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FOURIER SERIES, MEAN LIPSCHITZ SPACES,
AND BOUNDED MEAN OSCILLATION

paul S. Bourdon, Joel H. Shapiro, and Witliam T. Sledd

ABSTRACT. Using simple and direct arguments, we: {i)
prove, without recourse to duatity, that the mean Lipschitz
spaces Af(p.1/p) are contained in BMO, and (il) improve the
Hardy-Littlewood Af{p,1/p) Tauberian theorem. Along the
way we connect the Hardy-Littlewood result with a recent
Tauberian theorem for BMO functions due to Ramey and
Ulirich. give an exposition of the relevant classical
properties of Mean Lipschitz spaces; and survey some known
function theoretic applications of the spaces Alp.1/p).

INTRODUCTION. We work mostly on the unit circle T, and study for
1 < p < o the spaces A(p.1/p) consisting of functions f e LP(T)
for which If - f;li, = 0(t'"?) as t + 0, where fy(x) = f(x - t). These
spaces increase with p, and while none of them consists entirely
of bounded functions (log(1-e'*) betongs to all of them), they all
lie "on the border of continuity.” More prectisely, if in the
definition of A{p.1/p) the exponent 1/p is replaced by anything
targer, there results a space of functions, each of which, after
possible correction on a set of measure zero, is continuous. Our
interest in Al(p,i/p) derives from four sources:

(i) the observation of Cima and Petersen [5] that Al2,172)
lies inside BMO, the space of functions of bounded mean
oscillationon T;

(i) the fact that the essential range of a function of
vanishing mean oscillation must be connected [28];

(iii) a 1928 result of Hardy and Littlewood which states that
Alp.t/p) is a Tauberian condition relating Cesaro and ordinary
summability. More precisely, the Fourier series of f ¢ Alp,1/p), if
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(C.1) summable at a point of T, must actually converge there ([15],
Theorem 1, page 613);

(iv) a recent theorem of Ramey and Ulirich [23] asserting that
BMO i{s a Tauberian condition relating Abel summability and
differentiability of indefinite integrals.

The original proo{s‘ of (i) and (iii) require complicated
preliminaries. That of (i) in [5] uses the deepest part of the
Fefferman-Stein duality theorem: the characterization of BMO
functions by Carleson measures {[14], Chapter 6, Theorem 3.4, page
240; [10]); while Hardy and Littlewood prove (iii) by interpolating
between ordinary Cesarc summability, and Cesaro boundedness of
negative orders. Mysteriously, neither Hardy and Littlewood nor
their successors in the literature appear to have considered the
question of whether Abel summability at a point implies
summability for the Fourier series of a A(p,1/p) function.

This paper addresses both these complaints, and treats some
additional topics suggested by the connection between the spaces
Alp.1/p) and BMO. First, we give a direct proof that A{p.1/p) C
BMGC for all finite p. There is a corresponding containment between
the "little oh" space A{p.1/p}) and VMO, the space of functions of
vanishing mean oscillation, which along with (ii) above shows that
functions in A(p.1/p) must have connected essential range. We then
extend the Hardy-Littlewood A(p,1/p) Tauberian theorem to Abel
summability by proving that at each point of the circle the
sequence of Fourier partial sums of each A(p,1/p) function is
slowly oscillating. The fact that Abel summability of the Fourier
series implies summability then follows from a standard Tauberian
theorem. Our argument is considerably simpler than that of Hardy
and Littlewood in that it avoids interpolation arguments and
negative order Cesaro means. We discuss the connection between
the Hardy-Littlewood Tauberian theorem and the Ramey-Ullrich
theorem mentioned in {iv) above.
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Both Hardy and Litttewood {[15], Lemma 12, page 620) and
Cima and Petersen ([S], Theorem 2.1 and Cor. 2.2) noted that a
function belongs to A(2.1/2) whenever its Fourier coefficients
decay like O(1/n). Thus our A(p,1/p) Tauberian theorem can be
viewed as an extension of Littlewood's 0(i/n) Tauberian theorem.
By duality, the O(1/n} sufficient condition for membership in
A(2,1/2) can also be regarded as a generalization of Hardy's
inequality from functions in the Hardy space H! to functions in a
somewhat larger space.

Several classical papers exiend the work of Hardy and
Littlewood on Fourier series of mean Lipschitz functions (see [11]
for further references, and for a unified treatment of some of this)
and there is a vast literature about various generalizations of
these spaces {see [4], {71, [12], [13]. [17], [22], [25], [31] - [33] for
the flavor of some of these generalizations, and for further
references). Thus it seems quite possible that, while we have not
yet come across them, our "new” results may already be known.
However, much of the literature of mean Lipschitz spaces deals
with settings far more complicated than ours, and is therefore not
always as accessible as it should be to researchers in one variabie
function theory. For this reason we feel that an account of our
work placed within the context of a detaiied discussion of the
relevant classical properties of mean Lipschitz spaces may, in any
case, be of interest to function theorists.

