## NONCOINCIDENCE OF THE STRICT AND STRONG OPERATOR TOPOLOGIES

JOEL H. SHAPIRO

ABSTRACT. Let E be an infinite-dimensional linear subspace of C(S), the space of bounded continuous functions on a locally compact Hausdorff space S. If  $\mu$  is a regular Borel measure on S, then each element of E may be regarded as a multiplication operator on  $L^p(\mu)$  ( $1 \le p < \infty$ ). Our main result is that the strong operator topology this identification induces on E is properly weaker than the strict topology. For E the space of bounded analytic functions on a plane region G, and  $\mu$  Lebesgue measure on G, this answers negatively a question raised by Rubel and Shields in [9]. In addition, our methods provide information about the absolutely p-summing properties of the strict topology on subspaces of C(S), and the bounded weak star topology on conjugate Banach spaces.

1. **Introduction.** Let C(S) denote the space of bounded, continuous, complex valued functions on a locally compact Hausdorff space S, and let  $C_0(S)$  denote those functions in C(S) which vanish at infinity. The *strict topology*  $\beta$  on C(S) is the locally convex topology induced by the seminorms

$$f \to ||fk||_{\infty} \quad (f \in C(S)),$$

where k runs through  $C_0(S)$  and  $\|\cdot\|_{\infty}$  denotes the supremum norm. This topology was introduced in [1] by Buck who derived many of its funda, mental properties. In particular [1, Theorems 1 and 2]:  $\beta$  is complete-Hausdorff, and weaker than the norm topology; the norm and strictly bounded subsets of C(S) coincide, and the  $\beta$ -dual of C(S) can be identified with M(S), the space of finite, regular Borel measures on S, where the pairing between the spaces is

(1.1) 
$$\langle f, \mu \rangle = \int f \, d\mu \qquad (f \in C(S), \mu \in M(S)).$$

Let  $\mu$  be a (possibly infinite) regular Borel measure on S, as defined in [4, Section 52]. Note that built into this definition is the fact that  $\mu(K) < \infty$ 

Received by the editors February 9, 1972.

AMS 1969 subject classifications. Primary 4601, 4625; Secondary 4630

Key words and phrases. Strict topology, strong operator topology, absolutely p-summing topology, bounded continuous functions.

for every compact subset K of S [4, p. 223]. For each f in C(S) the equation  $M_f g = fg$  ( $g \in L^p(\mu)$ ) defines a bounded linear operator  $M_f$  on  $L^p(\mu)$ . It is not difficult to see from the fact that  $\mu$  gives finite measure to compact sets that the linear map  $f \rightarrow M_f$  is actually an isometry taking C(S) into the space of all bounded linear operators on  $L^p(\mu)$ . Thus C(S) inherits the strong operator topology  $\sigma_p = \sigma_p(\mu)$ , defined by the seminorms

(1.2) 
$$f \to \left\{ \int |fg|^p d\mu \right\}^{1/p} \qquad (f \in C(S)),$$

where g runs through  $L^p(\mu)$  [3, VI. 1.2, p. 475]. Note that  $\sigma_p$  is locally convex and Hausdorff.

Now C(S) also acts on  $C_0(S)$  by multiplication, and in this case the corresponding strong operator topology is the strict topology. In [9, 5.18(c), p. 274], Rubel and Shields asked if  $\beta = \sigma_2(\mu)$  on the space  $H^{\infty}(G)$ , where  $\mu$  is two-dimensional Lebesgue measure on G, and G supports nonconstant bounded analytic functions. In this case  $H^{\infty}(G)$  is infinite dimensional [9, Section 2.3], so the question is answered in the negative by the following theorem, which is our main result.

THEOREM 1. Let E be an infinite-dimensional linear subspace of C(S), and suppose  $\mu$  is a regular Borel measure on S. Then the strong operator topology  $\sigma_p(\mu)$  induced on E by its action on  $L^p(\mu)$  is properly weaker than the strict topology.

The proof of this result occupies §3, and uses the notion of absolutely p-summing locally convex topologies, introduced in the next section. In §4 we comment briefly on the bounded strong operator topology and the bounded weak star topology.

2. Absolutely p-summing topologies. Let  $\tau$  be a locally convex topology on a real or complex linear space E, and let  $E' = E'_{\tau}$  denote the  $\tau$ -dual of E (all  $\tau$ -continuous linear functionals on E). For e' in E' and e in E we will write  $\langle e, e' \rangle$  instead of e'(e). A sequence  $(e_n)$  in E is called  $\tau$ -weakly p-summable if  $\sum |\langle e_n, e' \rangle|^p < \infty$  for all e' in E', and  $\tau$ -absolutely p-summable if  $\sum S(e_n)^p < \infty$  for every  $\tau$ -continuous seminorm E on E (E on E on E of E of E on E on E of E on E of E on E of E on E of E on E on E on E on E of E on E on E on E of E on E on E on E of E on E of E on E of E on E on

The following lemma, which is an easy consequence of the Dvoretzky-Rogers theorem, is the key to our proof of Theorem 1. We note that the same idea has been used in [6, Example 2, p. 417].

