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Abstract. We consider, for G a simply connected domain and 0 < p < ∞,
the Hardy space Hp(G) formed by fixing a Riemann map τ of the unit disc onto
G, and demanding of functions F holomorphic on G that the integrals of |F |p
over the curves τ({|z| = r}) be bounded for 0 < r < 1. The resulting space is
usually not the one obtained from the classical Hardy space of the unit disc by
conformal mapping. This is reflected in our Main Theorem: Hp(G) supports
compact composition operators if and only if ∂G has finite one-dimensional
Hausdorff measure. Our work is inspired by an earlier result of Matache [14],
who showed that the Hp spaces of half-planes support no compact composition
operators. Our methods provide a lower bound for the essential spectral radius
which shows that the same result holds with “compact” replaced by “Riesz”.
We prove similar results for Bergman spaces, with the Hardy-space condition
“∂G has finite Hausdorff 1-measure” replaced by “G has finite area.” Finally,
we characterize those domains G for which every composition operator on
either the Hardy or the Bergman spaces is bounded.

1. Introduction

1.1. The Hardy Spaces. Our work takes place on a simply connected domain
G that is properly contained in the complex plane. Thus the Riemann Mapping
Theorem provides holomorphic mappings that take the open unit disc U univalently
onto G. Let us fix one of these “Riemann maps” and call it τ . For 0 < r < 1 let Γr

denote the τ -image of the circle {|z| = r}. Each Γr is thus a smooth Jordan curve
in G, and the interiors of these curves exhaust G in a regular fashion.

For 0 < p < ∞ we define Hp(G) to be the collection of functions F holomorphic
on G such that

sup
0<r<1

∫

Γr

|F (w)|p |dw| < ∞.(1)

We call these the Hardy spaces of G (although “Hardy-Smirnov spaces” would
perhaps be more accurate, see [5, Notes, page 184]). If G = U and τ is the identity
map then our definition of Hp(G) reduces to that of the classical Hardy space
Hp of the unit disc. Upon Hp(G), which is easily seen to be a vector space, we
define a distance-measuring functional F → ‖F‖p by dividing the supremum on
the left-hand side of (1) by 2π and taking the p-th root. The functional ‖ · ‖p is a
norm if p ≥ 1, while if 0 < p < 1 then its p-th power is a “p-norm” (subadditive
and homogeneous of order p [5, §3.2, page 37]); for convenience we will use the
term “norm” for both cases. In case G = U we obtain the usual Hp-norm. In
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general, Hp(G) is complete in the metric induced by ‖ · ‖p, in fact it turns out to be
isometrically isomorphic to Hp. This follows upon making the change of variable
w = τ(z) in the integral on the left-hand side of (1), from which we obtain:

1.2. Proposition (see, e.g., [5, Corollary, page 169]). Suppose F is holomorphic
on G. Then F ∈ Hp(G) if and only if (F ◦ τ)(τ ′)1/p ∈ Hp. In fact, the map
F → (F ◦ τ)(τ ′)1/p is a linear isometry taking Hp(G) onto Hp.

It follows quickly from this Proposition that if τ is replaced by another Riemann
map then the class of functions Hp(G) is not changed, and although the norm on
the space is changed, the new one is equivalent to the old in that each is bounded
by a constant multiple of the other.

1.3. Example: G a half-plane. The linear-fractional map τ(z) = (1 + z)/(1 − z)
takes U univalently onto the right half-plane Π. According to Proposition 1.2,
a function F holomorphic on Π is in Hp(Π) if and only if the function z →
F (τ(z))/(1 − z)2/p is in Hp. By [11, Chapter VI, page 118] this identifies Hp(Π) as
the Hardy space of the right half-plane most often defined by the condition

sup
x>0

∫ ∞

−∞
|F (x + iy)|p dy < ∞

(see also [5, Exercise 1, page 197]). Note in particular that the map F → F ◦ τ
takes Hp(Π) into, but not onto, Hp.

1.4. Composition operators on Hp(G). Suppose Φ is a function holomorphic
on G, with Φ(G) ⊂ G. Then Φ induces a linear composition operator CΦ on the
space Hol (G) of all functions holomorphic on G as follows:

CΦF = F ◦ Φ (F ∈ Hol (G)).

If G is the unit disc then a classical result of Littlewood asserts that every com-
position operator is bounded on every Hardy space ([13]; see also [5, Chapter 1],
[22, Chapters 1 and 9]). Upon the foundation of Littlewood’s Theorem has risen a
lively interaction between function theory and operator theory that focuses on un-
derstanding how properties of composition operators are reflected in the behavior
of their inducing maps. Much of this is detailed in the recent books [3] and [22],
and conference proceedings [12].

Once boundedness has been established, the next most natural question one can
ask about any composition operator is: “Is it compact?” i.e. “Does it take bounded
sets into relatively compact ones?” The issue here is to relate the fashion in which
the operator compresses Hp(G) to the way its inducing function compresses G. If
G = U then Hp(G) = Hp supports many compact composition operators. Two
classes of examples that come immediately to mind are: the operators induced by
constant functions, and the ones induced by dilation maps z → rz for 0 ≤ r < 1
(see [22, Chapter 2], for example).

However the phenomenon of compactness for composition operators on Hp is
actually quite subtle. For example, maps into polygons inscribed in the unit circle
induce compact composition operators, while univalent maps whose images contain
discs tangent to the circle do not [22, Chapter 2]. The precise characterization
of holomorphic selfmaps of U that induce compact composition operators on Hp

involves asymptotic properties of their distribution of values; see [21] or [22, Chapter
10] for details.
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It follows readily from Proposition 1.2 that the map Cτ : F → F ◦ τ is an
isomorphism of Hp(G) onto Hp if and only if both τ ′ and its reciprocal are bounded
on U (see [5, Page 169, Theorem 10.2], for example). In this case Hp(G) coincides
with the “conformally invariant” Hardy space defined on G by demanding only
that F ◦ τ belong to Hp, and questions about boundedness and compactness of
composition operators on Hp(G) transfer via Cτ to ones already answered for the
classical Hardy spaces (e.g. all are bounded, many are compact).

However when either τ ′ or its reciprocal is unbounded , so that our Hardy classes
are different from the conformally invariant ones, then surprises await. Regarding
boundedness, we show in §6 that the condition of boundedness for both τ ′ and
its reciprocal actually characterizes those domains G for which every composition
operator is bounded on Hp(G). However our primary focus is on the existence
of compact composition operators, where we are inspired by this recent result of
Valentin Matache [14]:

If G is a half-plane then Hp(G) supports no compact composition oper-
ators.

The main result of this paper shows that what really lies behind Matache’s re-
sult is the Hausdorff measure of ∂G. It shows, in particular, that there are even
bounded simply connected domains G for which Hp(G) has no compact composition
operators!

1.5. Main Theorem. For a simply connected plane domain G 6= C and an index
p ∈ (0, ∞), the space Hp(G) supports compact composition operators if and only if
the boundary of G has finite one-dimensional Hausdorff measure.

Essential to our work is a well-known result which rephrases the Hausdorff mea-
sure condition on the boundary as a growth restriction on Riemann maps.

1.6. Theorem. Suppose G is a simply connected domain properly contained in
C, and suppose τ is a Riemann map for G. Then ∂G has finite one-dimensional
Hausdorff measure if and only if τ ′ ∈ H1.

For a proof see Pommerenke’s book [16, Theorem 10.11, pp. 320–321]. Perhaps
better known is the special case of G a Jordan domain, for which the result asserts
that ∂G is rectifiable if and only if τ ′ ∈ H1. This result, attributed to Privalov and
Smirnov, can be found in books of Pommerenke [15, Lemma 10.7, page 319] and
Duren [5, Theorem 3.2, page 44]. The proof of Theorem 1.6 referenced above uses
this special case, along with the a clever application of the Carathéodory Kernel
Theorem.

Theorem 1.6 makes short work of one implication of our Main Theorem: If ∂G
has finite one-dimensional Hausdorff measure, so that τ ′ ∈ H1, then the curves
τ{|z| = r} all have length bounded by (2π times) the H1-norm of τ ′. It follows
that composition operators induced by constant selfmaps Φ of G are bounded on
Hp(G). Being of rank one, such operators are therefore compact.

The issue, then, is to prove the converse, i.e. that if some Hp(G) supports a
compact composition operator, then τ ′ ∈ H1. Our work on this problem begins in
the next section, where we show how conformal mapping transforms the study of
composition operators on Hp(G) into that of certain weighted composition operators
on Hp. We use this point of view to prove that the questions of whether or not
a given composition operator on Hp(G) is bounded or compact do not depend on
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p < ∞. Thus we may restrict attention to the case p = 2, and thereby avail
ourselves of the comforts of Hilbert Space.

