several others is simplified by
the following result (Corollary 3.6), which requires no fixed-point hypothesis:

Suppose ϕ is a nonconstant holomorphic self-map of U. If ϕ is not one-to-one,
then 0 ∈ intW (Cϕ).
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We remark that Matache, who studies numerical ranges of composition operators in [26],
presents some results (Theorems 3.1, 3.4, and 3.5) whose conclusions imply 0 ∈ intW (Cϕ);
in each of these results ϕ is not univalent.

Acknowledgment. We wish to thank Wayne Dymacek of Washington and Lee Univer-
sity for providing us with helpful references concerning Pascal matrices and Chebyshev
polynomials.

2. Preliminaries

We gather here, often without proof, some well known results about Hardy spaces, nu-
merical ranges, and conformal automorphisms that will be needed for the sequel.

2.1. The space H2. For functions f holomorphic on U we use f̂(n) to denote n-th coeffi-
cient of f in its Taylor expansion about the origin. The Hardy space H2 is the collection
of functions f holomorphic on U with

‖f‖2 :=
∞∑

n=0

|f̂ (n)|2 < ∞.

The function ‖ ·‖ so defined is a norm that turns H2 into a Hilbert space with inner product

〈f, g〉 =
∞∑

n=0

f̂(n)ĝ(n).

By the Riesz-Fisher theorem the trigonometric series
∑∞

0 f̂(n)einθ associated with an H2

function f is the Fourier series of some function f∗ ∈ L2 = L2(m, ∂U), where m denotes
arclength measure on ∂U, normalized to have total mass one. Clearly the map f → f∗

takes H2 isometrically onto the closed subspace of L2 consisting of functions whose Fourier
coefficients of negative index vanish. The boundary function f∗ is, in fact, the natural
extension of f to ∂U; it is just the radial limit function

f∗(ζ) = lim
r→1−

f(rζ),

where the limit exists for m almost every ζ ∈ ∂U. From now on we simply write f(ζ) instead
of f∗(ζ) for each ζ ∈ ∂U at which this radial limit exists, letting the context determine the
meaning of the symbol f .

With these observations the norm and inner product in H2 can be computed on the
boundary of the unit disc as:

‖f‖2 =
∫

∂U
|f |2 dm (f ∈ H2)

and
〈f, g〉 =

∫

∂U
fg dm (f, g ∈ H2).
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2.2. Reproducing kernels. Associated with each point a ∈ U is its reproducing kernel

Ka(z) :=
1

1 − az
=

∞∑

n=0

anzn (z ∈ U).

Clearly Ka ∈ H2 for every a ∈ U, and the series definition of the inner product for H2

yields immediately the reproducing property

〈f, Ka〉 = f(a) (f ∈ H2, a ∈ U).(2)

The importance for composition operators of the collection of reproducing kernels stems in
part from the adjoint property

C∗
ϕKa = Kϕ(a) (a ∈ U),(3)

which follows quickly from the reproducing property.

2.3. Compression and the numerical range. We have already defined the numerical
range W (T ) of an operator T on a Hilbert space H and noted its salient features. W (T )
is just the image of the unit sphere of H under the quadratic form QT : H → C associated
with T :

QT (f) = 〈Tf, f 〉 (f ∈ H).
If M is a closed linear subspace of H and P the orthogonal projection of H onto M, then
the restriction TM of the operator PT to M is called the compression of T to M. It
is easy to check that the quadratic form of TM is just the restriction of QT to M, and
so W (TM) ⊂ W (T ). It is an easy step from this to conclude that the convexity of the
numerical range for any Hilbert space operator follows from the two dimensional case.

2.4. The two dimensional case. There are only a few possibilities for the numerical
range of a linear operator on a two dimensional Hilbert space. One of these is trivial; if the
operator is a scalar multiple of the identity then its numerical range is a single point (that
scalar). So assume T is not a scalar multiple of the identity on H. Then there are only
three possibilities:
(a) T has just one eigenvalue. Then W (T ) is a closed disc centered at that eigenvalue.
(b) T is normal. Then T has two distinct eigenvalues (else it is a scalar multiple of the

identity), and W (T ) is the closed line segment joining these eigenvalues.
(c) T is not normal and has two distinct eigenvalues. Then W (T ) is a closed elliptical

disc with foci at the eigenvalues. Case (a) can be viewed as the limiting case of this,
where the foci coincide.

The last case will be particularly important for us. If a non-normal T has distinct eigenvalues
λ1 and λ2 then the dimensions of the elliptical disc W (T ) are determined by the angle
between the eigenvectors. More precisely, let fj be an eigenvector for λj with ‖fj‖ = 1
(j = 1, 2), and set γ = |〈f1, f2〉|. Then the major axis of W (T ) has length

|λ1 − λ2|/
√

1 − γ2,

and the minor axis has length γ times that of the major axis [18, page 113]. In particular,
if T has matrix [

λ1 a
0 λ2

]
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with respect to an orthonormal basis of C2, then the length of the major axis of W (T )
is

√
|a|2 + |λ1 − λ2|2, while that of the minor axis is just |a| (see [15, Chapter 1] or [21,

Chapter 1] for more details).
In studying composition operators, the case where the inducing function is a constant—

whereupon the operator itself has rank one—is usually of little interest. The same is true
here, but disposing of this simple case takes a little more work than one might expect. We
do this right now (cf. [26, Theorem 2.4]).

2.5. Proposition. Suppose T is a bounded linear operator on a Hilbert space of dimension
≥ 2, and suppose the range of T is one dimensional, so that there exist nonzero vectors g
and h with ‖h‖ = 1 such that

Tf = 〈f, g〉h (f ∈ H).

(a) If g = ch for some c ∈ C\{0} then W (T ) is the closed line segment from 0 to c.
(b) If g ⊥ h then W (T ) is the closed disc centered at the origin, of radius ‖g‖/2
(c) Otherwise W (T ) is a closed elliptical disc with foci at 0 and 〈h, g〉.

Proof. Since H has dimension > 1 it contains a nonzero vector orthogonal to g, and T
therefore annihilates this vector, hence 0 ∈ W (T ).

Let M be the linear span of g and h, and P the orthogonal projection of H onto M.
Then an easy calculation shows that

〈Tf, f〉 = 〈PTPf, f〉 (f ∈ H),

so that W(T)=W(PTP). Now PTP is the orthogonal direct sum of the compression TM of T
to M, operating on M, and the zero-operator acting on M⊥. Thus W (PTP ) is the convex
hull of 0 and W (TM), which equals W (TM) because 0 ∈ W (T ). Thus W (T ) = W (TM), so
we may without loss of generality assume that H = M and T = TM, which we do for the
rest of the proof.

If g = ch for some nonzero scalar c we have

〈Tf, f〉 = c〈f, h〉〈h, f〉 = c|〈f, h〉|2

from which it follows easily that W (T ) is the closed line segment from the origin to c.
If g is not a scalar multiple of h then set e1 = h and

e2 = a(g − 〈g, h〉h), where a−1 = ‖g − 〈g, h〉h‖.
Then the pair (e1, e2) is an orthonormal basis for H relative to which T has matrix

A =
[

〈h, g〉 b
0 0

]
, where b = a(‖g‖2 − |〈g, h〉|2).

The point here is that b 6= 0 because g is not a scalar multiple of h. Thus if g ⊥ h then

A =
[

0 ‖g‖
0 0

]
, which has numerical range equal to the closed disc with center at the origin

and radius ‖g‖/2; otherwise W (A) is a closed elliptical disc with foci at 0 and 〈h, g〉.
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2.6. Corollary. Suppose ϕ ≡ a ∈ U. If a = 0 then W (Cϕ) is the closed interval [0, 1],
otherwise it is a closed elliptical disc with foci at 0 and 1.

Proof. We have for every f ∈ H2:

Cϕf = f(a) = 〈f, Ka〉 · 1,

where Ka is the reproducing kernel of Section 2.2. The result follows upon applying the
previous Proposition with g = Ka and h ≡ 1.

2.7. Symmetry of W (Cϕ). The following observation will prove useful in Sections 6 and
7:

If ϕ is real on the real axis (or, equivalently, has real Taylor coefficients at the
origin), then W (Cϕ) is symmetric with respect to the real axis.

If ϕ has real Taylor coefficients at 0, then the matrix of Cϕ with respect to the basis {zn}
of H2 will have real entries. In this case, if w = 〈Cϕf, f〉 for some f in the unit sphere of
H2, then w̄ = 〈Cϕf̃ , f̃〉, where f̃ (z) = f(z) is also in the unit sphere. Thus W (Cϕ) will be
symmetric relative to the real axis.

2.8. Conformal automorphisms and dilations. A conformal automorphism is a uni-
valent holomorphic mapping of U onto itself. Each such map is linear fractional, and can
be represented as a product ω · αp, where

αp(z) :=
p − z

1 − pz
(z ∈ U)(4)

for some fixed p ∈ U and ω ∈ ∂U [30, Theorem 12.6, page 255]. The special automorphism
αp is particularly convenient to use because it is self-inverse and exchanges the origin with
the point p (see [32, Chapter 0], for example).

