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NONCOINCIDENCE OF THE STRICT AND
STRONG OPERATOR TOPOLOGIES

JOEL H. SHAPIRO

ABsTRACT. Let E be an infinite-dimensional linear subspace
of C(S), the space of bounded continuous functions on a locally
compact Hausdorff space S. If u is a regular Borel measure on S,
then each element of £'may be regarded as a multiplication operator
on L*(u) (1=p<co). Our main result is that the strong operator
topology this identification induces on E is properly weaker than the
strict topology. For E the space of bounded analytic functions on a
plane region G, and u Lebesgue measure on G, this answers
negatively a question raised by Rubel and Shields in [9]. In
addition, our methods provide information about the absolutely
p-summing properties of the strict topology on subspaces of C'(S),
and the bounded weak star topology on conjugate Banach spaces.

1. Introduction. Let C(S) denote the space of bounded, continuous,
complex valued functions on a locally compact Hausdorff space S, and
let Cy(S) denote those functions in C(S) which vanish at infinity. The strict
topology f# on C(S) is the locally convex topology induced by the seminorms

S llfklle  (feC(S)),

where k runs through Cy(S) and |||, denotes the supremum norm. This
topology was introduced in [1] by Buck who derived many of its funda,
mental properties. In particular [1, Theorems | and 2]: 7 is complete-
Hausdorff, and weaker than the norm topology: the norm and strictly
bounded subsets of C(S) coincide, and the -dual of C(S) can be identified
with M(S), the space of finite, regular Borel measures on S, where the pair-
ing between the spaces is

(1.1) ) =ffdy (f€ C(S), we M(SH).

Let u be a (possibly infinite) regular Borel measure on S, as defined in
[4, Section 52]. Note that built into this definition is the tact that u(K) < co
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for every compact subset K of S [4, p. 223]. For each fin C(S) the equation
Mg=fg (g € L?(1)) defines a bounded linear operator M; on L?(u). It is
not difficult to see from the fact that u gives finite measure to compact sets
that the linear map f~ M, is actually an isometry taking C(S) into the space
of all bounded linear operators on L?(x). Thus C(S) inherits the strong
operator topology o,=0,(u), defined by the seminorms

(1.2) 1 [1ser dﬂ}w (fe ),

where g runs through L?(u) [3, VI. 1.2, p. 475]. Note that v, is locally con-
vex and Hausdorff.

Now C(S) also acts on C,(S) by multiplication, and in this case the
corresponding strong operator topology is the strict topology. In [9,
5.18(c), p. 274], Rubel and Shields asked if f=0,(u) on the space H*(G),
where u is two-dimensional Lebesgue measure on G, and G supports
nonconstant bounded analytic functions. In this case H®(G) is infinite
dimensional [9, Section 2.3], so the question is answered in the negative by
the following theorem, which is our main result.

THEOREM 1. Let E be an infinite-dimensional linear subspace of C(S),
and suppose u is a regular Borel measure on S. Then the strong operator
topology o,(u) induced on E by its action on L?(u) is properly weaker than the
strict topology.

The proof of this result occupies §3, and uses the notion of absolutely
p-summing locally convex topologies, introduced in the next section. In
§4 we comment briefly on the bounded strong operator topology and the
bounded weak star topology.

2. Absolutely p-summing topologies. Let 7 be a locally convex topology
on a real or complex linear space E, and let E'=EF, denote the 7-dual of E
(all 7-continuous linear functionals on E). For ¢’ in E’ and e in E we will
write (e, ¢) instead of e’(e). A sequence (e,) in E is called 7-weakly p-
summable if > |(e,, ¢")|?<co for all ¢’ in E’, and T-absolutely p-summable
if > S(e,)?<co for every r-continuous seminorm S on E (I=p<o0). If
every T-weakly p-summable sequence is T-absolutely p-summable, we say
7 is absolutely p-summing. For example, the weak topology on a Banach
space is absolutely p-summing for all p; but if the space is infinite-
dimensional, then the Dvoretzky-Rogers theorem [8, Theorem 8, p. 350]
asserts that the norm topology is absolutely p-summing for no p (1< p < o).
Note that if 7 is not absolutely p-summing, then neither is any stronger
locally convex topology on E with the same continuous linear functionals.
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The following lemma, which is an easy consequence of the Dvoretzky-
Rogers theorem, is the key to our proof of Theorem 1. We note that the
same idea has been used in [6, Example 2, p. 417].