We prove the Main Theorem in §3, and in two following sections give variants
concerning Bergman spaces and Riesz operators. The paper concludes with our
characterization of those simply connected domains G for which every composition
operator is bounded on Hp(G).

1.7. Remarks. (a) The case p = ∞. The reader may wonder why we do not
consider the case of H∞(G), the space of bounded holomorphic functions on G,
taken in the supremum norm. Clearly every holomorphic selfmap Φ of G induces
a bounded composition operator on H∞(G). Note further that Cτ always maps
H∞(G) isometrically onto H∞ = H∞(U), so if ϕ = τ−1 ◦ Φ ◦ τ , then CΦ acting on
H∞(G) is isometrically similar to Cϕ on H∞. It is a simple exercise to show that
Cϕ is compact on H∞ if and only if ϕ(U) has compact closure in U (see [22, §2.6,
Problem 10], for example), hence the same is true with G in place of U.

(b) Remark on Carleson measures. The properties of boundedness and compact-
ness for weighted composition operators are readily restated in terms of “Carleson
conditions” on pullback measures arising from the change-of-variable formula of
measure theory (see, for example, [2]). This point of view can be useful, for ex-
ample in proving in certain cases that this boundedness and compactness does not
depend on p (see further remarks following Proposition 2.4). However by itself the
Carleson-measure point of view seldom serves to relate deeper properties of the
operators in question with those of their inducing analytic functions. For exam-
ple, our Theorem 1.5 shows something non-obvious about Theorem 3.4 of [2]: For
certain weights its hypotheses are satisfied for no holomorphic selfmap ϕ of U. It
would be of interest to characterize, along the lines of the results in [21], those com-
position operators which are bounded (respectively, compact) on the Hardy spaces
we consider here.

2. Weighted Composition Operators

In this section we make the transition from composition operators on Hp(G) to
weighted composition operators on Hp itself, and use the highly developed function
theory of Hardy spaces of the disc to show that, for 0 < p, q < ∞, a composition op-
erator CΦ is bounded (respectively, compact) on Hp(G) if and only if it is bounded
(respectively, compact) on Hq(G).

2.1. From G to U. As in Section 1, for a simply connected domain G 6= C we
fix a Riemann map τ of U onto G. Thus to every holomorphic self-map Φ of G
there corresponds such a map ϕ of U defined by ϕ = τ−1 ◦ Φ ◦ τ . For each index
0 < p < ∞, the Riemann map τ also gives rise to the isometry of Proposition 1.2
which takes Hp(G) onto Hp; we suppress the dependence on τ , call this mapping
Vp, and allow it to operate on all of Hol (G). More formally:

(VpF )(z) = τ ′(z)1/pF (τ(z)) (F ∈ Hol (G), z ∈ U).

The operator Vp allows us to associate each composition operator CΦ on Hol (G)
with an operator Aϕ,p = VpCΦVp

−1 on Hol (U), which maps Hp boundedly into
itself if and only if CΦ is bounded on Hp(G) (in which case Vp establishes an
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isometric similarity between the two operators). Following through the definitions,
one sees quickly that for f ∈ Hp:

(Aϕ,pf)(z) = (Qϕ(z))1/p (f(ϕ(z)), where Qϕ(z) =
τ ′(z)

τ ′(ϕ(z))
(z ∈ U).(2)

We note that, because τ ′ never vanishes, Qϕ is holomorphic on U, hence Aϕ,p is a
weighted composition operator on Hol (U).

One way of insuring boundedness for Aϕ,p is to demand that Qϕ be bounded on
U, so that Aϕ,p will be the product of two operators that are bounded on Hp: Cϕ

followed by multiplication by Q
1/p
ϕ . However Aϕ,p may still be bounded even if Qϕ

is not; here is just such an example, where Aϕ,p is not only bounded, it is compact.

2.2. Example: Aϕ,p bounded but Qϕ unbounded. We consider only the case
p = 2, after which Theorem 2.7 below will take care of the remaining values of p.
We write Aϕ for Aϕ,2.

Let τ(z) = 1 − (1 − z)1/2, so that τ(U) is a teardrop shaped domain symmetric
about the real axis, whose boundary meets the unit circle at the point 1, where it
makes an angle of π/4 radians with the unit interval. Let G = τ(U). It follows
from the elementary inequality

|1 − w1/2| < |1 − w| (Rew > 0)

that G ⊂ U (set w = 1−z in this inequality, where z ∈ U ). Let Φ be the restriction
of τ to G, so

Φ(G) = τ(G) = τ(τ(U)) ⊂ τ(U) = G,

i.e., Φ is a holomorphic selfmap of G. The disc map that corresponds to Φ is

ϕ = τ−1 ◦ Φ ◦ τ = τ−1 ◦ τ ◦ τ = τ.

Now τ ′(z) = (1/2)(1 − z)−1/2, so Qϕ(z) = (1 − z)−1/4, an unbounded function on
the unit disc.

We show that, nevertheless, Aϕ is compact by showing that it is actually a
Hilbert-Schmidt operator. For this it is enough to show that

∑∞
n=0 ‖Aϕ(zn)‖2

2 < ∞,
and one checks easily that this is equivalent to:

∫

∂U

|Qϕ|
1 − |ϕ|2 dm < ∞,(3)

where here (and henceforth) m denotes Lebesgue arc-length measure on ∂U, nor-
malized to have total mass one. Because the boundary of G approaches the point
1 nontangentially,

1 − |ϕ(ζ)| ≥ c|1 − ϕ(ζ)| (ζ ∈ ∂U ),

where c is a positive constant independent of ζ. Thus, on the unit circle the
integrand on the left-hand side of (3) is bounded above by a constant multiple of

|Qϕ(ζ)|
|1 − ϕ(ζ)| =

1
|1 − ζ|3/4 ,

so that integral is finite, hence Aϕ is a Hilbert-Schmidt operator. ¤

Is there a connection between compactness for Cϕ and for Aϕ,p? Consider this
class of examples, which motivated us to conjecture our Main Theorem: Suppose
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G is unbounded and ϕ ≡ 0. Then Cϕ is compact, but from Theorem 1.6 we see
that Qϕ = τ ′/(τ ′ ◦ ϕ) = τ ′/τ ′(0) 6∈ H1. Thus for f ∈ Hp,

Aϕ,pf = Q1/p
ϕ f(0) ∈ Hp ⇐⇒ f(0) = 0,

so Aϕ,p is not even bounded on Hp.
The next example shows that there is no implication in the other direction,

either.

2.3. Example: Aϕ,p compact but Cϕ not. Let τ(z) = (z+1)2, so G = τ(U) is a
“heart-shaped” region, symmetric about the real axis, whose inward-pointing cusp
has vertex at the origin. Let ϕ(z) = (1−z)/2, so that, as noted in the Introduction,
Cϕ is not compact on any space Hp. Then Qϕ(z) = 2(z+1)/(3−z). Now (choosing
once again to work only on H2) we have Aϕf = Q

1/2
ϕ · (f ◦ ϕ). Suppose {fn} is a

sequence in the unit ball of H2 that converges to zero uniformly on compact subsets
of U. By Lemma 2.5 below, to see that Aϕ is compact it is enough to show that
‖Aϕfn‖2 → 0. For this, let ε > 0 be given, and write

‖Aϕfn‖2
2 =

∫

I

+
∫

J

|Qϕ| |fn ◦ ϕ|2 dm(4)

where I = {ζ ∈ ∂U : |1 + ζ| < ε} and J = ∂U\I. Now |Qϕ| < ε on I , so for each
n the first integral on the right-hand side of (4) is bounded above by ε‖fn ◦ ϕ‖2 ≤
ε‖Cϕ‖2. Moreover on J we have |ϕ(ζ)| bounded above by a constant less than one,
so fn ◦ ϕ → 0 uniformly on J , hence the second integral on the right-hand side of
(4) is less than ε for all sufficiently large n. Thus ‖Aϕfn‖2

2 < (1 + ‖Cϕ‖2)ε for all
n sufficiently large, which shows that ‖Aϕfn‖2 → 0 and completes the proof that
Aϕ is compact. ¤

In what follows we will always reduce questions about the boundedness and
compactness of composition operators on the space Hp(G) to the corresponding
questions about the weighted composition operators Aϕ,p on the Hardy spaces of
the disc. We devote the rest of this section to showing that such questions do not
depend on the index p.

2.4. Proposition. If a composition operator CΦ is bounded on Hp(G) for some
0 < p < ∞, then it is bounded for all such p.