A dilation (more precisely, an r-dilation) is a map of the form δr(z) = rz, where r ∈ U.
We call r the dilation parameter of δr. If r > 0 we call δr a positive dilation. Clearly
the composition operator Cδr on H2 is compact and normal, having for each non-negative
integer n the monomial zn as an eigenvector with eigenvalue rn. Easy arguments show that
W (Cδr) is:
(a) the semi-open interval (0, 1] if r > 0,
(b) the closed interval [r, 1] if −1 < r ≤ 0.
(c) the convex hull of a sequence that spirals monotonically towards the origin if r is not

real (hence a polygon containing the origin in its interior, see [26, Proposition 2.2]).
Case (a) shows that the origin need not always belong to the numerical range of a composi-
tion operator not the identity, and (b) shows that the origin can belong to W (Cϕ) but not
its interior. For non-dilations fixing the origin, however, the situation is different, as we will
see in Theorem 3.8.

A conformal dilation (more precisely, a conformal r-dilation) is a map that is conformally
conjugate to an r-dilation, i.e., a map ϕ = α−1 ◦ δr ◦ α, where r ∈ U and α is a conformal
automorphism of U. Each such map fixes the point p = α−1(0) ∈ U . Now as we have
previously noted, α = ρω ◦ αp for some ω ∈ ∂U, where αp is the special (self-inverse)
automorphism defined by (4), and ρω is the rotation defined by ρω(z) ≡ ωz. From this it
follows easily that ϕ = αp ◦ δr ◦ αp.
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Finally, it is worth noting that for ϕ as in the last paragraph and η ∈ ∂U, the map ψ :=
ρη ◦ϕ ◦ (ρη)−1 is a conformal r-dilation that fixes the point ηp. Now Cψ = V −1CϕV , where
V is the unitary composition operator induced on H2 by ρη, hence given any conformal
dilation we may rotationally conjugate its fixed point p to any other point of the circle
|z| = |p| at the cost of a unitary equivalence at the composition operator level. Since
unitary equivalence does not change the numerical range we may, if it is convenient, assume
with no loss of generality that the fixed point lies on the unit interval.

We will see in Section 4 that the conformal dilations that do not fix the origin, although
simple in form, play a pivotal role in the study of zero-inclusion for the numerical range.

2.9. Zero-Inclusion for Automorphic Composition Operators. Numerical ranges of
composition operators induced by conformal automorphisms are the focus of the authors’
paper [4], where it is shown such automorphic composition operators usually, but not al-
ways, have numerical ranges whose closures are discs centered at the origin. Conformal
automorphisms of U, which as we have already noted are always linear-fractional maps, are
classified as follows.

Hyperbolic: exactly two fixed points, both on ∂U.
Parabolic: exactly one fixed point on ∂U, no other fixed point on the Riemann sphere.
Elliptic: Conformally conjugate to a rotation about the origin; two fixed points in the

sphere, one in U, one outside its closure.
By Theorem 3.1 of [4], if ϕ is an automorphism of U that is either of hyperbolic or parabolic
type, then the closure of W (Cϕ) is a disc centered at the origin, from which it follows that
0 ∈ int W (Cϕ). The situation for elliptic automorphisms is more interesting.

An elliptic automorphism ϕ of U must have the form

ϕ = αp ◦ ρω ◦ αp(5)

for some p ∈ U and some ω ∈ ∂U. Suppose that ϕ is given by (5). If ω is not a root of
unity, then by Theorem 4.1 of [4], the closure of W (Cϕ) is a disk centered at the origin
so that, just as for the other automorphic composition operators, W (Cϕ) contains 0 in its
interior. To answer the Zero-Inclusion Question when ω is a root of unity, we observe that
for every nonnegative integer n, the map αn

p will be an eigenvector for Cϕ with eigenvalue
ωn. It follows, by convexity, that if ω is neither 1 nor −1, then 0 ∈ intW (Cϕ). If ω = 1,
then, of course, ϕ is the identity mapping and W (Cϕ) = {1}. If ω = −1, then by Corollary
4.4 of [4], W (Cϕ) is a ellipse with foci −1 and 1 that is degenerate if and only if p = 0
(in which case ϕ(z) = −z). Summarizing, we see that if ϕ is an elliptic automorphism,
then 0 ∈ W (Cϕ) unless ϕ(z) = z, and 0 ∈ intW (Cϕ) except when ϕ(z) = z or ϕ(z) = −z.
Finally, note that when ϕ(z) = −z, then W (Cϕ) = [−1, 1], which is consistent with our
description of numerical ranges of composition operators induced by dilations.

2.10. The Denjoy-Wolff Theorem. Every holomorphic self-map ϕ of the unit disc U
that is not conformally conjugate to a rotation has a unique attractive fixed point p in the
closure of U which is called the Denjoy-Wolff point of ϕ. If p ∈ ∂U, then p is fixed in the
sense that limr→1− ϕ(rp) = p. The Denjoy-Wolff point p of ϕ is globally attractive: for each
z ∈ U, the limit of the iterate sequence (ϕ[n](z)) is p. Hence, in particular, a self-map of U
that is not the identity may fix at most one point of U, a fact we will use without comment
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in the sequel. For a proof and further discussion of the Denjoy-Wolff theorem, the reader
may consult, e.g., [32, Chapter 5].

3. Zero containment: Part I

Here we begin our investigation of when 0 ∈ W (Cϕ). We commented earlier that for each
0 < r < 1 the positive-dilation map ϕ(z) ≡ rz gives rise to a normal composition operator
whose numerical range is the half-open real interval (0, 1], so 0 is not always in W (Cϕ). On
the other hand, if ϕ is not univalent then C∗

ϕ annihilates a difference of reproducing kernels,
in which case 0 ∈ W (Cϕ).

In this section we prove that for any composition operator not the identity, the origin
lies in the closure of the numerical range. We prove that the origin lies in the interior
of W (Cϕ) whenever Cϕ fails to have dense range (which happens, for example, whenever
ϕ is not univalent). Then we focus on holomorphic self-maps ϕ of U that fix the origin,
proving that 0 ∈ intW (Cϕ) unless ϕ has the form ϕ(z) = tz for some t ∈ [−1, 1]. This
result, together with our observations in Sections 2.8 and 2.9 concerning numerical ranges
for composition operators induced by dilations and rotations, settles the zero inclusion issue
for composition operators with symbols that fix the origin. We wait until Section 4 to take
up the fascinating case of maps that fix points of U other than the origin.

We employ the notation W (T ) for the closure of the numerical range of an operator T .
Note that a composition operator is the identity map on H2 if and only if its inducing
function is the identity map on U.

3.1. Theorem. If ϕ is any holomorphic self-map of U that is not the identity map then
0 ∈ W (Cϕ).

Proof. For a ∈ U let fa = Ka/‖Ka‖, where Ka is the reproducing kernel discussed in Section
2.2, and let

wa = 〈Cϕfa, fa〉 =
〈CϕKa, Ka〉

‖Ka‖2 ,

a point of W (Cϕ). Since

‖Ka‖2 = 〈Ka, Ka〉 = Ka(a) =
1

1 − |a|2
,

we have for each point a ∈ U:

wa = (1 − |a|2)〈Ka, C∗
ϕKa〉 = (1 − |a|2)〈Ka, Kϕ(a)〉

= (1 − |a|2)Ka(ϕ(a)) =
1 − |a|2

1 − aϕ(a)
.

Now because ϕ is not the identity map on U its radial limit function is not almost-everywhere
equal to the identity map on ∂U, so there exists ζ ∈ U for which the radial limit ϕ(ζ) exists
and is not equal to ζ. Thus, by the result of the last calculation, if a → ζ then the points
wa of W (Cϕ) converge to zero, hence 0 ∈ W (Cϕ), as desired.

Next we generalize the observation that 0 ∈ W (Cϕ) whenever ϕ is not univalent. The
crucial idea is the notion of normal eigenvalue.
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3.2. Normal eigenvalues. Suppose T is a bounded linear operator on Hilbert space, and
λ is an eigenvalue of T . We say λ normal for T if

ker(T − λI) = ker(T ∗ − λI).

This terminology reflects the elementary fact that the eigenvalues of a normal operator are
normal eigenvalues.

By Theorem 2 of [20], every eigenvalue of an arbitrary Hilbert space operator T that lies
on the boundary of W (T ) must be a normal eigenvalue. We supply a proof different from
the one in [20], which is based on the following.

3.3. Proposition. Suppose that T is a bounded linear operator on a Hilbert space H and
that f is a unit vector in H such that 〈Tf, f〉 belongs to the boundary of W (T ). Then T ∗f
is a linear combination of f and Tf .

Proof. Suppose, in order to prove the contrapositive, that T ∗f is not a linear combination
of f and Tf . Then there is a unit vector g ∈ H that is orthogonal to both f and Tf yet
〈g, T ∗f〉 6= 0. Let M denote the two-dimensional subspace of H with orthonormal basis
{f, g} and let λ = 〈Tf, f〉. The compression of T to M, which we denote TM, has matrix

[
λ 〈Tg, f〉
0 〈Tg, g〉

]

relative to {f, g}. Because 〈Tg, f〉 = 〈g, T ∗f〉 is nonzero, the numerical range of TM is
a nondegenerate ellipse with foci λ and 〈Tg, g〉. In particular, λ lies in the interior of
W (TM) ⊆ W (T ).