LEMMA 1. Let E be an infinite-dimensional normed space, and let F be a linear subspace of E' which norms E; that is,

$$(2.1) ||e|| = \sup\{|\langle e, f \rangle| : f \in F, ||f|| \le 1\}$$

for each e in E. Let  $\tau$  denote the topology on E of uniform convergence on (norm) null sequences of F. Then  $\tau$  is not absolutely p-summing  $(1 \le p < \infty)$ .

PROOF. Since E is infinite-dimensional it follows from the Dvoretzky-Rogers theorem stated above that there is a sequence  $(e_n)$  in E which is weakly, but not absolutely, p-summable for the norm topology; that is,  $\sum |\langle e_n, e' \rangle|^p < \infty$  for all e' in E', but  $\sum \|e_n\|^p = \infty$ . Since  $\tau$  is weaker then the norm topology, every  $\tau$ -continuous linear functional on E is norm continuous; hence  $(e_n)$  is  $\tau$ -weakly p-summable. We claim that  $(e_n)$  is not  $\tau$ -absolutely p-summable. For by (2.1) there exists  $f_n$  in F with  $\|f_n\| \le 1$ , and

$$|\langle e_n, f_n \rangle| > ||e_n||/2^{1/p}$$
  $(n = 1, 2, \cdots).$ 

Let  $(a_n)$  be a sequence of nonnegative numbers such that  $\lim a_n=0$ , and  $\sum a_n^p \|e_n\|^p = \infty$ , and let  $g_n = a_n f_n$   $(n=1, 2, \cdots)$ . Then  $\lim \|g_n\| = 0$ , so the equation  $Se = \sup_n |\langle e, g_n \rangle|$  (e in E) defines a  $\tau$ -continuous seminorm on E. But

$$\sum (Se_n)^p \geqq \sum |\langle e_n, g_n \rangle|^p = \sum a_n^p |\langle e_n, f_n \rangle|^p$$

$$\geqq \sum a_n^p ||e_n||^p/2 = \infty,$$

so  $\tau$  is not absolutely *p*-summing.  $\square$ 

We will also need a result of J. B. Conway concerning factorization of subsets of M(S). Recall that a subset H of M(S) is called *tight* if for each  $\varepsilon > 0$  there exists a compact subset K of S such that  $|\mu|(S-K) < \varepsilon$  for each  $\mu$  in H.

Lemma 2 [2, Theorem 2.2, P. 476]. A bounded subset H of M(S) is tight if and only if there is a bounded subset B of M(S) and a function k in  $C_0(S)$  such that H=kB.

Here, of course,  $kB = \{kb : b \in B\}$ . We can now prove the main result of this section.

PROPOSITION 1. Let E be an infinite-dimensional linear subspace of C(S). Then the strict topology on E is not absolutely p-summing  $(1 \le p < \infty)$ .

PROOF. Since the strict dual of C(S) is M(S), where the spaces are paired by (1.1) [1, Theorem 2], it follows easily that the strict dual  $E'_{\beta}$  of E may be identified with the quotient space  $M(S)/E^{\circ}$ , via the pairing

$$\langle f, \alpha + E^{\circ} \rangle = \int f \, d\alpha \qquad (f \in E, \alpha \in M(S)),$$

where  $E^{\circ}$  is the annihilator of E in M(S) (see [5, Theorem 14.5, p. 120]). Moreover  $E'_{\beta}$  is a subspace of E', the norm dual of E, so it is a normed space.

We will need the fact that for each  $\alpha$  in M(S) the norm of the coset  $\alpha+E^{\circ}$  viewed as a linear functional on E coincides with its norm as an element of  $M(S)/E^{\circ}$ . To see this, note that each e in E acts by integration as a linear functional on M(S) of norm  $\|e\|$ , so the pairing (1.1) induces an isometric isomorphism of E into M(S)'. Standard Banach space theory now shows that the weak star closure  $\bar{E}$  of E in M(S)' is isometrically isomorphic to the dual of  $M(S)/\bar{E}^{\circ}$ , where  $\bar{E}^{\circ}$  is the annihilator of  $\bar{E}$  in M(S). But  $\bar{E}^{\circ}=E^{\circ}$ , which proves our assertion.