Remarks. We will prove the equivalent statement for the operators Aϕ,p on Hp.
As we remarked in §1.7, this could be done quickly by quoting known theorems
involving Carleson measures; this approach was taken by Matache in [14, Theorem
2] for composition operators on the Hardy spaces of a half-plane. In [2] the Carleson-
measure approach was used to study more general weighted composition operators
on the classical spaces Hp. However here we opt for a more self-contained treatment
in the function-theoretic spirit of [24, Theorem 6.1], where the result was first proved
for “unweighted” composition operators on Hardy spaces of the disc.

Proof. Suppose first that Aϕ,p is bounded on Hp, and fix q 6= p. Fix f ∈ Hq of
norm one. We have the factorization f = BF , where B is a Blaschke product and
F belongs to Hq, vanishing nowhere on U. Although |F | ≥ |f | on U, it turns out
that F also has norm one in Hq . Hence G = F q/p lies in Hp and also has norm one
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in that space. Thus, understanding that all integrals are extended over the entire
unit circle, we have:

‖Aϕ,qf‖q
q = sup

0≤r<1

∫
|Qϕ(rζ)| |f(ϕ(rζ))|q dm(ζ)

≤ sup
0≤r<1

∫
|Qϕ(rζ)| |F (ϕ(rζ))|q dm(ζ)

= sup
0≤r<1

∫
|Qϕ(rζ)| |G(ϕ(rζ))|p dm(ζ)

= ‖Aϕ,pG‖p
p ≤ ‖Aϕ,p‖p

so Aϕ,q is bounded on Hq , as desired.

The proof also shows that ‖Aϕ,q‖q ≤ ‖Aϕ,p‖p, and since p and q are arbitrary,
there is actually equality here; of course this equality transfers to the corresponding
composition operators on Hp(G).

In order to deal with compactness we need two preliminary results, both orig-
inally observed for unweighted composition operators on Hp by H. J. Schwartz
[20]. The first gives a convenient way to restate the notion of compactness for the
operators Aϕ,p.

2.5. Lemma. For ϕ a holomorphic selfmap of U and 0 < p < ∞, the following are
equivalent:

(a) The operator Aϕ,p is compact on Hp.
(b) Whenever {fn} is a bounded sequence in Hp that converges to zero uniformly

on compact subsets of U, then ‖Aϕ,pfn‖p → 0.
The proof proceeds exactly as in the unweighted case, using only the following

facts:
(i) An operator is compact if and only if it takes bounded sets into relatively

compact ones (the definition of compactness).
(ii) Bounded subsets of Hp are normal families [5, §3.2, page 36, Lemma].
(iii) Aϕ,p is continuous when Hp is given the topology of uniform convergence on

compact subsets of U (easily checked).
For the details see, for example, [22, §2.4].

To state the second preliminary result we need to regard each holomorphic self-
map ϕ of U as extended, via radial limits, to an almost-everywhere defined function
on the unit circle. In fact, this can be done for any function in a Hardy space Hp;
the resulting boundary function is non-zero almost everywhere, and belongs to the
space Lp(∂U), where its norm equals the Hp norm of the original “interior” function
([5, Chapter 2], [11, Chapter IV.C]).

2.6. Proposition. If, for some 0 < p < ∞, the operator Aϕ,p is compact on Hp,
then |ϕ| < 1 a.e. on ∂U.

Proof. Suppose that Aϕ,p is bounded on Hp, and that |ϕ| = 1 on a subset E of
the unit circle having positive Lebesgue measure. We will show that Aϕ,p is not
compact.

First note that Q
1/p
ϕ = (τ ′/(τ ′ ◦ ϕ))1/p = Aϕ,p(1) ∈ Hp, hence Qϕ has finite,

non-zero radial limits at almost every point of ∂U. By the usual measure-theoretic
argument we may also assume that |Qϕ| ≥ δ > 0 on E. The proof now proceeds just
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as in the case of unweighted composition operators (see [22, page 32], for example):
For each integer n ≥ 0,

‖Aϕ,p(zn)‖p
p =

∫
|Qϕ| |ϕ|np dm ≥

∫

E

|Qϕ| |ϕ|np dm ≥ δ

∫

E

|ϕ|np dm = δ m(E) > 0,

where in the last equality we use the fact that |ϕ| ≡ 1 on E. Thus, even though {zn}
is a sequence of unit vectors in Hp that converges uniformly on compact subsets
of U to zero, we see that ‖Aϕ,p(zn)‖p stays bounded away from zero. Hence by
Lemma 2.5, Aϕ,p is not a compact operator on Hp.

2.7. Theorem. If CΦ is compact on Hp(G) for some 0 < p < ∞, then it is compact
for all such p.

Proof. It suffices to prove the corresponding result for the operators Aϕ,p on Hp.
With the preliminaries already established, the argument is much the same as
the corresponding one given in [24, page 493, Proof of Theorem 6.1] for ordinary
composition operators on Hp. However for completeness, we give a somewhat
detailed sketch of the essentials.

Suppose Aϕ,p is compact on Hp, and fix 0 < q < ∞. We wish to show that
Aϕ,q is compact on Hq . To this end suppose {fn} is a bounded sequence in Hq

that converges to zero uniformly on compact subsets of U. It suffices to show that
‖Aϕ,qfn‖q → 0. Our proof will achieve this only for a subsequence, and we leave it
to the reader to show that this is good enough.

As in the proof of Theorem 2.4 we have, for each n, the factorization fn = BnFn,
where Bn is a Blaschke product, Fn belongs to Hq and does not vanish anywhere on
U, and ‖fn‖q = ‖Fn‖q. As before, Gn = F

q/p
n ∈ Hp, and ‖Gn‖p = ‖Fn‖q for each

n, so the sequence {Gn} is bounded in Hp. As we observed previously, bounded
subsets of Hardy spaces are normal families, hence by passing to a subsequence we
may assume that {Gn} converges uniformly on compact subsets of U to a holo-
morphic function G that necessarily belongs to Hp. Because Aϕ,p is a compact
operator, this implies that ‖Aϕ,p(Gn − G)‖p → 0, from which it follows that the
sequence {|Aϕ,pGn|p} is uniformly integrable with respect to Lebesgue measure on
∂U (once again we extend Hp functions to ∂U via radial limits).

Thus we have, at a.e. point of ∂U,

|Aϕ,pGn|p = |Qϕ| |Gn ◦ ϕ|p = |Qϕ| |Fn ◦ ϕ|q ≥ |Qϕ| |fn ◦ ϕ|q = |Aϕ,qfn|q ,
which shows that {|Aϕ,qfn|q} is also uniformly integrable on the unit circle. Because
Aϕ,p is compact, Proposition 2.6 guarantees that |ϕ| < 1 a.e. on ∂U, so fn ◦
ϕ → 0 a.e. on ∂U, thus the same is true for the uniformly integrable sequence
{|Aϕ,qfn|q}. Vitali’s Convergence Theorem [18, Chapter 6, Exercise 10(b), page
133] now insures that

∫
|Aϕ,qfn|q dm → 0. What we have proved is that if {fn}

is any bounded sequence in Hq that converges to zero uniformly on compact sets,
then some subsequence of Aϕ,q-images converges to zero in the norm of Hq . As
pointed out above, this implies the desired compactness of Aϕ,q.

3. Proof of Main Theorem

As we pointed out at the end of Section 1, the nontrivial implication of the Main
Theorem asserts that:

If for some 0 < p < ∞ the Hardy space Hp(G) supports a compact
composition operator, then τ ′ ∈ H1.
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By Proposition 2.7 it is enough to consider only the case p = 2, which we do for
the rest of this section. We abbreviate Aϕ,2 simply to Aϕ, so for f ∈ H2,

Aϕf(z) = Qϕ(z)1/2(f(ϕ(z))) where Qϕ(z) =
τ ′(z)

τ ′(ϕ(z))
(z ∈ U).

Now H2 is the Hilbert space of functions holomorphic on the unit disc that have
square summable MacLaurin series coefficients. We will make considerable use of
its inner product:

〈f, g〉 =
∞∑

n=0

f̂(n)ĝ(n) (f, g ∈ H2)(5)

where, for example, f̂(n) denotes the n-th MacLaurin coefficient of f .
Our argument depends on identifying a large supply of test functions that reflect

the behavior of the operator Aϕ. For this purpose we use the reproducing kernels
for H2.

3.1. Reproducing Kernels. The reproducing kernel for a point a ∈ U is the
function

Ka(z) =
1

1 − az
(z ∈ U).(6)

Since the right-hand side of (6) is a function holomorphic in C\{1/a}, it’s clear
that Ka ∈ H2 for each a ∈ U. The terminology “reproducing kernel” comes from
the formula

〈f, Ka〉 = f(a) (f ∈ H2, a ∈ U),(7)

which follows immediately upon expanding the right-hand side of (6) in a geometric
series, and using the definition (5) of the inner product in H2. The utility of
reproducing kernels for our purposes depends on the following result, where A∗

ϕ

denotes the Hilbert-space adjoint of Aϕ.