3.4. Corollary. Suppose that T is a bounded operator on a Hilbert space H; then every
eigenvalue of T that lies on the boundary of W (T ) is a normal eigenvalue.

Proof. Suppose f is a unit vector in H and λ ∈ ∂W (T ) satisfies Tf = λf . By Proposition
3.3, T ∗f = αf for some scalar α. We have α = 〈T ∗f, f〉 = 〈f, T f〉 = λ̄, as desired.
Because λ̄ belongs to ∂W (T ∗) whenever λ belongs to ∂W (T ), the same argument shows
ker(T ∗ − λI) ⊆ ker(T − λI).

The preceding corollary shows that 0 belongs to the interior of W (T ) whenever T is injec-
tive and fails to have dense range. We present the argument in the context of composition
operators.

3.5. Corollary. Suppose ϕ is a nonconstant holomorphic self-map of U. If the polynomials
in ϕ are not dense in H2, then 0 ∈ intW (Cϕ).

Proof. Because ϕ is nonconstant, Cϕ is one-to-one. The hypothesis on ϕ means that the
range of Cϕ is not dense, hence its orthogonal complement, the kernel of C∗

ϕ, is not zero.
Thus zero is an eigenvalue of C∗

ϕ, and therefore belongs to W (C∗
ϕ). But zero is not a normal

eigenvalue, so by Theorem 3.4 it cannot be a boundary point of W (C∗
ϕ). Thus, because the

numerical range of the adjoint operator is the complex conjugate of the original numerical
range, 0 lies in the interior of W (Cϕ).
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3.6. Corollary. Suppose ϕ is a nonconstant holomorphic self-map of U. If ϕ is not one-
to-one then 0 ∈ intW (Cϕ).

Proof. As we noted earlier, if ϕ is not one-to-one then C∗
ϕ annihilates a nontrivial difference

of reproducing kernels, so the kernel of C∗
ϕ is not {0}. Thus the closure of the range of

Cϕ, which is (kerC∗
ϕ)⊥, is not all of H2, i.e., ran Cϕ is not dense. Thus, by Corollary 3.5,

0 ∈ int W (Cϕ).

3.7. Remark. The work of Section 2.6 disposes of the case ϕ ≡ constant; if the constant is
nonzero then zero is in the interior of W (Cϕ), otherwise W (Cϕ) is the closed unit interval.

We now consider the question of zero-inclusion for composition operators induced by
maps ϕ that fix the origin. If ϕ is a dilation or rotation, then work of Sections 2.8 and
2.9 yields complete information about zero inclusion; in particular, 0 ∈ intW (Cϕ) unless ϕ
belongs to the family {z 7→ tz : t ∈ [−1, 1]}. We now prove that this family provides the
only exception to the interior zero-inclusion rule among all holomorphic self-maps of U that
fix the origin.

3.8. Theorem. Suppose that ϕ is a holomorphic self-map of U fixing the origin and that
ϕ does not have the form ϕ(z) = tz for some t ∈ [−1, 1]. Then 0 ∈ intW (Cϕ).

Proof. ϕ not constant, for otherwise it would be identically equal to zero (since ϕ(0) = 0),
and hence would have the forbidden form ϕ(z) = tz with t = 0. Let λ = ϕ′(0). We may
assume that λ 6= 0 for otherwise ϕ is not univalent (and nonconstant) and the desired
conclusion follows from Corollary 3.6. We may also assume that ϕ is neither a rotation or
dilation (by the work of Sections 2.8 and 2.9, as discussed above). Thus ϕ’s MacLaurin
expansion can be written in the form

ϕ(z) = λz[1 + bzm(1 + h(z))],

where m is a positive integer, b 6= 0, and h is holomorphic in U with h(0) = 0. The binomial
theorem then shows that for each positive integer n,

ϕ(z)n = λnzn + nbλnzn+m + terms of higher order in z.

Now the matrix of Cϕ with respect to the orthonormal basis {zk}∞
0 has as its n-th column

the sequence of power series coefficients of ϕn, and any compression of Cϕ to the subspace
spanned by a subset of these monomials has as its matrix the corresponding principal
submatrix. We are going to focus on the linear span Mn of {zn, zm+n}; because m > 0 this
subspace is two dimensional. Let Tn be the compression of Cϕ to Mn, so matrix of Tn with
respect to the orthonormal basis {zn, zn+m} is

Bn :=

[
ϕ̂n(n) 0

ϕ̂n(n + m) ϕ̂n+m(n + m)

]

=
[

λn 0
nbλn λn+m

]

= λnAn,
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where

An =
[

1 0
nb λm

]

It is enough to show that 0 ∈ int W (An) for large enough n. By the discussion of Section
2.4 we know that W (An) is a closed elliptical disc with foci at the points 1 and λm and
minor axis of length n|b|. For n large enough the length of the minor semi-axis of W (An)
will exceed the modulus of its center, thus placing the origin in the interior; this happens
whenever n > |1 + λm|/|b|.

The preceding Theorem completes our solution to the Zero-Inclusion Question for com-
position operators induced by mappings ϕ that fix the origin: 0 does not belong to W (Cϕ)
if and only if ϕ(z) = tz for some t ∈ (0, 1], and 0 ∈ W (Cϕ) implies 0 ∈ int W (Cϕ) unless
ϕ has the form ϕ(z) = tz for some t ∈ [−1, 0]. In the next section, we consider the much
more subtle situation that arises when ϕ fixes a non-zero point of U.

4. Zero Containment: Part II

Our goal in this section is to show that if ϕ fixes a nonzero point in U and is neither
the identity map nor a positive conformal dilation in the sense of Section 2.8, then 0 ∈
intW (Cϕ). For the moment, however, we assume only that ϕ is a holomorphic self-map of
U that fixes a point p ∈ U\{0}, and that ϕ is not an automorphism (the zero-containment
story for automorphisms has already been told in Section 2.9). As in the proof of Theorem
3.8 we seek to compute appropriate two by two principal submatrices of the matrix of Cϕ,
but instead of computing this matrix relative to the monomial basis (zn)∞

0 of H2 we use
instead Guyker’s basis. This is the sequence of functions (bn)∞

0 defined for z ∈ U by:

bn(z) :=

√
1 − |p|2
1 − pz

(
z − p

1 − pz

)n

=
Kp

‖Kp‖
(−αp(z))n(6)

where Kp is the reproducing kernel for p (as defined in Section 2.2) and αp is the special
automorphism defined by (4).

In [16] Guyker established that (bn)∞
0 is an orthonormal basis for H2 relative to which the

matrix of Cϕ is lower triangular, with the derivative-power ϕ′(p)n as the n-th element of the
main diagonal (n = 0, 1, 2, . . . ). Guyker used his basis to study the reducing subspaces of
Cϕ. Actually Guyker’s basis is a special case of an orthonormal basis used by F. Malmquist
in 1928 to study interpolation problems in H2 ([25], see also [35, §10.7, pp. 304–309]). We
are indebted to Professor Harold S. Shapiro for pointing out these references.

Here we focus on the compression of Cϕ to the two dimensional subspace

Mn,k := span {bn, bn+k} (n ≥ 0, k ≥ 1).

Relative to the orthonormal basis (bn, bn+k) this compression has matrix

An,k :=
[

ϕ′(p)n 0
〈Cϕbn, bn+k〉 ϕ′(p)n+k

]
,

so, upon noting that the Schwarz-Pick Lemma insures that |ϕ′(p)| < 1 and proceeding as
in the proof of Theorem 3.8, we can establish that 0 ∈ intW (Cϕ) by showing that for some
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fixed positive integer k:

lim
n→∞

〈Cϕbn, bn+k〉
|ϕ′(p)n|

= ∞.(7)

Without further ado, let us compute the crucial inner product entry.

4.1. Lemma. Suppose ϕ is a holomorphic self-map of U that fixes a point p ∈ U. Let (bn)
be the Guyker basis for the point p. Then for each non-negative integer n and each positive
integer k,

〈Cϕbn, bn+k〉 =
1 − |p|2

k!
H

(k)
n,k(p)(8)

where

Hn,k(z) =
(1 − pz)n+k

(1 − pϕ(z))n+1

(
ϕ(z) − p

z − p

)n

.

Proof. We begin by writing the H2 inner product in question as a complex contour integral

〈Cϕbn, bn+k〉 =
1

2πi

∫

∂U
bn(ϕ(z))bn+k(z)

dz

z
,

where ∂U is positively oriented. We compute the integrand by noticing that |αp(z)| = 1
when |z| = 1, so that the complex conjugate of αp(z) is its reciprocal. This observation,
along with some algebraic manipulation yields, for |z| = 1,

bn(ϕ(z))bn+k(z) = (1 − |p|2)Hn,k(z)
z

(z − p)k+1 ,

hence

〈Cϕbn, bn+k〉 =
1 − |p|2

2πi

∫

∂U
Hn,k(z)

dz

(z − p)k+1 =
(1 − |p|2)

k!
H

(k)
n,k(p),

as desired.

When k = 1, the preceding Lemma yields the following.

4.2. Corollary. Under the hypotheses of Lemma 4.1 we have for each non-negative integer
n,

〈Cϕbn, bn+1〉 = ϕ′(p)n−1
[
n(1 − |p|2)

ϕ′′(p)
2

− (n + 1) pϕ′(p)(1 − ϕ′(p))
]

.