Now the evaluation functionals  $(\lambda_s : s \in S)$  defined by

(2.2) 
$$\lambda_{s}(e) = e(s) \qquad (e \text{ in } E)$$

are strictly continuous and have norm  $\leq 1$ , so  $E'_{\beta}$  norms E in the sense of Lemma 1; hence Lemma 1 shows that the topology  $\tau$  of uniform convergence on norm null sequences in  $E'_{\beta}$  is not absolutely p-summing. Clearly  $\tau$  is stronger than the weak topology induced on E by  $E'_{\beta}$ , so we will be finished if we prove that  $\tau \leq \beta$ ; for then  $E'_{\tau} = E'_{\beta}$ , hence  $\beta$  is not absolutely p-summing since  $\tau$  is not.

To show that  $\tau \leq \beta$ , suppose  $(e'_n)$  is a norm null sequence in  $E'_{\beta}$ . By the isometric identification of  $E'_{\beta}$  with  $M(S)/E^{\circ}$  there exists a sequence  $(\alpha_n)$  in M(S) such that  $\lim \|\alpha_n\| = 0$ , and for each n,  $\langle e, e'_n \rangle = \int e \ d\alpha_n$  (e in E). It is easy to see that (the range of)  $(\alpha_n)$  is tight, hence by Lemma 2 there is a bounded sequence  $(\lambda_n)$  in M(S) and a function k in  $C_0(S)$  such that  $\alpha_n = k\lambda_n$  for all n. Thus for e in E,

$$\sup_{n} |\langle e, e'_{n} \rangle| = \sup_{n} \left| \int ek \ d\lambda_{n} \right| \leq \|ek\|_{\infty} \sup_{n} \|\lambda_{n}\|.$$

Since the left side of this inequality is a typical  $\tau$ -seminorm, and the right side is a  $\beta$ -continuous seminorm, we have  $\tau \leq \beta$ .  $\square$ 

Note that Proposition 1 shows in particular that on any infinite-dimensional linear subspace E of C(S) the strict topology is not nuclear. This fact was first conjectured by Klaus D. Bierstedt for  $E=H^{\infty}(D)$ , D the open unit disc (private communication).

3. **Proof of Theorem 1.** For convenience we replace the function g in (1.2) by  $|g|^p$ . Thus the topology  $\sigma_p = \sigma_p(\mu)$  is induced by the seminorms

(3.1) 
$$S_g(f) = \left\{ \int |f|^p g \, d\mu \right\}^{1/p} \qquad (f \in E),$$

where g runs through  $L^+$ , the class of nonnegative  $\mu$ -integrable functions on S. Since the maximum of two  $L^+$  functions is again in  $L^+$ , we see easily that the sets

$$\{f \in C(S): S_g f \leq 1\} \qquad (g \in L^+)$$

form a base for the  $\sigma_p$ -neighborhoods of zero in E.

Now if  $g \in L^+$ , then it follows from the regularity of  $\mu$  that  $g\mu \in M(S)$ . By the argument used in the proof of Lemma 2 [2, Theorem 2.2] with  $H = \{g\mu\}$ , there exists k in  $C_0(S)$  and h in  $L^+$  such that  $g = k^p h$ . Thus

$$S_n f \leq \|fk\|_{\infty} \|h\|_1^{1/p} \qquad (f \in C(S)),$$

so  $\sigma_p \leq \beta$  on C(S).

We complete the proof by showing that  $\sigma_p \neq \beta$  on E whenever E is infinite-dimensional. If the strict dual  $E'_{\beta}$  of E is different from the  $\sigma_p$ -dual, then we are done; so suppose these duals coincide. We claim that in this case  $\sigma_p$  is absolutely p-summing; so again  $\sigma_p \neq \beta$ , this time by Proposition 1.

Recall that the norm on  $E'_{\beta}$  is the restriction of the E' norm. Suppose  $(e_n)$  is a weakly  $\sigma_p$  (hence  $\beta$ ) p-summable sequence in E. Then, as in [7, §1.2.3, p. 22], the set

$$\left\{\sum_{1}^{N} a_n e_n : N = 1, 2, \cdots; \sum |a_n|^q \leq 1\right\},\,$$

where  $p^{-1}+q^{-1}=1$ , is bounded in the weak topology induced on E by  $E'_{\beta}$ , hence strictly bounded by Mackey's theorem [5, §17.5, p. 155]. Since the strict and norm bounded subsets of E coincide [1, Theorem 1], we have

$$\sup \left| \sum_{1}^{N} a_n \langle e_n, e' \rangle \right| < \infty,$$

where the supremum is taken over all positive integers N, all sequences  $(a_n)$  in the unit ball of  $l^q$ , and all e' in the unit ball of  $E'_{\beta}$ . From this it follows easily that

$$(3.3) \sup \left\{ \sum_{1}^{\infty} |\langle e_n, e' \rangle|^p : e' \in E'_{\beta}, \|e'\| \leq 1 \right\} < \infty.$$