3.2. Lemma. If the operator Aϕ is bounded on H2, then for each a ∈ U,

A∗
ϕKa = Qϕ(a)

1/2
Kϕ(a) (f ∈ H2).

Proof. For each f ∈ H2 we compute:

〈f, A∗
ϕKa〉 = 〈Aϕf, Ka〉 = (Aϕf)(a) = Qϕ(a)1/2 f(ϕ(a))

= Qϕ(a)1/2 〈f, Kϕ(a)〉 = 〈f, Qϕ(a)
1/2

Kϕ(a)〉,
which, in view of the arbitrariness of f , yields the desired result.

If τ(z) ≡ z then Lemma 3.2 asserts that C∗
ϕKa = Kϕ(a), a result which figures

importantly in the study of compact composition operators (see, e.g., [22, §3.4,
page 43]). If Qϕ were in H∞, then the result would follow from this and a similarly
proved fact about multiplication operators: If ψ ∈ H∞ and Mψ is the operator
on H2 of multiplication by ψ, then M∗

ψKa = ψ(a)Ka. Because of Example 2.2,
however, Lemma 3.2 required its own proof.

Here is a down payment on the proof of the Main Theorem.
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3.3. Proposition. Suppose Φ is a holomorphic selfmap of G that induces a com-
pact composition operator on H2(G), and has a fixed point in G. Then τ ′ ∈ H1.

Proof. We are assuming that Φ(a) = a for some a ∈ G, hence the associated
holomorphic selfmap ϕ = τ−1 ◦ Φ ◦ τ of U fixes the point b = τ−1(a). Since CΦ is
assumed to be compact on H2(G), the (unitarily equivalent) operator Aϕ is compact
on H2. Now by Lemma 3.2:

A∗
ϕKb = Qϕ(b)Kϕ(b) = Kb(8)

where in the last equality we use the fact that ϕ(b) = b, hence Qϕ(b) = τ ′(b)/τ ′(ϕ(b)) =
1 and Kϕ(b) = Kb.

Thus the complex number 1 is an eigenvalue of A∗
ϕ, hence belongs to its spectrum,

and therefore lies as well in the spectrum of Aϕ. Since Aϕ is compact the Riesz
Theorem (see, for example, [22], pages 95 and 99–101) guarantees that 1 is actually
an eigenvalue of Aϕ, so there exists f ∈ H2\{0} with Aϕf = f . Thus g = f/(τ ′)1/2

is a function holomorphic on U with g ◦ ϕ = g. Since ϕ fixes the point b and is not
an automorphism (by the compactness of Aϕ and Proposition 2.6), its iterates ϕn

tend pointwise to b [22, §5.2, Prop. 1], hence g(z) = g(ϕn(z)) → g(b) as n → ∞
for each z ∈ U. Since f is not identically zero, this shows that g = f/(τ ′)1/2 is a
non-zero constant, hence (τ ′)1/2, being a non-zero constant multiple of a function
in H2, also belongs to H2. Thus τ ′ ∈ H1, as desired.

We finish the proof of the Main Theorem by showing that whenever CΦ is com-
pact on H2(G) then Φ must have a fixed point in G. This result is well known for
G = U, where it was first obtained by Caughran and Schwartz, using the Denjoy-
Wolff and Julia-Carathéodory Theorems ([7], see also [22, §5.5]). Thus it should
come as no surprise that these theorems will also play a crucial role in what is to
follow.

3.4. Angular Derivatives and boundary fixed points. A classical idea that
figures importantly in the study of composition operators is that of angular deriva-
tive. We know that each holomorphic selfmap ϕ of U—and indeed any function in
a Hardy space of the disc—has a (finite) non-tangential limit at almost every point
of the unit circle. Suppose η ∈ ∂U and ϕ has such a limit ϕ(η) at that point. If,
in addition, the difference quotient (ϕ(η)− ϕ(z))/(η − z) has a finite nontangential
limit at that point, we write this limit as ϕ′(η), and call it the angular derivative
of ϕ at η. The existence of the angular derivative at a boundary point expresses a
certain conformality for ϕ at that point.

If, at a point η of ∂U, the map ϕ has nontangential limit η, then we call η a
boundary fixed point of ϕ. If ϕ has finite angular derivative at such a fixed point,
then by conformality, ϕ′(η) must be non-negative, and by the Schwarz-Pick Lemma
it must be strictly positive (see [22, Chapter 4] for details).

The Denjoy-Wolff Theorem guarantees that if ϕ has no fixed point in U then it
has a (necessarily unique) boundary fixed point η that attracts all the orbits of ϕ.
As if to reflect this attracting property, this so-called Denjoy-Wolff point of ϕ is
determined uniquely among all possible boundary fixed points of ϕ by the fact that
ϕ has finite angular derivative at η satisfying ϕ′(η) ≤ 1 (see [22, Chapter 5] for a
detailed exposition of all these matters).
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3.5. The Koebe Distortion Theorem. This result, the final piece in our puzzle,
asserts that for any univalent map τ on U,

τ ′(0)
1 − |z|

(1 + |z|)3
≤ |τ ′(z)| ≤ τ ′(0)

1 + |z|
(1 − |z|)3

(z ∈ U)

(see [6, Theorem 2.5, page 32], [16, Theorem 1.3, page 9]). For our purposes these
inequalities are best rephrased in terms of the invariant derivative of τ , defined by:

δ[τ ](z) = |τ ′(z)|(1 − |z|2) (z ∈ U),

and so named because for any conformal automorphism α of U:

δ[τ ◦ α] = δ[τ ] ◦ α,(9)

(an immediate consequence of the fact that |α′(z)| = (1 − |α(z)|2)/(1 − |z|2) for
each z ∈ U; see [8, page 3], for example.) When expressed in terms of the invariant
derivative, the Koebe Distortion Theorem becomes

(
1 − |z|
1 + |z|

)2

≤ δ[τ ](z)
δ[τ ](0)

≤
(

1 + |z|
1 − |z|

)2

(z ∈ U).(10)

We will require a conformally invariant version of this result. For w ∈ U let

αw(z) =
w − z

1 − wz
(z ∈ U),(11)

so αw is a conformal automorphism of U that interchanges w with the origin, and
is its own compositional inverse. Apply (10) to τ ◦ αw, replace z by αw(z), and use
the invariance property (9); the result is

(
1 − |αw(z)|
1 + |αw(z)|

)2

≤ δ[τ ](z)
δ[τ ](w)

≤
(

1 + |αw(z)|
1 − |αw(z)|

)2

(z,w ∈ U).(12)

3.6. Main Theorem—finale. Let’s review where we stand. We wish to prove
Theorem 1.5 which, in view of Theorem 1.6, asserts that Hp(G) supports compact
composition operators if and only if τ ′ ∈ H1. So far we have observed that if τ ′ ∈ H1

then composition operators induced by constant self-maps of G are bounded, hence,
being of rank one, are compact on Hp(G) (see remarks following Theorem 1.6).
Toward the converse we have shown that if a selfmap Φ of G with a fixed point in
G induces a compact composition operator on Hp(G), then τ ′ ∈ H1 (Proposition
3.3). Thus to finish our proof we need only show that if a self-map Φ of G induces
a compact composition operator on Hp(G), then it must have a fixed point in G.
We will prove the contrapositive statement:

If Φ has no fixed point in G then CΦ is not compact on any of the spaces
Hp(G).

By Theorem 2.7 it is enough to prove this for H2(G). Equivalently it is enough
to show that Aϕ is non-compact on H2, where ϕ = τ−1 ◦ Φ ◦ τ . Now ϕ has no
fixed point in U, so by the Denjoy-Wolff Theorem it has a boundary fixed point
η at which the angular derivative ϕ′(η) exists, with ϕ′(η) ≤ 1. Without loss of
generality we may assume η = 1.

We turn once more to our reproducing kernel test functions. For a ∈ U let
ka = Ka/‖Ka‖, where here, and for the rest of this section, “‖ · ‖” denotes the
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norm of the space H2. So {ka : |a| ≤ 1} is a family of unit vectors in H2; we claim
that it converges weakly to zero as |a| → 1−, i.e. for every f ∈ H2,

〈ka, f〉 =
f(a)
‖Ka‖

→ 0 as |a| → 1 − .