This last corollary allows some preliminary observations that focus attention on the heart
of our problem. We have already seen that that the desired “interior zero-containment”
happens whenever ϕ is not univalent (Theorem 3.6). The next result, part of which also
appears in [26, Section 3], shows that interior zero-containment also happens whenever the
derivative of ϕ at the fixed point is non-positive.
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4.3. Proposition. Suppose ϕ is a holomorphic self-map of U that is univalent but not
the identity, and fixes a non-zero point p ∈ U. If ϕ′(p) is not strictly positive then 0 ∈
intW (Cϕ).

Proof. Univalence forces ϕ′(p) 6= 0, which we assume from now on. The form of the matrix
of Cϕ with respect to (bn)∞

0 shows that the complex conjugate of each number ϕ′(p)n is
an eigenvalue of C∗

ϕ (see, e.g., [32, Section 6.2] for the details), and therefore lies in the
numerical range of that operator. Thus ϕ′(p)n ∈ W (Cϕ) for each n.

Suppose that ϕ′(p) is non-real. Then as n → ∞ the sequence (ϕ′(p)n) spirals in towards
the origin, circling it infinitely often, thus (by the Toeplitz-Hausdorff Theorem) placing the
origin in the interior of W (Cϕ).

The only remaining possibility is ϕ′(p) < 0, for which the argument just given at least
locates the origin in W (Cϕ). To see that it is in the interior one need only note that by the
case n = 0 of Corollary 4.2,

〈Cϕb0, b1〉 = p(ϕ′(p) − 1) 6= 0.

Thus the numerical range of the matrix
[

1 0
〈Cϕb0, b1〉 ϕ′(p)

]

is a nondegenerate ellipse with foci at 1 and ϕ′(p). Since ϕ′(p) < 0, this ellipse has the
origin in its interior, and because the matrix represents a compression of Cϕ (to the subspace
spanned by b0 and b1), the origin lies in the interior of W (Cϕ) as well.

According to the discussion above, if ϕ fixes a point p ∈ U \{0}, then the containment of
0 in the interior of W (Cϕ) is in doubt only when ϕ is univalent and ϕ′(p) > 0; for example,
when ϕ is a positive conformal dilation (terminology as in Section 2.8). The next result—
the principal one of this section—reduces the zero-containment issue to precisely the class
of positive conformal dilations.

4.4. Theorem. Suppose ϕ is a holomorphic self-map of U that fixes a non-zero point
p ∈ U and is neither the identity map on U nor a positive conformal dilation. Then
0 ∈ int W (Cϕ).

Proof. By Corollary 3.6 we may assume that ϕ is univalent, and by the work of Section 2.9,
we may assume that ϕ is not an elliptic automorphism. By Proposition 4.3 we may require
further that ϕ not be any sort of conformal dilation. Note that for integers n ≥ 0 and k > 0
the function Hn,k that is the major player in Lemma 4.1 can be written as

Hn,k = Ln+1Mk−1Qn

where L, M , and Q are holomorphic functions on U defined by:

L(z) =
1 − pz

1 − pϕ(z)
, M(z) = 1 − pz, and Q(z) =

ϕ(z) − p

z − p
(9)

(Q being holomorphic at p, with Q(p) = ϕ′(p), because ϕ(p) = p).
Clearly L is non-vanishing on U, and the univalence of ϕ insures that the same is true of

Q. Note also that

L(p) = 1, M(p) = 1 − |p|2, and Q(p) = ϕ′(p),
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so that
Hn,k(p) = (1 − |p|2)k−1ϕ′(p)n = const.ϕ′(p)n,

where “const.” does not depend on n.
Recall that our goal is to establish (7) for some fixed k > 0, so by Lemma 4.1 it is enough

to show that

lim
n→∞

H
(k)
n,k(p)

Hn,k(p)
= ∞.(10)

To motivate what is to follow we first consider the case k = 1, and for convenience write
Hn,1 simply as Hn. Thus Hn = Ln+1Qn, whereupon logarithmic differentiation yields

H ′
n

Hn
= (n + 1)

L′

L
+ n

Q′

Q
= n

[
L′

L
+

Q′

Q

]
+

L′

L
,

which we rewrite as:
H ′

n

Hn
= nF + B, where F :=

L′

L
+

Q′

Q
and B :=

L′

L
.(11)

Note that F and B are holomorphic on U because neither L nor Q vanishes anywhere on
U. Moreover (11) shows that if F (p) 6= 0 then (10) holds for k = 1, hence

F (p) 6= 0 =⇒ 0 ∈ intW (Cϕ).

Although we will not need this in the sequel, it is interesting to note that

F (p) 6= 0 ⇐⇒ (1 − |p|2)
ϕ′′(p)

2
6= pϕ′(p)(1 − ϕ′(p)),

so the reader who is tiring of the zero-containment issue can rest assured that for at least
all the maps ϕ satisfying the condition above, 0 ∈ intW (Cϕ).

For those who wish to continue, the crucial point is that (relaxing for the moment our
requirement that ϕ not be a conformal dilation)

F ≡ 0 on U ⇐⇒ ϕ is a conformal dilation with fixed point at p.

This follows from the fact that F is the logarithmic derivative of LQ = (αp◦ϕ)/αp (from (9)),
hence F ≡ 0 if and only if αp ◦ ϕ is a constant multiple of αp, i.e., if and only if ϕ is a
conformal dilation.

Since we have already done the case F (p) 6= 0 let’s suppose that F (p) = 0. Because we
are demanding that ϕ not be a conformal dilation, F is not identically zero on U, and since
F is holomorphic on U this guarantees an integer k ≥ 2 such that

F (p) = F ′(p) = · · · = F (k−2)(p) = 0, but F (k−1)(p) 6= 0.

It is for this integer k that we are going to prove (10).
From (11) we see that for each integer j ≥ 0:

(
H ′

n

Hn

)(j)

= nF (j) + B(j),(12)
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so that the numerical sequence ((H ′
n/Hn)(j)(p) : n ≥ 0) is bounded for 0 ≤ j ≤ k − 2, and

it → ∞ for j = k − 1. Using

H(k)
n =

(
Hn ·

H ′
n

Hn

)(k−1)

and the product rule, we obtain

H
(k)
n (p)

Hn(p)
=

(
H ′

n

Hn

)(k−1)

(p) +
k−2∑

j=0

(
k − 1

j

)
H

(k−1−j)
n (p)
Hn(p)

(
H ′

n

Hn

)(j)

(p).(13)

Because (H ′
n/Hn)(k−1)(p) → ∞ as n → ∞ the same will be true of H

(k)
n (p)/Hn(p) provided

the sum on the right of (13) remains bounded as n → ∞. We already have observed that the
terms in the sum of the form (H ′

n/Hn)(j)(p) are bounded independent of n (given the range
of the index j). The other terms in the sum take the form H

(J)
n (p)/Hn(p), where J varies

from 1 to k − 1. To see that the sequence (H(J)
n (p)/Hn(p)) is bounded (in n) for this range

of index J , apply an inductive argument. The boundedness of (H(1)
n (p)/Hn(p)) has already

been noted (j = 0 in (12)). That the boundedness of (H(v)
n (p)/Hn(p)) for v = 1, . . . , J − 1

implies that of (H(J)
n (p)/Hn(p)), when 1 < J ≤ k − 1, follows from (13): simply replace k

with J . We have established

lim
n→∞

H
(k)
n (p)

Hn(p)
= ∞,(14)

which is almost the desired result. To finish the job note that Hn,k = HnMk, where

Mk(z) = M(z)k−1 = (1 − pz)k−1 (z ∈ U).

Thus

H
(k)
n,k = H(k)

n Mk +
k−1∑

j=0

(
k

j

)
H(j)

n M
(k−j)
k ,

so that

H
(k)
n,k(p)

Hn,k(p)
=

H
(k)
n (p)

Hn(p)
+

k−1∑

j=0

cj
H

(j)
n (p)

Hn(p)
,(15)

where on the right-hand side, each cj is a non-zero constant that does not depend on n. We
have previously shown that for each 0 ≤ j ≤ k − 1 the sequence(

H
(j)
n (p)

Hn(p)
: n ≥ 0

)

is bounded, and that it → ∞ for j = k. Thus the left-hand side of (15) → ∞ as n → ∞, as
we wished to show.
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5. Zero Containment: Part III

The work of Sections 3 and 4 has established that if ϕ is a holomorphic self-map of U
that fixes a point p ∈ U and neither the identity nor a positive conformal dilation, then
0 ∈ W (Cϕ). What happens when ϕ is a positive conformal dilation? We have already
observed (Section 2.8) that 0 /∈ W (Cϕ) whenever ϕ is a positive conformal dilation that
fixes the origin (i.e. an “ordinary” positive dilation). However the next result shows that
zero-containment reappears whenever the fixed point is located sufficiently far from the
origin.

5.1. Theorem. Suppose ϕ is a positive conformal dilation that fixes the point p ∈ U and
has dilation parameter r (0 < r < 1). Then the following three conditions are equivalent:

(a) 0 ∈ W (Cϕ).
(b) 0 ∈ intW (Cϕ).
(c) |p| >

√
r.