Now if S is a  $\sigma_p$ -continuous seminorm on E, then S is bounded on a set of

the form (3.2), hence  $S \leq S_g$  for some g in  $L^+$ . Taking  $\lambda_s$  as in (2.2) we obtain:

$$\sum (Se_n)^p = \sum (S_n e_n)^p = \sum \int |e_n|^p g d\mu$$

$$= \int \left(\sum |\langle e_n, \lambda_s \rangle|^p\right) g(s) d\mu(s) \le \|g\|_1 \sup \sum |\langle e_n, e' \rangle|^p < \infty,$$

where the supremum in the last line is taken over all e' in  $E'_{\beta}$  with  $\|e'\| \leq 1$ ; a condition satisfied by each  $\lambda_s$ . That the supremum is finite follows from (3.3); hence  $\sigma_p$  is an absolutely p-summing topology on E, and  $\sigma_p \neq \beta$ .  $\square$ 

4. The bounded weak star and bounded strong operator topologies. Let E be a subspace of C(S), and let  $b\sigma_p = b\sigma_p(\mu)$  denote the bounded strong operator topology induced on E by its action on  $L^p(\mu)$  (see [3, VI. 9.9, p. 512]); that is, the strongest topology on E agreeing with  $\sigma_p$  on norm bounded sets.

If X is a Banach space, then the bounded weak star topology on its dual X' is the strongest topology on X' agreeing with the weak star topology on bounded sets [3, V.3.3, p. 427]. According to the Banach-Dieudonné theorem [3, V.5.4], the bounded weak star topology on X' is just the topology of uniform convergence on null sequences of X. From this and Lemma 1 we get the following result, already noted by Lazar and Retheford for  $X=c_0$  [6, Example 2, p. 417].

THEOREM 2. If X is an infinite-dimensional Banach' space, then the bounded weak star topology on X' is not absolutely p-summing. In particular, it is not nuclear.

In [10, Theorem 2, p. 475] we showed that if E is a linear subspace of C(S) whose unit ball is strictly compact, then E is the dual of the quotient Banach space  $M(S)/E^{\circ}$ , and the bounded weak star topology thus induced on E is just the strict topology. This quickly yields the following

Theorem 3. Suppose E is a linear subspace of C(S) whose unit ball is strictly compact. Let  $\mu$  be a regular Borel measure on S. Then  $b\sigma_p(\mu) = \beta$ .

PROOF. By [10, Theorem 2]  $\beta$  is the strongest topology on E agreeing on bounded sets with the weak topology induced by  $M(S)/E^{\circ}=E'_{\beta}$ . The proof of Theorem 1 shows that  $\sigma_p \leq \beta$ , so the unit ball of E is also  $\sigma_p$ -compact. But the topology  $\sigma_p$  is Hausdorff, so  $\sigma_p = \beta$  on the unit ball of E, hence on every bounded set (since they are both vector topologies). Thus  $b\sigma_p = \beta$ .  $\square$ 

In particular note that if E is  $H^{\infty}(G)$  and  $\mu$  is Lebesgue measure on G,

then the hypotheses of Theorem 3 are satisfied. Thus if G supports non-constant bounded analytic functions, then  $H^{\infty}(G)$  is infinite-dimensional; and the strict topology on it is the bounded strong operator topology, but not the strong operator topology.

## REFERENCES

- 1. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. MR 21 #4350.
- 2. J. B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474-486. MR 34 #6503.
- 3. N. Dunford and J. T. Schwartz, *Linear operators*. I: *General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 4. P. R. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 11, 504.
- 5. J. Kelley, I. Namioka et al., Linear topological spaces, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1963. MR 29 #3851.
- 6. A. Lazar and J. Retheford, *Nuclear spaces*, *Schauder bases*, and Choquet simplexes, Pacific J. Math. 37 (1971), 409-419.
- 7. A. Pietsch, *Nukleare lokalkonvexe Räume*, Schriftenreihe der Institute für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965. MR 31 #6114.
- 8. —, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333-353. MR 35 #7162.
- 9. L. A. Rubel and A. L. Shields, *The space of bounded analytic functions on a region*, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 1, 235–277. MR 33 #6440.
- 10. J. Shapiro, Weak topologies on subspaces of C(S), Trans. Amer. Math. Soc. 157 (1971), 471-479.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823