Note that

‖Ka‖2 = 〈Ka, Ka〉 = Ka(a) =
1

1 − |a|2 ,(13)

so our weak convergence statement can be rephrased as follows: For every f ∈ H2,

|f(a)| = o
(

1
(1 − |a|2)1/2

)
as |a| → 1 − .(14)

This is the “little-oh” version of a well-known growth estimate on functions of class
H2 that results from applying the Cauchy-Schwarz inequality to (7):

|f(a)| = |〈f, Ka〉| ≤ ‖f‖ ‖Ka‖ = ‖f‖ (1 − |a|2)−1/2.(15)

The estimate (14) is trivially true for a dense subset of H2 (the polynomials, for
example), and it is an easy exercise to transfer the result to all of H2 thanks to the
uniformity of the “big-oh” estimate (15).

Now compact operators take weakly convergent sequences into norm convergent
ones, and have compact adjoints. Thus if Aϕ were compact then the same would
be true of its adjoint, hence A∗

ϕka would converge to zero in the norm of H2 as
|a| → 1−. Therefore to prove Aϕ non-compact we need only show that this does
not happen, i.e., that lim sup|a|→1− ‖A∗

ϕka‖ > 0.
Our argument hinges once again on Lemma 3.2, which implies that for 0 ≤ r < 1:

‖A∗
ϕkr‖2 =

|τ ′(r)|
|τ ′(ϕ(r))|

‖Kϕ(r)‖2

‖Kr‖2 =
|τ ′(r)|(1 − r2)

|τ ′(ϕ(r))|(1 − |ϕ(r)|2) =
δ[τ ](r)

δ[τ ](ϕ(r))
,(16)

whereupon our invariant version (12) of the Distortion Theorem yields

‖A∗
ϕkr‖ ≥ 1 − |αr(ϕ(r))|

1 + |αr(ϕ(r))| (0 ≤ r < 1),(17)

where αr is defined by (11) (here we also use the fact that |αw(z)| = |αz(w)| for all
z, w ∈ U).

Upon doing some arithmetic and recalling that ϕ has a finite angular derivative
at 1, we see that

αr(ϕ(r)) =

(
1−ϕ(r)

1−r

)
− 1

r
(

1−ϕ(r)
1−r

)
+ 1

→ ϕ′(1) − 1
ϕ′(1) + 1

as r → 1−,

Since 0 < ϕ′(1) ≤ 1, the limit on the right is non-positive, hence letting r → 1− in
(17) we obtain:

lim inf
r→1−

‖A∗
ϕkr‖ ≥

1 −
(

1−ϕ′(1)
1+ϕ′(1)

)

1 +
(

1−ϕ′(1)
1+ϕ′(1)

) = ϕ′(1) > 0.(18)

This establishes the non-compactness of A∗
ϕ, hence also that of Aϕ, and therefore

of CΦ; it completes the proof of our Main Theorem. ¤
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3.7. Remark on spectra. In the proof of Proposition 3.3 we could, without loss
of generality, have assumed that the fixed point b of ϕ is the origin (for example,
by taking τ to map the origin to the fixed point of Φ). This would give the matrix
of Aϕ with respect to the orthonormal basis {zn} a particularly revealing form.
Note that the n-th column of this matrix is the sequence of MacLaurin coefficients
of Aϕ(zn) = Q

1/2
ϕ ϕn. Since ϕ(0) = 0 and Qϕ(0) = 1, for n > 0 the MacLaurin

expansion in question begins with ϕ′(0)nzn, and for n = 0 it is the single term
Qϕ(0) = 1. Thus the matrix of Aϕ with respect to this basis is lower triangular,
with 1 in the upper left-hand corner, and ϕ′(0)n at the n-th position of the diagonal
for n ≥ 1. The adjoint therefore has upper triangular matrix with diagonal equal
to the sequence of complex conjugates of the original diagonal, showing once again
that 1 is an eigenvalue of A∗

ϕ (with eigenfunction ≡ 1), but now additionally that
ϕ′(0)

n
is an eigenvalue for n ≥ 1. Thus ϕ′(0)n, while not necessarily an eigenvalue

of Aϕ, at least belongs to its spectrum σ(Aϕ):
If Aϕ is bounded on H2 and ϕ(0) = 0 then {ϕ′(0)n}∞

1 ∪ {1} ⊂ σ(Aϕ).
In case Aϕ is compact, the Riesz Theory insures that every non-zero element of
its spectrum is an eigenvalue. An argument similar to the one given in the proof
of Proposition 3.3, but now using the uniqueness assertion of Koenigs’s Theorem
(see [22, §6.1], for example) shows that the only possible eigenvalues of Aϕ are the
matrix diagonal elements. Thus, just as in the unweighted case (see [7], [22, §6.2]):

If Aϕ is compact and ϕ(0) = 0, then σ(Aϕ) = {ϕ′(0)n}∞
1 ∪ {0, 1}.

Transferring this result back to G we obtain:

3.8. Theorem. Suppose Φ is a holomorphic selfmap of G for which CΦ is compact
on H2(G). Then Φ fixes a point a ∈ G and σ(CΦ) = {Φ′(a)n : n ≥ 1} ∪ {0, 1}.

This result was originally proved for G = U by Caughran and Schwartz [7], to
whom we owe arguments of §3.7.

4. Bergman Spaces

For G a simply connected domain properly contained in C and 0 < p < ∞,
the Bergman space of G, denoted Lp

a(G), is the subspace of Lp(G) consisting of
functions holomorphic on G. Here G is understood to be endowed with Lebesgue
area measure dA, normalized so that the unit disc has area 1, hence the norm of
Lp(G) is defined by:

‖F‖p =
{∫

G

|f |p dA

}1/p

(F ∈ Lp(G)).

For holomorphic self-maps Φ of G we can ask, in the Bergman setting, the same
questions about the induced composition operators CΦ that we asked for Hardy
spaces. In this section we observe that the Hardy-space methods work almost word
for word to give:

4.1. Theorem. Suppose G is a simply connected domain properly contained in the
plane, and 0 < p < ∞. Then Lp

a(G) supports a noncompact composition operator
if and only if G has finite area.

As in the Hardy case, one direction is easy: if G has finite area then Lp
a(G) con-

tains the constant functions, hence the composition operators induced by constant
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self-maps of G are bounded, and since they have rank one, are compact. For the
other direction we proceed as before, reducing the problem to one about weighted
composition operators on the Bergman space L2

a(U).

4.2. Weighted composition operators on Lp
a(U). Continuing in the spirit of

our previous work, let us fix a Riemann map τ of U onto G, and for F holomorphic
on G write

VpF = (τ ′)2/p(F ◦ τ) .

The change of variable formula for integrals with respect to area measure shows
that Vp is an isometry of Lp

a(G) onto Lp
a(U). In particular, since Lp

a(U) is complete
in its natural metric [26, Theorem 4.13, page 47], the same is true of Lp

a(G).
Given Φ a holomorphic self-map of G, and ϕ = τ−1 ◦ Φ ◦ τ its disc counterpart,

the operator Bϕ,p = VpCΦV −1
p is linear on Hol (U), and questions of boundedness

or compactness of CΦ on Lp
a(G) are equivalent to the same questions for Bϕ,p on

Lp
a(U). One easily derives the concrete representation of Bϕ,p:

Bϕ,pf =
(

τ ′

τ ′ ◦ ϕ

)2/p

(f ◦ ϕ) (f ∈ Hol (U)).

Using this representation and the Bergman space version of the Carleson-measure
results mentioned just after the statement of Proposition 2.4, we see again that
the questions considered here do not depend on p. (See [26, §6.2], for example;
unfortunately, the classically inspired arguments of §2.4 and §2.7 are no longer
available in the Bergman case.) For the rest of the argument, then, it is enough to
consider only the case p = 2. We write Bϕ instead of Bϕ,2. Our argument depends,
as in the Hardy space case, on knowing how the Hilbert-space adjoint of Bϕ acts
on reproducing kernels. Now the L2

a(U)-reproducing kernel Ka for the point a ∈ U
is the function

Ka(z) =
1

(1 − az)2
(z ∈ U)

(see [26, §4.1]), for which

‖Ka‖ = 〈Ka, Ka〉1/2 =
√

Ka(a) =
1

1 − |a|2 (a ∈ U).(19)

Repeating the proof of Lemma 3.2 one finds that for each a ∈ U:

B∗
ϕKa = Qϕ(a)Kϕ(a) where, as previously, Qϕ(a) =

τ ′(a)
τ ′(ϕ(a))

.(20)

4.3. The case where Φ has a fixed point in G. Suppose CΦ is compact on
L2

a(G) and Φ fixes a point of G. Then Bϕ is compact on L2
a(U) and ϕ fixes a point

b of U. Just as in the Hardy space situation, it follows from (20) that B∗
ϕKb = Kb,

hence 1 is an eigenvalue of B∗
ϕ, so once again by compactness it is also an eigenvalue

of Bϕ, with an eigenfunction f ∈ L2
a(U). Proceeding as in the proof of Proposition

3.3 we see that f/τ ′ is a holomorphic function fixed by Cϕ, hence (because ϕ(b) = b)
it must be a non-zero constant. Since f ∈ L2

a(U), the same must be true of τ ′, and
therefore G must have finite area. ¤
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4.4. Proof of Theorem 4.1, completed. As in §3 we complete the proof of
Theorem 4.1 by showing that if a composition operator on L2

a(G) is induced by a
map having no fixed point in G, then that operator cannot be compact.