Moreover if |p| ≤
√

r then ReCϕ := 1
2(Cϕ + C∗

ϕ) is strictly positive-definite on H2.

Proof. By the work of Section 2.8 we know that ϕ(z) = αp(rαp(z)) for z ∈ U, where
r ∈ (0, 1) is the dilation parameter of ϕ.

(c) → (b): Suppose |p| > r. We know that Cϕ(αn
p ) = rnαn

p for each non-negative integer n.
For each positive integer k let Mk be the two dimensional Cϕ-invariant subspace spanned
by 1 and αk

p, and let Ak be the restriction of Cϕ to Mk. By the discussion of Section 2.4
we know that W (Ak) is a nondegenerate ellipse with foci at 1 and rk, with major axis of
length

` =
1 − rk

√
1 − γ2

k

where γk := |〈αk
p , 1〉| = |αk

p(0)| = |p|k

(the nondegeneracy comes from the fact that the vectors 1 and αk
p are not orthogonal in

H2, as the above calculation shows). The center c of the ellipse is the midpoint of the foci,
i.e., c = (1 + rk)/2 on the positive real axis. Now 0 ∈ int W (Ak) if and only if c < `/2, i.e.,
if and only if

1 + rk <
1 − rk

√
1 − |p|2k

.

Some algebraic manipulation shows this last condition to be equivalent to

|p| >

(
2

1 + rk

)1/k √
r ,

which, because we are assuming |p| >
√

r, is satisfied for all sufficiently large k. For any
such k

0 ∈ intW (Ak) ⊂ intW (Cϕ),
as we wished to show.

(b) → (a): Trivial.

(a) → (c): Suppose |p| ≤
√

r. We will prove the strict positivity of Re Cϕ, which implies
that 0 /∈ W (Cϕ).
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By the discussion of Section 2.8 we may, without loss of generality, assume that 0 < p < 1.
Then a little calculation proceeding from the formula ϕ(z) = αp(rαp(z)) shows that

ϕ(z) =
az + 1
d − z

,(16)

where

a =
r − p2

p(1 − r)
and d =

1 − p2r

p(1 − r)
(17)

(the assumption that p is real simply avoids some complex conjugates that would otherwise
have appeared in these last two formulas).

Clearly d > 0; furthermore the hypothesis p ≤
√

r implies that a ≥ 0, with equality if
and only if p =

√
r. In this interesting transitional case, about which we will say more later,

ϕ(z) ≡ (d − z)−1 with d = (1 + r)/
√

r.
Our hypothesis relating p and r also implies that d ≥ (1 + r)/

√
r > 2, from which it

follows that ϕ takes strictly positive values on the closed unit interval. In particular

(a + 1)/(d − 1) = ϕ(1) < 1 hence d − a > 2.(18)

Because of this last inequality the auxiliary mapping

ν(z) :=
δz + 1

d
where δ :=

√
ad + 1(19)

maps U into itself; indeed for z ∈ U:

|ν(z)| < ν(1) =
δ + 1

d
< 1.

Let Mz denote the operator of “multiplication by z” on H2 (i.e., the “forward shift”), set
T = CνM∗

z , and let P0 denote the orthogonal projection of H2 onto the closed subspace of
constant functions:

P0f = 〈f, 1〉 = f(0) (f ∈ H2).
With this notation we can state what is really the main result of this section:

Cϕ + C∗
ϕ = P0 + C∗

νCν +
a

d
T ∗T(20)

This decomposition, whose existence was suggested by matrix arguments (see the discussion
following the proof of Theorem 6.2 below), exhibits Cϕ + C∗

ϕ = 2ReCϕ as the sum of three
positive operators, hence ReCϕ is positive. To see that it is strictly positive we need only
observe that Cν is one-to-one (as is any composition operator induced by a non-constant
map), hence if f ∈ H2 is not the zero-function then

〈C∗
νCνf, f〉 = 〈Cνf, Cνf〉 = ‖Cνf‖2 > 0,

i.e., C∗
νCν is strictly positive, and therefore the same is true of Re Cϕ.

It remains to prove (20). The idea will be to check that both sides of this equation yield
the same result when applied to the reproducing kernels Kλ (λ ∈ U) introduced in Section
2.2. Because of the reproducing property (2), any function in H2 orthogonal to Kλ vanishes
at λ, hence if λ runs through a subset of U with a limit point in U then the linear span of
the corresponding Kλ’s is dense in H2. Thus it is enough to check our equation on any such
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family of reproducing kernels; for convenience we choose to restrict λ to the real interval
(−1, 1).

First Subclaim: C∗
νCνKλ = d

d−λKϕ(λ) (−1 < λ < 1).

Proof. A straightforward calculation shows that for z ∈ U:

CνKλ(z) =
d

d − λ

1
1 − βz

where β =
λδ

d − λ
.

Clearly β > 0, and since CνKλ ∈ H2 we must also have β < 1, hence the last equation can
be rephrased:

C∗
νCνKλ =

d

d − λ
Kν(β).

Another straightforward calculation shows that

ν(β) =
λa + 1
d − λ

= ϕ(λ),

which completes the proof of this Subclaim.

Second Subclaim: T ∗TKλ(z) = λdz
d−λ Kϕ(λ) for each z ∈ U.

Proof. Once checks easily that M∗
z Kλ = λKλ for each z ∈ U, so if 1− < λ < 1 then

TKλ = λCνKλ. Thus for z ∈ U:

T ∗TKλ(z) = MzC
∗
ν (λCνKλ)(z) = zλC∗

νCνKλ(z),

which, along with the First Subclaim, yields the desired result.

To complete the proof of Theorem 5.1, fix λ ∈ (−1, 1), and note that by the reproducing
property (2),

(Cϕ + C∗
ϕ)Kλ = Kλ ◦ ϕ + Kϕ(λ)

which, after some routine calculation, results for each z ∈ U in:

(Cϕ + C∗
ϕ)Kλ(z) = 1 +

d + λaz

(d − λ) − (λa + 1)z

= 1 +
d + λaz

d − λ

1
1 − aλ+1

d−λ z

= 1 +
[

d

d − λ
+

λaz

d − λ

]
Kϕ(λ)(z)

= P0Kλ(z) + C∗
νCνKλ(z) +

a

d
T ∗TKλ(z),

where the last line follows from the two Subclaims above.
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5.2. Remarks. (a) In the argument above we borrowed the idea of using reproducing ker-
nels as test functions from Cowen’s derivation of the formula for the adjoint of a composition
operator induced on H2 by a linear fractional transformation [7].

(b) In the final section of this paper we use the argument above to prove strict positivity
for ReCϕ for a class of composition operators induced by linear fractional maps that fix no
point of U.

Theorem 5.1 completes our solution to the Zero-Inclusion Question for composition op-
erators induced by self-maps of U that fix a point in U. We summarize our work in the
following.

5.3. Theorem. Suppose that ϕ is a holomorphic self-map of U fixing a point p ∈ U. Then
0 6∈ W (Cϕ) if and only if there is an r ∈ (0, 1] such that

|p| ≤
√

r and ϕ(z) = αp(rαp(z)).

Moreover, 0 ∈ W (Cϕ) implies 0 ∈ int W (Cϕ) as long as ϕ does not have the form ϕ(z) = tz
for some t ∈ [−1, 0].

As we have mentioned, if Cϕ is compact, then ϕ fixes a point in U. Because the numerical
range of a compact operator is closed if and only if it contains zero, the preceding theorem
also provides a characterization of when the numerical range of a compact composition
operator is closed. (The compact composition operators on H2 are characterized in [31],
see also [32, Chapter 10].)

6. Sectorial Composition Operators

We call a Hilbert space operator T sectorial provided its numerical range is contained in
a sector of the form {z : | arg(z)| < θ} for some positive acute angle θ (cf. [14, page 37]).
The work of the preceding sections shows that if ϕ, not the identity, fixes a point p ∈ U then
Cϕ can be sectorial only if there is an r ∈ (0, 1) such that ϕ = αp ◦ (rαp) where |p| ≤

√
r.

In this section, we prove that, for such a map ϕ, Cϕ is sectorial when |p| <
√

r, but not
sectorial when |p| =

√
r.

We begin our work with the case |p| <
√

r. Until further notice, we assume that r ∈ (0, 1)
and

ϕ(z) = αp(rαp(z))
where 0 < p <

√
r (recall there is no loss of generality in assuming p > 0). Hence, as we

saw in Section 5,

(16) ϕ(z) =
az + 1
d − z

,

where

(17) a =
r − p2

p(1 − r)
and d =

1 − p2r

p(1 − r)
.

Note well that our assumption p <
√

r implies a > 0 and d > 2. Also note a < d. Finally,
recall that the auxiliary mapping

(19) ν(z) :=
δz + 1

d
where δ :=

√
ad + 1,
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is a self-map of U. Our proof that Cϕ is sectorial depends on representation (20) for Cϕ+C∗
ϕ

and a corresponding representation for Cϕ − C∗
ϕ.

6.1. Lemma. Suppose that ϕ is given by (16) and (17) and that p <
√

r. Then

Cϕ − C∗
ϕ =

1
d

(C∗
νT − T ∗Cν) ,

where T = CνM∗
z and ν is defined by (19).