LEMMA 1. Let E be an infinite-dimensional normed space, and let F be a
linear subspace of E' which norms E; that is,

2.1 lell = sup{lle, Hl:f e F, I fI = 1}

for each e in E. Let T denote the topology on E of uniform convergence on
(norm) null sequences of F. Then t is not absolutely p-summing (1= p < ).

ProOF. Since E is infinite-dimensional it follows from the Dvoretzky-
Rogers theorem stated above that there is a sequence (e,) in E which is
weakly, but not absolutely, p-summable for the norm topology; that is,
> e, €)|?<oco for all e’ in E’, but > |e,[?=c0. Since 7 is weaker then
the norm topology, every r-continuous linear functional on E is norm
continuous; hence (e,) is 7-weakly p-summable. We claim that (e,) is not
r-absolutely p-summable. For by (2.1) there exists f, in F with | f,[|=1,
and

|<en’fn>' > ”en”/zl/p (n = ly 2a t )

Let (a,) be a sequence of nonnegative numbers such that lim @, =0, and
S aje,|?=o0, and let g,=a,f, (n=1, 2, ). Then lim | g,| =0, so the
equation Se=sup, |(e, g,)| (e in E) defines a 7-continuous seminorm on E.
But

2.(8e,)” = 2, le,n g)I” = 2 al e, £

2 2 ablle,)"j2 = =,

so 7 is not absolutely p-summing. [

We will also need a result of J. B. Conway concerning factorization of
subsets of M(S). Recall that a subset H of M(S) is called tight if for each
£>0 there exists a compact subset K of .S such that |u|(S'—K) <e for each
win H.

LeMMA 2 [2, THEOREM 2.2, P. 476). A bounded subset H of M(S) is tight
if and only if there is a bounded subset B of M(S) and a function k in Co(S)
such that H=kB.

Here, of course, kB={kb:b € B}. We can now prove the main result of
this section.

PROPOSITION |.  Let E be an infinite-dimensional linear subspace of C(S).
Then the strict topology on E is not absolutely p-summing (1 = p < 00).
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Proor. Since the strict dual of C(S) is M(S), where the spaces are
paired by (1.1) [1, Theorem 2], it follows easily that the strict dual E; of £
may be identified with the quotient space M(S)/E°, via the pairing

oo+ B9 =ffda (fe E, o € M(S)),

where E° is the annihilator of £ in M(S) (see [5, Theorem 14.5, p. 120]).
Moreover Ej is a subspace of E’, the norm dual of E, so it is a normed
space.

We will need the fact that for each « in M(S) the norm of the coset
o+E° viewed as a linear functional on E coincides with its norm as an
element of M(S)/E°. To see this, note that each e in E acts by integration as
a linear functional on M(S) of norm |le||, so the pairing (I.1) induces an
isometric isomorphism of Einto M(S)’". Standard Banach space theory now
shows that the weak star closure E of Ein M(S)' is isometrically isomorphic
to the dual of M(S)/E°, where E° is the annihilator of £ in M(S). But
E°=E°, which proves our assertion.

Now the evaluation functionals (4,:s € S) defined by

(2.2) Ae) = e(s) (ein E)

are strictly continuous and have norm =1, so E; norms E in the sense of
Lemma 1; hence Lemma 1 shows that the topology = of uniform conver-
gence on norm null sequences in Ej is not absolutely p-summing. Clearly =
is stronger than the weak topology induced on E by Ej, so we will be
finished if we prove that +=<p; for then E;=Ej, hence f is not absolutely
p-summing since 7 is not.

To show that 7=<p, suppose (e;) is a norm null sequence in Ej. By the
isometric identification of £} with M(S)/E® there exists a sequence (o)) in
M(S) such that lim |«, | =0, and for each n, (e, e;)=| e du,, (e in E). It is
easy to see that (the range of) (o) is tight, hence by Lemma 2 there is a
bounded sequence (4,) in M(S) and a function k in Cy(S) such that o,=
kA, for all n. Thus for e in E,

f ek d,

Since the left side of this inequality is a typical 7-seminorm, and the right
side is a f-continuous seminorm, we have r</. O

Note that Proposition 1 shows in particular that on any infinite-
dimensional linear subspace E of C(S) the strict topology is not nuclear.
This fact was first conjectured by Klaus D. Bierstedt for E=H® (D), D the
open unit disc (private communication).

sup |le, €, = su

n n

é ”ekHoo Sup H;'n”
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3. Proof of Theorem 1. For convenience we replace the function g in
(1.2) by |g|?. Thus the topology o,=0,(w) is induced by the seminorms

(3.1) S,(f) = Ulfl” g dy}w (f€E),

where g runs through L*, the class of nonnegative u-integrable functions
on S. Since the maximum of two L* functions is again in L*, we see easily
that the sets

(3.2) (feCS):S,f<1; (gel)

form a base for the o,-neighborhoods of zero in E.