As in §3.6, we may assume that the corresponding disc map ϕ has 1 as a boundary
fixed point, with 0 < ϕ′(1) ≤ 1. Then upon setting kr = Kr/‖Kr‖, where 0 ≤ r <
1, we obtain from (20) that

‖B∗
ϕkr‖ =

δ[τ ](r)
δ[τ ](ϕ(r))

(21)

(the only difference between this and the corresponding Hardy space calculation
(16) being that the norm on the left-hand side of (21) is not squared). Thus the
argument that concluded §3.6 now yields

lim inf
r→1−

‖B∗
ϕkr‖ ≥ ϕ′(1)2 > 0.

As in §3.6, the vectors kr converge weakly to zero in L2
a(U) as r → 1−, hence B∗

ϕ,
and therefore Bϕ, is not compact. This completes the proof of Theorem 4.1. ¤

4.5. Weighted Bergman spaces. For W : G → (0,∞) a continuous function,
let Lp

a(G, W ) denote the collection of holomorphic functions F on G with |F |p
integrable with respect to the measure WdA. The resulting space is easily seen to
be a closed subspace of Lp(G, WdA), hence complete in the metric induced from
that space. Fix a Riemann map τ taking U onto G, and set w = W ◦ τ . The map
Vp of §4.2 now furnishes an isometry taking Lp

a(G, W ) onto Lp
a(U, w), and the map

Bϕ,p = Vp CΦ V −1
p acting on Lp

a(U, w) is still given by the formula of §4.2. Once
again, Carleson-measure arguments in the Bergman setting show the boundedness
or compactness of these operators to be independent of the index p. Moreover the
argument of §4.3 goes through without change to show that: If Φ has a fixed point
in G and CΦ is compact, then

∫
G W dA < ∞.

If, in addition, the weight is “standard,” i.e., w(z) = (α + 1)(1 − |z|2)α for
some α > −1, then the argument that settled the unweighted case works almost
verbatim to show that compact composition operators can only be induced by maps
with an interior fixed point. Indeed, suppose Φ has no fixed point in G, so that
we may assume, as before, that the corresponding disc map ϕ has its Denjoy-
Wolff point at 1. Then the reproducing kernel in L2

a(U, w) for the point a ∈ U is
Ka(z) = (1 − az)−(α+2) (see [3, Problem 2.1.5, page 27] or [26, §6.4]), hence the
calculation (19) applied to the current situation yields ‖Ka‖ = (1 − |a|2)−(1+α/2).
Upon writing ka = Ka/‖Ka‖ we obtain the following analogue of (21):

‖B∗
ϕkr‖ =

δ[τ ](r)
δ[τ ](ϕ(r))

[
1 − r2

1 − |ϕ(r)|2

]α/2

.

As before, the first factor on the right has lower limit no less that ϕ′(1)2 as r → 1−.
By the Julia-Carathéodory Theorem [22, §5.5], the second factor tends to ϕ′(1)−α/2

as r → 1−. Thus

lim inf
r→1−

‖B∗
ϕkr‖ ≥ ϕ′(1)2−α/2 > 0,

so Bϕ is not compact. Thus we have shown that:
A Bergman space Lp

a(G, W ) with “standard” weight W supports a com-
pact composition operator if and only if

∫
G W dA < ∞.
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More generally the same will be true if, whenever ϕ has a finite angular derivative
at 1, then ‖Kϕ(r)‖ and ‖Kr‖ are comparable as r → 1−. It might be of interest to
explore what happens for weights for which this property fails.

4.6. Remarks. (a) The Hardy spaces of the unit disc often play the role of limiting
cases of the standard-weighted Bergman spaces of the disc, as the exponent α
descends to −1. Thus it might seem strange that the result of setting α = −1 in
the last inequality of §4.5 does not yield the corresponding estimate of §4.4. The
seeming discrepancy results from the fact that for L2-Bergman spaces, regardless
of the weight, the unit-disc realization of CΦ is Bϕ : f → Qϕ · (f ◦ ϕ), whereas for
H2 it is Aϕ : f → (Qϕ)1/2 · (f ◦ ϕ) (here, as always, Qϕ = τ ′/(τ ′ ◦ ϕ)).

(b) It might be of interest to see if our results can be generalized to Bergman
spaces of multiply connected domains G. Here it seems less natural to attempt
to transfer the situation to the unit disc; it might be more productive to develop
techniques that work directly on G.

5. Riesz Operators

In 1954 A. F. Ruston [19] introduced for Banach spaces a class of operators
containing the compacts, yet spectrally indistinguishable from them (see also [4,
Chapter 3]). Of particular importance to us, each such “Riesz operator” has the
property—guaranteed for compact operators by the Riesz Theory—that every non-
zero point of the spectrum is an eigenvalue. In this section we show that the
methods of §3 extend to Riesz operators on Hp(G). There are two surprises here:
First, our duality arguments do not require concrete representation of the dual
space, and second, they work equally well for the non-locally convex case 0 < p < 1.
In the interest of clarity we focus most of this section on the more familiar setting
1 ≤ p < ∞, relegating the non-locally convex situation to concluding remarks.

To define the class of Riesz operators, let L(X) denote the collection of bounded
operators on a Banach space X, and K(X) the collection of compact operators.
When endowed with the operator norm, L(X) is a Banach algebra in which K(X)
is a two-sided closed ideal. The work of this section focuses on the quotient algebra
L(X)/K(X), commonly known as the Calkin Algebra. If T ∈ L(X) we denote by
‖T‖e the norm, in the Calkin Algebra, of its coset modulo K(X), and call this the
essential norm of T . Thus ‖T‖e is the distance from T to the closed subspace
of compact operators on X . Similarly the essential spectrum σe(T ) of T is the
spectrum of its coset mod K(X) in the Calkin Algebra.

T ∈ L(X) is called a Riesz operator if σe(T ) = {0}. Thus Riesz operators cor-
respond to quasi-nilpotent elements of the Calkin algebra. Thanks to the spectral
radius formula for Banach algebras:

T is a Riesz operator if and only if re(T ) = limn ‖T n‖1/n
e = 0.

Compact operators are clearly Riesz, and as we mentioned above, Riesz operators
have the property that their spectra are indistinguishable from those of compact
operators [4, Chapter 3]. In particular, the continuity of the Fredholm index implies,
for Riesz operators, that if λ is a non-zero spectral point, then the operator T −λI
has index zero, hence λ is an eigenvalue of finite multiplicity.

Note that there are many non-compact operators that are Riesz; for example any
non-compact nilpotent operator has this property. In our composition operator
setting the map ϕ(z) = (1 − z)/2 induces a non-compact composition operator
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on Hp, but the square of this operator is compact (see, e.g., [22, §2.6, Exercise
4]). Thus the original operator is Riesz, but not compact. See [1] For a Riesz
composition operator, no power of which is compact.

Here is (the Banach-space version of) the main theorem of this section:

5.1. Theorem. Suppose that G is a simply connected domain properly contained
in C, and that 1 ≤ p < ∞. Then Hp(G) supports a Riesz composition operator if
and only if ∂G has finite one-dimensional Hausdorff measure.

Our result for Bergman spaces, Theorem 4.1, has a similar “Rieszification.” We
leave it to the reader to state this result, and to extract its proof from the arguments
given below for Hardy spaces.

As in Sections 3 and 4 one direction is easy. We have already seen that finite
Hausdorff 1-measure for ∂G implies that Hp(G) supports composition operators
that are compact (the ones induced by constant maps, for example), hence Riesz.
For the other direction our strategy remains the same, however in order to have
one proof that works for all cases, we forego the urge to represent the dual space
(Hp)∗ of Hp concretely, and simply treat it as the abstract space of bounded linear
functionals on Hp. In this interpretation the reproducing kernel Ka is simply the
linear functional of evaluation at a ∈ U.