Proof. The Lemma may be verified—as was the decomposition (20)—by using the H2

reproducing kernels as test functions. What follows is a more informative proof. Let
ψ(z) = δz/(d − z). Using [7, Theorem 2] we have

C∗
ν = Md/(d−z)Cψ,

where Md/(d−z) is the operator of multiplication by d/(d−z) on H2. The preceding formula
and the easily verified relationship CψCν = Cϕ yield

Cϕ = M(d−z)/dC
∗
νCν

so that Cϕ = C∗
νCν − (1/d)T ∗Cν . Hence

Cϕ − C∗
ϕ =

1
d

(C∗
νT − T ∗Cν) ,

as desired.

6.2. Theorem. Suppose that ϕ is given by (16) and (17) and that p <
√

r. Then the
numerical range of Cϕ lies in the sector {z : | arg z| ≤ π/2 − arctan(a/2)}.

Proof. Let f be an arbitrary unit vector in H2 and let θ > 0 be such that tan(θ) ≤ a/2.
Observe

2Re (eiθ〈Cϕf, f〉) = cos(θ)〈(Cϕ + C∗
ϕ)f, f〉 + i sin(θ)〈(Cϕ − C∗

ϕ)f, f〉.(21)

Applying the decomposition (20) of Cϕ +C∗
ϕ, we see that the first summand on the right

of the preceding equation is greater than or equal to

cos(θ)
(
‖Cνf‖2 + (a/d)‖Tf‖2) .(22)

Using Lemma 6.1, we obtain the following estimate on the size of the second summand on
the right of (21)

| sin(θ)〈(Cϕ − C∗
ϕ)f, f〉| ≤ sin(θ)

1
d

(|〈Tf, Cνf〉| + |〈Cνf, T f〉|) .

By the Cauchy-Schwarz Inequality,

| sin(θ)〈(Cϕ − C∗
ϕ)f, f〉| ≤ sin(θ)

2
d
‖Tf‖‖Cνf‖(23)
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Suppose that ‖Cνf‖ ≥ ‖Tf‖. Then starting with (21) and applying estimates (22) and
(23), we have

2Re (eiθ〈Cϕf, f〉) ≥ (a/d) cos(θ)‖Tf‖2 + cos(θ)‖Cνf‖2 − (2/d) sin(θ)‖Cνf‖2

= (a/d) cos(θ)‖Tf‖2 + ‖Cνf‖2 cos(θ)[1 − (2/d) tan(θ)]

≥ (a/d) cos(θ)‖Tf‖2 + ‖Cνf‖2 cos(θ) [1 − (2/a) tan(θ)]

≥ 0,

where we have used a < d to obtain the next-to-last inequality.
Now suppose that ‖Tf‖ ≥ ‖Cνf‖. Again, starting with (21) and applying estimates (22)

and (23), we have

2Re (eiθ〈Cϕf, f〉) ≥ cos(θ)‖Cνf‖2 + (a/d) cos(θ)‖Tf‖2 − (2/d) sin(θ)‖Tf‖2

= cos(θ)‖Cνf‖2 + (a/d)‖Tf‖2 cos(θ)[1 − (2/a) tan(θ)]

≥ 0.

We have proved that if we rotate W (Cϕ) by an angle θ satisfying 0 < θ ≤ arctan(a/2),
the resulting region is still in the closed right half-plane. Since W (Cϕ) is symmetric with
respect to the real axis (see Section 2.7), it follows that W (Cϕ) lies in the sector

{z : | arg z| ≤ π/2 − arctan(a/2)},

as desired.

Our goal now becomes that of proving W (Cϕ) is not sectorial when ϕ has the form
αp ◦ (rαp) and p =

√
r. We employ matrix methods that contributed to our development

of Theorem 5.1. The major element in our proof of Theorem 5.1, the decomposition (20)
of Cϕ + C∗

ϕ, evolved from a matrix analysis of the transitional case p =
√

r. For this case
a = 0 in (17) so the expression (16) for ϕ becomes

ϕ(z) =
1

d − z
with d =

1 + r√
r

> 2,(24)

and the decomposition (20) simplifies to

Cϕ + C∗
ϕ = P0 + CνC∗

ν where ν(z) =
1 + z

d
.(25)

The discussion below is also valid when d = 2.
For an operator T on H2, let us denote its matrix with respect to the orthonormal

basis {zj}∞
0 by [T ]. Note that for ϕ as above, [Cϕ] has as its j-th column the MacLaurin

coefficient sequence of ϕj . Let w = 1/d and apply the binomial theorem to obtain that the
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(k, j) element of this matrix is:

ak,j :=





(k+j−1
k

)
wj+k if j ≥ 1,

1 if (k, j) = (0, 0), and

0 if j = 0 and k > 0.

(26)

Thus for j > 0 the (k, j) entry of [Cϕ + C∗
ϕ] is

ak,j + aj,k =
[(

k + j − 1
k

)
+

(
j + k − 1

j

)]
wk+j

=
(

k + j

k

)
wk+j =

(
j + k

j

)
wk+j ,

a formula which also gives the correct answer for j = 0, k 6= 0. The only anomaly is the
(0, 0) entry, which is 2, instead of the value 1 predicted by the formula. From this we obtain
the matrix equation

[Cϕ + C∗
ϕ] = [P0] + T (w)(27)

where P0 is, as before, the orthogonal projection of H2 onto the space of constant functions
([P0] has (0, 0) entry 1 and all other entries zero), and T (w) is the infinite matrix whose
m-th cross-diagonal is wm times the m-th row of Pascal’s Triangle (m = 0, 1, 2, . . . ).

The matrix T (1) (which does not correspond to any composition operator) is called
Tartaglia’s table or Pascal’s matrix , and figures in a surprising variety of applications (see
[2] for example).

The operator decompositions (25) and (27) yield the matrix factorization (at least for
w ≤ 1/2)

T (α) = [Cν ]∗[Cν ],(28)

with the superscript “∗” now denoting matrix transpose. Now [Cν ], because of the simple
form of ν given in (25), is upper triangular with wj times the j-th row of Pascal’s triangle
as its j-th column. Thus (28) furnishes an LU-decomposition of T (w).

The analogous decomposition of the n × n upper left-hand submatrix of T (w) is known
(see [5, Theorem 3]), and in fact follows quickly (for w ≤ 1/2) from the discussion above and
the fact that Cν leaves invariant the subspace spanned by the monomials {zj : 0 ≤ j ≤ n}.
It was, in fact, this result that first led us to the auxiliary mapping ν and the decomposition
(25).

These matrix methods permit us to complete our characterization of sectorial composition
operators. For the remainder of the section, we assume

ϕ(z) =
1

d − z
,

where d ≥ 2.
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6.3. Theorem. The operator Cϕ is not sectorial.

We will show that for each positive integer n, there is a point in W (Cϕ) whose argument
is π/2 − π/(n + 1). Our proof will ultimately depend on a functional equation satisfied by
Chebyshev polynomials of the second kind.

Let n be an arbitrary positive integer, let t ∈ R, let M(t) be the matrix of (eitCϕ +
e−itC∗

ϕ) : H2 → H2 with respect to the basis {1, z, z2, . . . } of H2, and let An(t) be the n×n
principal submatrix of M(t). For example,

A3(t) =




2 cos(t) w cos(t) + iw sin(t) w2 cos(t) + iw2 sin(t)
w cos(t) − iw sin(t) 2w2 cos(t) 3w3 cos(t) + iw3 sin(t)

w2 cos(t) − iw2 sin(t) 3w3 cos(t) − iw3 sin(t) 6w4 cos(t)


 ,

where w = 1/d.
To prove Theorem 6.3, we show that when t = π/(n + 1), then detAn(t) = 0. Suppose

detAn(t) = 0; then the numerical range W (An(t)) contains 0, which means 0 also lies in
W (eitCϕ + e−itC∗

ϕ). In fact, there is a polynomial p of degree n and H2 norm 1 such that

〈eit(Cϕ + e−itC∗
ϕ)p, p〉 = 0(29)

(just choose the coefficients of p to form a unit vector in the kernel of An(t)). Hence
Re (eit〈Cϕp, p〉) = 0, which implies that 〈Cϕp, p〉 lies on the ray {z : arg z = π/2 − t}
since Re 〈Cϕp, p〉 > 0 by Theorem 5.1. Thus, our goal is to prove detAn(t) vanishes for
t = π/(n + 1).

Let us describe the entries in An(t), considering the top row of An(t) and the left-most
column of An(t) to be its 0-th row and 0-th column respectively. Using (26), we see that
for 0 ≤ k ≤ n − 1 and 0 < j ≤ n − 1,

[An(t)]k,j = cos(t)wk+j

(
k + j

j

)
+ i sin(t)wk+j j − k

j

(
k + j − 1

k

)
.

Also,
[An(t)]0,0 = 2 cos(t), and [An(t)]k,0 = wk cos(t) − iwk sin(t) for k ≥ 1.

Note that for 1 ≤ k, j ≤ n − 1, each entry in row k of An(t) contains a factor of wk while
each entry in column j contains a factor of the form wj. It follows that

detAn(t) = wn(n−1) detBn(t),

where Bn(t) is free of factors of w:

[Bn(t)]k,j = cos(t)
(

k + j

j

)
+ i sin(t)

j − k

j

(
k + j − 1

k

)

for 0 ≤ k ≤ n − 1 and 0 < j ≤ n − 1. Also the 0-th column of Bn(t) consists of 2 cos(t)
followed by n − 1 entries, each of which is cos(t) − i sin(t).