Now if g € L1, then it follows from the regularity of u that gu € M(S).
By the argument used in the proof of Lemma 2 [2, Theorem 2.2] with H=
{gu}, there exists k in Cy(S) and # in L* such that g=k?h. Thus

S,f = I fklLe IhIE” (fe C(S)),

so ¢,=f on C(S).

We complete the proof by showing that ¢,%f on E whenever E is
infinite-dimensional. If the strict dual E; of E is different from the ¢,-dual,
then we are done; so suppose these duals coincide. We claim that in this
case 0, is absolutely p-summing; so again o, 3, this time by Proposition 1.

Recall that the norm on Ej is the restriction of the £’ norm. Suppose
(e,) is a weakly o, (hence ) p-summable sequence in £. Then, as in [7,
§1.2.3, p. 22], the set

N,
{2 apeniN = 1,2, ;S ja' < 1},
1

where p~1+4~'=1, is bounded in the weak topology induced on E by Ej,
hence strictly bounded by Mackey’s theorem [5, §17.5, p. 155]. Since the
strict and norm bounded subsets of E coincide [1, Theorem 1], we have

N

’
Z an<€n’ € >
1

where the supremum is taken over all positive integers N, all sequences
(a,) in the unit ball of /7, and all ¢’ in the unit ball of E;. From this it
follows easily that

sup < oo,

(3.3) sup{i [(e,, €)|":e" € Ep, |le'|| = 1} < 0.
1

Now if S'is a ¢,-continuous seminorm on E, then S 1s bounded on a set of
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the form (3.2), hence S=S, for some g in L*. Taking 4, as in (2.2) we ob-
tain:

S (Se)’ = D (S,e)’ =2 f leal” g ds

- f (S ten ADI7)g(s) du(s) < ligly sup D ey €)1 < o,

where the supremum in the last line is taken over all ¢’ in Ej with [’ =1;
a condition satisfied by each A,. That the supremum is finite follows from
(3.3); hence o, is an absolutely p-summing topology on E, and ¢,%#f. []

4. The bounded weak star and bounded strong operator topologies. Let
E be a subspace of C(S), and let bo,=ba,(u) denote the bounded strong
operator topology induced on E by its action on L?(u) (see [3, VI. 9.9, p.
512]); that is, the strongest topology on E agreeing with o, on norm
bounded sets.

If X is a Banach space, then the bounded wealk star topology on its dual
X’ is the strongest topology on X’ agreeing with the weak star topology
on bounded sets [3, V.3.3, p. 427]. According to the Banach-Dieudonné
theorem [3, V.5.4], the bounded weak star topology on X’ is just the
topology of uniform convergence on null sequences of X. From this and
Lemma 1 we get the following result, already noted by Lazar and Rethe-
ford for X=c, [6, Example 2, p. 417].

THEOREM 2. If X is an infinite-dimensional Banach’ space, then the
bounded weak star topology on X' is not absolutely p-summing. In par-
ticular, it is not nuclear.

In [10, Theorem 2, p. 475] we showed that if E is a linear subspace of
C(S) whose unit ball is strictly compact, then E is the dual of the quotient
Banach space M(S)/E”, and the bounded weak star topology thus induced
on E is just the strict topology. This quickly yields the following

THEOREM 3. Suppose E is a linear subspace of C(S) whose unit ball is
strictly compact. Let u be a regular Borel measure on S. Then bo (n)=4.

Proor. By [10, Theorem 2] § is the strongest topology on E agreeing
on bounded sets with the weak topology induced by M(S)/E°=Ej. The
proof of Theorem 1 shows that ¢,=<f, so the unit ball of E is also o,
compact. But the topology o, is Hausdorff, so o,=p on the unit ball of E,
hence on every bounded set (since they are both vector topologies). Thus
bo,=p. L

In particular note that if £ is H”(G) and u is Lebesgue measure on G,
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then the hypotheses of Theorem 3 are satisfied. Thus if G supports non-
constant bounded analytic functions, then H*(G) is infinite-dimensional;
and the strict topology on it is the bounded strong operator topology, but
not the strong operator topology.
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