We will write 〈f, λ〉 for λ(f), where λ ∈ (Hp)∗ and f ∈ Hp, so in particular,
〈f, Ka〉 = f(a), i.e. formula (7) still holds in this more general context. Conse-
quently the proof of Lemma 3.2 works with almost no change to provide:

A∗
ϕ,p(Ka) = Qϕ(a)1/p Kϕ(a) (a ∈ U),(22)

where, as always for Hardy spaces, Qϕ = τ ′/(τ ′ ◦ ϕ). Here the fact that Qϕ(a)
shows up unconjugated on the right-hand side of (22) reflects the fact that now
our pairing “〈 , 〉” of Hp with its dual is truly bilinear, while in the Hilbert-space
setting of §3 it was conjugate-linear in the second variable.

If Φ, hence ϕ, has an interior fixed point, then the argument employed to prove
Proposition 3.3, which requires only (22) and the fact that non-zero spectral points
of compact operators are eigenvalues, works almost verbatim in the Riesz situation.
Thus the problem reduces to that of adapting the argument of §3.6 to show that if
Φ has no fixed point in G, then CΦ is not Riesz on Hp(G) for 1 ≤ p < ∞.

To this end, suppose Φ, hence ϕ, has no interior fixed point, so that ϕ has a
Denjoy-Wolff point, which we may suppose to be 1, on ∂U. Our goal is to show
that re(Aϕ,p) > 0.

We require the following well-known estimate (see [5, §4.6], for example):

5.2. Lemma. For each α > 1 there exists a positive, finite constant Cα such that∫

∂U

1
|1 − rζ |α dm(ζ) ≤ Cα

(1 − r)α−1 (0 ≤ r < 1).

Let ‖ · ‖∗,p denote the norm in (Hp)∗. The following lemma, which is also well
known, tells us how to normalize Ka in (Hp)∗. We present its proof in order to
keep our exposition reasonably self contained.
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5.3. Lemma. Suppose 1 ≤ p < ∞. Then there exist finite positive constants c1(p)
and c2(p) such that for every a ∈ U:

c1(p)
(1 − |a|2)1/p

≤ ‖Ka‖∗,p ≤ c2(p)
(1 − |a|2)1/p

.

Proof. Suppose f ∈ Hp and a ∈ U. Since f(a) on U can be computed by a Cauchy
integral over ∂U (see [5, Theorem 3.6, page 40], for example), if p > 1 then Hölder’s
inequality yields

|f(a)| ≤ ‖f‖p

{∫

∂U

1
|1 − aζ|q

dm(ζ)
}1/q

,

where q is the index conjugate to p. By Lemma 5.2 the integral on the right is
bounded by Cq/(1−|a|)q−1, so |f(a)| ≤ 21/pC

1/q
q ‖f‖p(1−|a|2)−1/p, which provides

the upper bound promised by the Lemma, with c2(p) = 21/pC
1/q
q . If p = 1 then

this bound is trivially obtained from the Cauchy integral formula, with c2(1) = 2
(we remark that for p = 2 this bound has also been noted in (15) with c2(2) = 1).

For the lower bound, let

fa(z) =
{

(1 − |a|2)
(1 − az)2

}1/p

(z ∈ U).

Then Lemma 5.2 shows that ‖fa‖p ≤ (2C2)1/p, so
1

(1 − |a|2)1/p
= fa(a) = 〈fa, Ka〉 ≤ ‖fa‖p ‖Ka‖∗,p ≤ (2C2)1/p‖Ka‖∗,p ,

which yields the promised lower bound, with c1(p) = (2C2)−1/p.

With Lemma 5.3 in hand, we define ka = Ka/‖Ka‖∗,p, and repeat the argument
of Section 3.6—using (22) in place of Lemma 3.2, and Lemma 5.3 in place of (13)—
to obtain

lim inf
r→1−

‖A∗
ϕ,pkr‖∗,p ≥ c3(p)ϕ′(1)2/p,(23)

where c3(p) = c1(p)/c2(p) (note that for the case p = 2 this recovers the essential
content of (18)). To conclude the proof we need to know that

lim
|a|→1−

‖J∗ka‖∗,p = 0 (all J compact on Hp).(24)

Granting this, we see from (23) and the reverse triangle inequality that for every
such J ,

‖Aϕ,p + J‖ = ‖A∗
ϕ,p + J∗‖ ≥ lim inf

r→1−
‖(A∗

ϕ,p + J∗)kr‖∗,p ≥ c3(p)ϕ′(1)2/p,(25)

so that

‖Aϕ,p‖e ≥ c3(p)ϕ′(1)2/p.(26)

Now (26) holds, with the same constant c3(p), for any ϕ with Denjoy-Wolff point
1, hence it works as well with ϕ replaced by the iterate ϕn for any positive integer
n. Upon noting that Aϕn,p = (Aϕ,p)n and (ϕn)′(1) = ϕ′(1)n (by an easily proved
“chain rule” for angular derivatives, see [22, §4.8, page 74, Problem 10]), we obtain

‖(Aϕ,p)n‖e = ‖Aϕn,p‖e ≥ c3(p)ϕ′(1)2n/p (n = 1, 2, . . . ),
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from which the (essential) spectral radius formula yields

re(Aϕ) ≥ ϕ′(1)2/p > 0,

which shows that Aϕ is not a Riesz operator.
It remains to prove (24). Just as in §3.6, the upper estimate of Lemma 5.3, which

is really a “big-oh” estimate on the growth of Hp functions, has a “little-oh” version
which can be interpreted as saying that ka → 0 in the weak-star topology of (Hp)∗

as |a| → 1−. If J is compact on Hp then J∗ is compact on (Hp)∗, and so takes the
collection {ka : |a| < 1} of unit vectors in (Hp)∗ into a relatively (norm-) compact
subset. Now fix a sequence {an} of points in U that converges to ∂U. By the just-
mentioned compactness there is a subsequence {bj} for which {J∗bj} converges in
the norm topology of (Hp)∗, hence also in the weak-star topology, to some linear
functional λ ∈ (Hp)∗. But adjoint operators are weak-star continuous , so it follows
that as j → ∞ the weak-star limit of {J∗kbj} is zero (since kbj → 0 weak star as
k → ∞), hence λ = 0, and so ‖J∗kbj ‖∗,p → 0 as j → ∞. We have shown that
every sequence {J∗kan}, with |an| → 1−, has a subsequence that converges in the
norm topology of (Hp)∗ to zero. From this follows (24), which completes the proof
of Theorem 5.1. ¤

5.4. The case 0 < p < 1. We mentioned in §1 that if 0 < p < 1 then the
functional ‖ · ‖p

p is a p-norm on Hp(G) (i.e. it is subadditive and homogeneous of
order p), and that the metric induced on Hp(G) by this p-norm is complete.

Now a linear operator on such a “p-Banach space” X is continuous if and only
if it is bounded on the unit ball (same proof as for ordinary Banach spaces), hence
the algebra L(X) of all such operators can be given a p-norm in the usual way, and
routine arguments show that in this “norm” it becomes a p-Banach algebra—we
leave it to the reader to formulate precisely what this means. In the interest of
brevity, for the rest of this section we expand the meaning of the term “norm” to
include the case of p-norms.

For a p-Banach space X the compact operators K(X) (those which take the unit
ball to a relatively compact set) still form a closed, two-sided ideal in L(X), and
the Calkin algebra L(X)/K(X) survives in this setting as a p-Banach algebra. As
before, the essential norm of an operator T ∈ L(X) is its distance, in the norm of
L(X), to the compacts. We have the usual notion of “spectrum” for operators on p-
Banach spaces, and more generally for elements of p-Banach algebras; in particular
the essential spectrum of T ∈ L(X) is the spectrum of its coset in the Calkin
algebra. The Riesz theory of compact operators goes through unchanged in this
more general setting ([25], see also [17, Chapter IV, §5], [10, §21, Problem B, page
207], [23]), and there is a spectral radius formula which, when applied to the Calkin
algebra, yields:

re(T ) = lim
n→∞

‖Tn‖1/np
e(27)

for any T ∈ L(X) [9].
Just as before, we say that T ∈ L(X) is a Riesz operator if its essential spectrum

is {0}, i.e., if limn ‖T n‖1/n
e = 0. The spectral properties of Riesz operators carry

over from Banach spaces to this more general setting; in particular, because the
Fredholm index is still continuous, non-zero spectral points are eigenvalues (see
[23], for example).
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Finally, we require some special facts about Hp for 0 < p < 1. Not all p-
Banach spaces are richly endowed with continuous linear functionals (for example,
Lp([0,1]) has none but the zero functional), but Hp has enough to separate points.
For example the evaluation functionals Ka (a ∈ U) separate points, and all are
continuous on Hp, even for p < 1. Let us define the norm ‖λ‖∗ of a continuous
linear functional λ on Hp to be the supremum of |λ(f)| as f ranges over the unit
ball of Hp. This is a bona fide norm on the dual space (Hp)∗, which makes it into a
Banach space. For any linear operator continuous on Hp, the adjoint, defined in the
usual way on (Hp)∗, is a bounded operator. While norm of this adjoint operator
need no longer be equal to the norm of the original one, it follows immediately
from definitions that the norm of the adjoint operator is less than or equal to that
of the original. This is all we need to make our previous arguments work in the
new setting!