Our goal now becomes that of proving detBn(t) = 0 when t = π/(n + 1).
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6.4. Lemma. For n ≥ 1,
detBn(t) = Un(cos(t)),

where Un is the n-th Chebyshev polynomial of the second kind.

The polynomial Un is given by

Un(x) =
[n/2]∑

k=0

(−1)k
(

n − k

k

)
(2x)n−2k

and is defined recursively by

U0 = 1, U1(x) = 2x, and Un(x) = 2xUn−1(x) − Un−2(x) for n ≥ 2.

Moreover, we have the following functional equation

Un(cos(t)) =
sin((n + 1)t)

sin(t)
,

[29, p. 7, pp. 39–40]. The preceding equation shows that Un vanishes at cos(t) whenever
sin((n + 1)t) = 0 while sin(t) 6= 0. Thus, in particular, cos(π/(n + 1)) is always a zero of
Un (for n ≥ 1). By the Lemma above detBn(π/(n + 1)) = 0. Thus, given the discussion
in the paragraphs preceding the statement of Lemma 6.4, we see that Theorem 6.3 follows
from the Lemma.

Because we have been unable to find Lemma 6.4 in the literature, we present a detailed
proof.

Proof of Lemma 6.4. Note detB1(t) = 2 cos(t) = U(cos(t)) and detB2(t) = 4 cos2(t) − 1 =
U2(cos(t)). Thus the Lemma holds when n = 1 and n = 2. To see that it holds for all n we
show

detBn(t) = 2 cos(t) detBn−1(t) − detBn−2(t) for n ≥ 3.(30)

We describe a sequence of elementary row and column operations on Bn(t) that will produce
a matrix Ln(t) whose determinant (which is the same as that of Bn(t)) is easily seen to
equal the sum on the right of (30). This will complete the proof of the lemma. The following
observations will be used to produce the matrix Ln(t).

Observation 1. For 1 ≤ k ≤ n − 2,

row (k + 1) of Bn(t) − (row k of Bn(t))

equals the row matrix whose first entry is 0 and whose remaining entries consti-
tute the 0-th through (n − 2)-nd entries of row (k + 1) of Bn(t).

In other words, if row k of Bn(t) is subtracted from row k + 1, the result is the “forward
shift” of row (k + 1) with the last entry dropped. In symbols this difference equals

[0 Rk+1] ,

where Rk+1 represents row (k + 1) of Bn(t) with its final entry truncated.
Observation 2. For 1 ≤ k, j ≤ n − 1,

(−1)[Bn(t)]k,j−1 + [Bn(t)]k,j = [Bn(t)]k−1,j
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Apply Observation 1 repeatedly, first replace row (n − 1) of Bn(t) with the difference

row (n − 1) of Bn(t) − (row (n − 2) of Bn(t));

then replace row (n − 2) with the difference of rows (n − 2) and (n − 3), and continue this
process until row 2 has been replaced with the difference row 2 − row 1. (Recall that the
top row of Bn(t) is row 0.) What results is the matrix



2 cos(t) cos(t) + i sin(t) cos(t) + i sin(t) · · · cos(t) + i sin(t)
cos(t) − i sin(t) 2 cos(t) 3 cos(t) + i sin(t) · · · n cos(t) + i(n − 2) sin(t)

0 R2
0 R3
...

...
...

...
...

0 Rn−1




,

which we label En(t). Now apply Observation 2 repeatedly to En(t), first replace its (n−1)
column of with the difference

column (n − 1) of En(t) − (column (n − 2) of En(t));

then replace column (n−2) with the difference of columns (n−2) and (n−3), and continue
this process until column 2 has been replaced with the difference column 2 − column 1.
What results is the matrix



2 cos(t) cos(t) + i sin(t) 0 · · · 0
cos(t) − i sin(t) 2 cos(t) cos(t) + i sin(t) · · · cos(t) + i sin(t)

0 R1
0 R2
...

...
...

...
...

0 Rn−2




,

which we label Ln(t). Calculate detLn(t) by expanding along the first column of Ln(t):

detLn(t) = 2 cos(t) detBn−1(t) − e−it det




cos(t) + i sin(t) 0 · · · 0
R1
R2
...

...
...

...
Rn−2




.(31)

Now apply Observations 1 and 2, exactly as they were applied to Bn(t), to reduce the
matrix on the right of the preceding display to




cos(t) + i sin(t) 0 · · · 0
0 R̃0

0 R̃1
...

...
...

...
0 R̃n−3




,
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where for k = 0, 1, . . . , n−3, R̃k is the k-th row of Bn(t) with its final two entries truncated.
This reduced matrix permits us to complete our calculation (31):

detLn(t) = 2 cos(t) detBn−1(t) − e−iteit det




R̃0

R̃1
...

R̃n−3




= 2 cos(t) detBn−1(t) − detBn−2(t),

as desired.

We have proved Theorem 6.3 by showing that when ϕ(z) = 1/(d − z) for d ≥ 2, W (Cϕ)
contains points in the first quadrant arbitrary close to the imaginary axis. Recall from
Section 2.7, that since ϕ is real on the real axis, W (Cϕ) is symmetric with respect to the
real axis; hence, Theorem 6.3 shows that 0 is not a corner point of W (Cϕ). We discuss
corner points in detail in the next section.

7. Corner Points

An element p of a set E ⊂ C is a corner point of E provided E is contained in a half-cone
with vertex p and angular opening less than π. It is well known that for any Hilbert space
operator T , a corner point of W (T ) must be an eigenvalue of T ([10]). A corner point of
W (T ) must be an approximate eigenvalue; in particular, any corner point of W (T ) must
belong to the spectrum of T ([20]).

Corner points of numerical ranges of composition operators are discussed in [26], which
contains, e.g., the following result: if Cϕ is compact with ϕ a nonconstant function satisfying
ϕ(0) = 0 and ϕ′(0) = 0, then 0 is an interior point of W (Cϕ) and 1 is the only possible
corner point of W (Cϕ) (which equals W (Cϕ) because 0 ∈ W (Cϕ) and Cϕ is compact). Here,
we obtain a complete characterization of corner points W (Cϕ) when Cϕ is compact.

We begin with the simpler task of characterizing the corner points not of W (Cϕ) but of
W (Cϕ), under the assumption that ϕ fix a point p in U. These corner points must be in
the point spectrum of Cϕ, which is known to be a subset of {ϕ′(p)n : n = 0, 1, 2, . . . } ([6,
Theorem 4.1]).

In the proof of [26, Theorem 3.6], Matache shows that if ϕ induces a compact operator
and fixes a point p ∈ U\{0} such that p doesn’t belong to the iterate sequence (ϕ[n](0)), then
the set {ϕ′(p)n : n ≥ 1} belongs to the interior of W (Cϕ). The following Theorem shows
that the restrictions of compactness and p 6∈ {ϕ[n](0) : n ≥ 1} may be removed. We do
not consider composition operators induced by dilations and rotations since the numerical
ranges for such operators are easily described (Sections 2.8 and 2.9).

7.1. Theorem. Suppose ϕ is a self-map of U that is neither a dilation nor a rotation and
ϕ(p) = p for some p ∈ U. Then {ϕ′(p)n : n ≥ 1} is contained in the interior of W (Cϕ).

Proof. If ϕ′(p) = 0, the Theorem follows immediately from Corollary 3.6 because ϕ is not
univalent. Thus we assume ϕ′(p) 6= 0.
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In case p = 0, the proof of Theorem 3.8 shows that there is a nonzero number b and a
positive integer m such the compression of Cϕ to the two-dimensional subspace of H2 with
basis {zn, zn+m} has matrix

[
ϕ′(0)n 0

nbϕ′(0)n ϕ′(0)n+m

]
.

Because the entry in the first column and second row is always nonzero, the numerical
range of Cϕ contains a nondegenerate ellipse with foci λn and λn+m for each n ≥ 1. Thus
{ϕ′(0)n : n ≥ 1} ⊂ intW (Cϕ), as desired.

In case p 6= 0, the work of Section 4 shows that for each n ≥ 0 , there is an an orthonormal
set {bn, bn+1} in H2 generating a subspace M of H2 such that the compression of Cϕ to
M has matrix [

ϕ′(p)n 0
〈Cϕbn, bn+1〉 ϕ′(p)n+1

]
.

By Corollary 4.2, the (2, 1) entry of this matrix can be 0 for at most one positive integer
n0 (we have already observed, in the proof of Proposition 4.3 that it is not zero if n = 0).
Thus, for all nonnegative integers n 6= n0, we see that W (Cϕ) contains a nondegenerate
ellipse with foci ϕ′(p)n and ϕ′(p)n+1. Hence for each positive integer n, including n0, ϕ′(p)n

is a focal point of a nondegenerate ellipse contained in W (Cϕ), so that the entire sequence
{ϕ′(p)n : n ≥ 1} lies in the interior of W (Cϕ), as desired.