Indeed, Lemma 5.3 holds for 0 < p < 1, with the same proof. The only difference
is that the growth condition |f(a)| ≤ const. ‖f‖p(1−|z|)1/p can no longer be derived
from a Cauchy integral representation. Nevertheless it is true, with const. = 21/p;
see [5, Lemma, page 36] for a proof based on the factorization techniques featured
in §2.4 and §2.7. With this in hand, the proof we just gave for the case p ≥ 1
works perfectly for 0 < p < 1; we need only replace the equality that leads off
(25) by the inequality ‖Aϕ,p + J‖ ≥ ‖A∗

ϕ,p + J∗‖, and check that our statements
about weak-star convergence remain true. Here weak-star convergence still means:
“pointwise convergence on the predual.” The fact that the normalized evaluation
functionals ka converge to zero weak star as |a| → 1− follows, as before, from
the “little-oh” version of the growth estimate mentioned in the second sentence of
this paragraph. This result, in turn, follows as before from the original “big-oh”
estimate and the density of polynomials in Hp [5, Theorem 3.3, page 36]. All that
we need to complete the argument, then, is the weak-star continuity of adjoints;
this follows directly from definitions. To summarize, we have proved:

5.5. Theorem. Suppose that G is a simply connected domain properly contained
in C, and that 0 < p < ∞. Then Hp(G) supports a Riesz composition operator if
and only if ∂G has finite one-dimensional Hausdorff measure.

6. Boundedness

Having studied the existence of compact and Riesz composition operators on
the spaces Hp(G), we conclude with some observations about the more fundamen-
tal notion of boundedness. The existence of bounded composition operators is, of
course, never in question, since on Hp(G) there is always the identity operator,
which is the composition operator induced by the identity map of G. Here the
question of interest is: “For which simply connected domains G 6= C is every com-
position operator bounded?” We noted in §1.4 that, thanks to Proposition 1.2, this
happens whenever both τ ′ and its reciprocal are bounded on U. In this section
we show that this boundedness condition characterizes those domains G for which
every composition operator on Hp(G) is bounded.

Fundamental to our proof will be the class of maps induced on G by rotations
of U. For ω ∈ ∂U define Φω : G → G by: Φω(z) = τ(ωτ−1(z)) for z ∈ G. Thus
Φω is the holomorphic self-map of G that corresponds to rotation of U through the
angle arg ω.
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6.1. Theorem. For G a simply connected domain properly contained in C, and
0 < p < ∞, the following four statements are equivalent:

(a) The operator CΦω is bounded on Hp(G) for all ω in a subset of ∂U having
positive measure.

(b) CΦω is bounded on Hp(G) for all ω, and supω∈∂U ‖CΦω‖ < ∞.
(c) The holomorphic functions τ ′ and 1/τ ′ are both bounded on U.
(d) The operator CΦ is bounded on Hp(G) for every holomorphic selfmap Φ of G.

Before beginning the proof we require a lemma, whose statement will surprise no-
body. For convenience we switch notation and write Aω for Aϕω,p; hence

Aωf(z) =
(

τ ′(z)
τ ′(ωz)

)1/p

f(ωz) (f ∈ Hp, z ∈ U).

6.2. Lemma. The (possibly infinite-valued) map ω → ‖Aω‖ is measurable on ∂U.

Proof. For 0 ≤ r < 1 and ω ∈ ∂U define the operator Tω,r on Hp by

Tω,rf(z) = (Aωf)(rz) =
(

τ ′(rz)
τ ′(ωrz)

)1/p

f(ωrz) (f ∈ Hp, z ∈ U).

Then for each 0 ≤ r < 1 and f ∈ Hp the map ω → ‖Tω,rf‖ is continuous on ∂U,
hence the function

ω → ‖Tω,r‖ = sup
‖f‖≤1

‖Tω,rf‖

is lower semicontinuous, and therefore measurable. Now for each f ∈ Hp, ‖Tω,rf‖ ↑
‖Aωf‖ as r ↑ 1, hence ‖Tω,r‖ ↑ ‖Aω‖ as r ↑ 1 (in each case, the limit on the right
may be infinite). This establishes the measurability of ω → ‖Aω‖.

Proof of Theorem 6.1. To keep the proof as concrete as possible, we consider only
the case p = 2, and remind the reader that, according to Proposition 2.4, this
entails no loss of generality.

(a) → (b): Let E(G) be the set of points ω ∈ ∂U such that CΦω is bounded
on H2(G), i.e., such that Aω is bounded on H2. Since Aω1ω2 = Aω1Aω2 for each
pair of points ω1, ω2 ∈ ∂U we see that E(G) is a subgroup of the unit circle which,
by Lemma 6.2, is measurable. This measurability supplies a subset F ⊂ E(G) of
positive measure such that supω∈F ‖Aω‖ = M < ∞. The algebraic product F · F
contains a nontrivial arc I of the unit circle [18, Ch. 7, Problem 5, p. 156]. Each
ω ∈ I has the form ω1ω2 for some ω1, ω2 ∈ F , from which it follows that

‖Aω‖ = ‖Aω1Aω2‖ ≤ ‖Aω1‖ ‖Aω2‖ ≤ M2.

Thus ‖Aω‖ ≤ M2 for each ω ∈ I . For some n the n-fold algebraic product of this
arc with itself covers the whole circle, so in similar fashion, ‖Aω‖ ≤ M2n for each
ω ∈ ∂U.

(b) → (c): We are assuming that supω∈∂U ‖Aω‖ = M < ∞. Upon applying Aω

to the normalized kernel functions ka = Ka/‖Ka‖ (a ∈ U), where now Ka is defined
by (6), the fundamental adjoint identity of Lemma 3.2 provides for each a ∈ U and
ω ∈ ∂U:

M2 ≥ ‖A∗
ωka‖2 =

|τ ′(a)|
|τ ′(ωa)|

.(28)
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Given a ∈ U the maximum principle provides ω ∈ ∂U such that |τ ′(ωa)| ≥ |τ ′(0)|,
hence upon using (28) with a replaced by ωa we see that

1
|τ ′(a)| ≤ M2 1

|τ ′(ωa)| ≤ M2

|τ ′(0)| ,

which shows (because τ ′(0) 6= 0) that 1/τ ′ is bounded on U.
To show that τ ′ is bounded we fix a ∈ U and apply the maximum principle to

1/τ ′ (holomorphic on U because τ ′ never vanishes there). This produces ω ∈ ∂U
such that |τ ′(ωa)| ≤ |τ ′(0)| which, along with (28), shows that

|τ ′(a)| ≤ M2|τ ′(ωa)| ≤ M2|τ ′(0)|,
thus establishing the boundedness of τ ′ on U.

(c) → (d): As noted in §1.4, if both τ ′ and its reciprocal are bounded on U
then Qϕ = τ ′/(τ ′ ◦ ϕ) is bounded there also, hence Aϕ is the product of the
(bounded) composition operator Cϕ and a bounded multiplication operator. Thus
Aϕ is bounded on H2 for each ϕ, and therefore CΦ is bounded on H2(G) for each
Φ.

(d) → (a): This implication is trivial. ¤

6.3. Remarks. (a) Which subgroups of ∂U can be realized as E(G)? We know
that E(G) is measurable, and that it can be the entire unit circle. We claim that:
Every finite subgroup of the circle is an E(G) for some G.

To see this, suppose first that n ≥ 3 and Γn is a subgroup of ∂U of order n. It is
easy to see that Γn must be the subgroup consisting of the n-th roots of unity. Let
G be the polygon whose vertices are the elements of Γn, and arrange the Riemann
map τ of U onto G so that τ(ωz) = ωτ(z) for ω = ei2π/n (and so also for every
ω ∈ Γn). Then τ ′(z)/τ ′(γz) is bounded on U if and only if γ ∈ Γn; this, along
with (28), shows that E(Gn) = Γn. For n = 2, repeat the argument with G the
“lens-shaped”domain in the unit disc that lies between a circular arc C through ±1
of radius larger than 1, and the reflection of C in the real axis.

However we have no results beyond this; in particular: Can an infinite subgroup
of ∂U be E(G) for some G?

(b) Bergman spaces. We note in closing that the proof of Theorem 6.1 works
as well for Bergman spaces, and even for weighted Bergman spaces as long as the
weight w induced on U is radially symmetric.
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