7.2. Corollary. Suppose ϕ is a self-map of U that is neither a dilation nor a rotation and
ϕ(p) = p for some p ∈ U. Then 1 is the only possible corner point of W (Cϕ).

Proof. All eigenvalues of Cϕ except for 1 lie in the interior of W (Cϕ) by Theorem 7.1.

Observe that 1 is a corner point of W (Cϕ) if and only if it is a corner point of W (Cϕ).
Thus we complete our characterization of the corner points of W (Cϕ) by answering the
following.

When is 1 a corner point of W (Cϕ)?
If ϕ(0) 6= 0, then 1 is not a normal eigenvalue of Cϕ; hence by Theorem 3.4, the point 1

belongs to ∈ intW (Cϕ), and therefore cannot be a corner point of W (Cϕ). (This observation
is a generalization of Theorem 3.3 in [26].) Thus we assume that ϕ(0) = 0. Then the
subspace H2

0 is invariant for Cϕ and has as its orthogonal complement the space of constant
functions. It is known that ϕ is an inner function (i.e. ϕ has radial limits of modulus 1
a.e. on ∂U) if and only if the restriction of Cϕ to H2

0 has norm 1 [33, Theorem 5.1]. Thus
if ϕ is not inner then W (Cϕ|H2

0) lies in the closed disc with center at the origin and radius
‖Cϕ|H2

0
‖ < 1, and therefore W (Cϕ) itself lies in the convex hull of this disc and the singleton

{1}. In particular 1 is a corner point of W (Cϕ).
Conversely suppose ϕ is inner, fixes the origin, and is not a rotation. Then Cϕ is a

nonunitary isometry taking H2 properly into itself, and the spectrum of any such operator
is well known to be the closed unit disc U. (Proof: Because T is an isometry σ(T ) ⊂ U.
Also, T ∗T = I , so for each λ ∈ U there is the factorization T − λI = (I − λT ∗)T where
‖λT ∗‖ = |λ|‖T ∗‖ = |λ| < 1. Thus I − λT ∗ is invertible, but T is not, so neither is T − λI .
Thus λ ∈ σ(T ), which shows that U ⊂ σ(T ).)
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Now W (Cϕ) must contain the spectrum, but must also lie in the U, so it coincides with
U. In particular 1 is not a corner point of W (Cϕ) in this case. To summarize:

7.3. Theorem. If ϕ(0) 6= 0, then 1 ∈ intW (Cϕ). If ϕ(0) = 0 and ϕ is not a rotation, then
1 is a corner point of W (Cϕ) if and only if ϕ is not inner.

We are now in a position to characterize the corner points of W (Cϕ) for compact Cϕ.
Note well that when Cϕ is compact, ϕ cannot be inner: if ϕ is inner, then the H2 norm of
ϕn is 1 for each n ≥ 1 so that Cϕ does not take the sequence (zn) in H2, which converges
weakly to 0, to a sequence that converges in norm to 0. In particular, the symbol of a
compact composition operator cannot be a rotation mapping. Since the spectrum of a
compact operator consists of its eigenvalues together with 0 and since only spectral points
can be corner points, to obtain the full story on corner points of a compact operator we need
only check the origin and the eigenvalues of the operator. Thus for a compact composition
operator Cϕ, the set of points that must be checked is {ϕ′(p)n : n ≥ 0}∪{0} where p ∈ U is
the point fixed by ϕ. (Recall that the symbol of compact composition operator must fix a
point in U.) We have seen (Theorem 7.1) that when ϕ fixes p ∈ U and is neither a dilation
nor a rotation, then points {ϕ′(p)n : n ≥ 1} belong to the interior of W (Cϕ), which yields:

7.4. Corollary. The numbers 1 and 0 are the only possible corner points of W (Cϕ) when
Cϕ is compact and ϕ is not a dilation.

7.5. Theorem. Let ϕ be a self-map of U that induces a compact composition operator on
H2.
(a) Suppose that ϕ(z) = βz, where |β| < 1. If 0 ≤ β < 1, then 0 and 1 are the corner

points of W (Cϕ); otherwise, the set of corner points of W (Cϕ) has the form {βn : n =
0, 1, . . . k − 1} where k is the least positive integer such that βk lies in the convex hull
of {βn : n = 0, 1, . . . k − 1}.

(b) If ϕ(0) = 0 and ϕ is not a dilation, then 1 is the only corner point of W (Cϕ).
(c) If ϕ fixes a point in U \ {0} and is not a positive conformal dilation, then W (Cϕ) has

no corner points.
(d) If ϕ is the positive conformal dilation given by ϕ(z) = αp(rαp(z)), where 0 < r, |p| < 1,

then W (Cϕ) has no corner points when |p| ≥
√

r and has 0 as its only corner point
when |p| < r.

Proof. The proof of (a) follows immediately from the discussion of Section 2.8.
Suppose the hypothesis of (b) holds. Then Theorem 5.3 shows that 0 belongs to the

interior of W (Cϕ); hence, by Corollary 7.4, 1 is the only possible corner point of W (Cϕ).
That 1 is a corner point in this situation follows from Theorem 7.3 because the symbol of
a compact composition operator cannot be inner.

Suppose that hypothesis of (c) holds. Then, reasoning just as in the preceding paragraph,
we see that 1 is the only possible corner point. However, 1 is not a corner point in this
situation: in fact 1 must lie in the interior of W (Cϕ) because 1 is not an normal eigenvalue
(ϕ(0) 6= 0 since ϕ fixes a nonzero point in U).

That (d) holds follows quickly from the results of Section 6 and the observation that 1
is, again, not a normal eigenvalue.
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We remark that Corollary 7.4 and Theorem 7.5 are actually valid for Riesz composition
operators. A Riesz operator is spectrally indistinguishable from a compact operator. For a
discussion of Riesz composition operators, the reader may consult, e.g., [3].

8. No Fixed Point in U

We have answered the Zero-Inclusion Question for composition operators whose symbols
fix a point in U. What about those whose symbols don’t fix a point in U? If ϕ fails to fix
a point in U, then, by the Denjoy-Wolff Theorem, ϕ has an attractive fixed point p ∈ ∂U.
Moreover, ϕ′(p) = limr→1− ϕ′(rp) exists and 0 < ϕ′(p) ≤ 1 (see, [32, Chapter 5], e.g.).
The mapping ϕ is said to be of hyperbolic type, when ϕ′(p) < 1; if ϕ′(p) = 1 and the
iterate sequence (ϕ[n](0)) is separated in the hyperbolic metric on U, then ϕ is of parabolic
automorphism type; finally, if ϕ′(p) = 1 and the iterate sequence (ϕ[n](0)) is not separated
in the hyperbolic metric on U, then ϕ is of parabolic nonautomorphism type.

When ϕ is of hyperbolic type or parabolic automorphism type, then the spectrum of the
corresponding composition operator must contain at least the unit circle ([6, Theorems 4.5
and Theorem 4.10]), which, by convexity, puts 0 in the interior of W (Cϕ). However, as we
describe below, when ϕ is of parabolic nonautomorphism type, the work of Section 5 shows
that zero need not belong to W (Cϕ).

Write σ(z) = (1 + z)/(1 − z), a conformal mapping taking U onto the open right half-
plane RHP, the unit circle onto the imaginary axis, and sending 1 to ∞ and −1 to 0. Fix
t, initially in the closed right half-plane, and consider the parabolic map Φ(w) = w + t,
which takes RHP into itself. If t is pure imaginary then our translation map is a conformal
automorphism of RHP, but otherwise it is not. Thus ϕt(z) := σ−1(σ(z) + t) is a parabolic
automorphism of U precisely when t is pure imaginary, and a parabolic non-automorphic
self-map of U when Re t > 0.

In case t is not real the spectrum of Cϕt is known to be an origin-centered disc in the
automorphic case [27] and a curve spiraling into the origin in the non-automorphic case [6,
Section 6]. In either case, these spectral considerations place the origin in the interior of
W (Cϕt). However if t is real (so t > 0) then the spectrum of Cϕt is just the closed unit
interval ([6, Section 6] again), so for these operators there is a chance that the origin may
not lie in the numerical range. This is exactly what happens!

Upon writing out the formula for ϕt one obtains (16),

ϕ(z) =
az + 1
d − z

,

but now with
a =

2
t

− 1 and d =
2
t

+ 1.

For 0 < t ≤ 2 both a and d are non-negative, and the map ν defined by (19) becomes simply

ν(z) =
2z + t

2 + t
(z ∈ U),

which obviously takes U into itself. Now the argument that led to the decomposition (20)
works once again, with no changes whatsoever, in this new situation, and shows that ReCϕt

is strictly positive definite whenever 0 < t ≤ 2. For t > 2 the origin lies in the interior of
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W (Cϕt), as an analysis exactly like that of Theorem 5.1 (c) → (b) shows (with eigenvectors
e−sσ, where s is positive and large).

Because any linear fractional mapping ϕ of parabolic nonautomorphism type is, by rota-
tional conjugation, equivalent to one of the mappings ϕt discussed above, we have answered
the Zero-Inclusion Question for all composition operators except those with univalent, non
linear-fractional symbols that are of parabolic nonautomorphism type.

Suppose ϕ is of parabolic nonautomorphism type and is not linear fractional.
Must 0 ∈ W (Cϕ)?
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