Accordingly, we adhere to the following ground rules. We
state without proof, but with detailed references: (i) function
theoretic facts that can be found in Duren's book [8] on Hp theory,
or Rudin’'s text [24]; (ii) basic facts about BMO such as are set out
in Garnett's book [14], and (iii) classical Tauberian theorems for
numerical series. On the other hand we give detailed proofs of atl
prerequisites on mean Lipschitz spaces that do not occur in these
sources.
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Here is an outline of the rest of the paper. Section 1
contains definitions, notation, and first properties of the mean
Lipschitz spaces. Here we review the characterization of these
spaces via Poisson integrals, and their resulting self-conjugacy.
[n the second section we discuss containments among the mean
Lipschitz spaces, and prove that Alp,1/p) C BMO. The proof of our
Tauberian theorem, as well as the discussion of the Ramey-Ullrich
theorem, occupies section 4. This proof depends on a well-known
characterization, presented in section 3, of A(p,1/p) by the degree
to which its members can be approximated by Fourier partial sums.
The approximation theorem follows from a Littlewood-Paley type
dyadic decomposition theorem, as used in [27]. The dyadic
decomposition leads to a characterization of the Fourier
coefficients of functions in A(2,1/2), which in turn yields the
previously mentioned "0(1/n)" sufficient condition for membership
in A(2,172). In the fifth and final section we comment how this
sufficient condition generalizes Hardy's inequality for H', and
survey a few other situations in function theory where the spaces
Alp,17p) oceur.

1. PRELIMINARIES., LP(T) (1 < p < «) denotes the space of
{equivalence classes of) 27t-periodic measurable functions f on the
real line for which

T
i
= o= [incoPat
P It

while L™(T) is the corresponding space of essentially bounded
measurable functions. The translate f, of a function f on the real

line by the real number t is defined by: fi(x) = f(x - ) for all real
numbers X,

e e e e e
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1.1. MEAN LIPSCHITZ SPACES A{p,ot). For 1 <p<wand 0 <ot <]
we define Alp.of) to be the coliection of { e LP{T) for which there
exists a constant C < o« such that:
Iy - T, < C{t|* forallte [-mm].
If p = o we write A, instead of Ale,x). This is the usual
Lipschitz space for the exponent o More precisely, f e A_ if and
only if f coincides a.e. with a 27 periodic function ¥ for which:
|F(x-t) - FO) | < |t]® forall x .te [-mt7
It is not difficult to show that the norm
Wiy o = Il + supft™ufy - fug: t e 10700}
turns A(p,=) into a Banach space.

Clearly the spaces A(p,o) decrease as either p or « increases
(with the other index held fixed}. In the next section we examine
the containments between these spaces in more detail. The key to
these results, as well as to much of our subsequent work, is a
useful characterization of mean Lipschitz spaces in terms of
Poisson integrals.

1.2. POISSON INTEGRALS. Let U dencte the open unit disc of the
complex plane. For fe LP(T), we denote by P[f] the Poisson integral
of f:

7T
CE )
PIflrel®) = mj P (8-t 1(t) dt ,
-7

where Pr(t) = Rel(1+ relt)/(1- retY)}, and rel® e U. It is well
known that u = P[f] is harmonic in U, that the integral means
1/p

T
Mwr) = {#{ﬂlu(re“ﬂ"dt}

are bounded, and that the radial limit
u*(e'®) = lim u{re'®) (r- 1-)
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exists and equals f(8) for a.e. real 8 ([8], Chapter 1). Conversely,
if u is any harmonic function on U for which the integral means
M,{u.r) are bounded, then f = u™ exists a.e., belongs to LP(T), and
W = P[fL. In short, if hp denotes the class of harmonic functions u
for which My(ur) is bounded. then the radial limit map u - u*
establishes an isometric isomorphism between hp, taken in the
natural norm imposed by its definition, and LP(T). The next result
identifies the class of harmonic functions that corresponds in the
same manner with A{p,o0.

1.3. PROPOSITION. Suppose u is harmonic in U, u = Re ¥ where F
is holomorphic in U, 1 < p < o, and 0 < o < 1. Then folliowing
conditions are equivalent:

{a) u = Plf] for some f e Alp,o,

(b)  My(F,r) < C(1-r)**T forall 0 <r <1,
when (b) holds, the functional

T U] « sup MyF -4 0 < r < 1)

is a norm on Alp.«) that is equivalent to I, .

With F in place of u, this result was proved by Hardy and
Littlewood ([15], Theorem 3, page 625). It can also be found in [8)
(Theorem 5.4, page 78). The proof is exactiy the one given in
these references, except that in proving (a) » (b) one represents F
by a completed Poisson integral of f, rather than a Cauchy integral.

It follows easily from Proposition 1.3 that, as we mentioned
in the Introduction, the function log |1 - e'®] is in Alp,1/p).

Figher dimensional versions of this result, for more general
spaces, can be found in [28], Chapter 5, and [31).

It follows from the M. Riesz theorem that the classes A(p.o}
are self-conjugate if 1 < p < «=. However the result above gives a
more elementary proof, valid even if p = 1 or oo,
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1.4, COROLLARY. If 1 <p=<e, 0<a<1,and fe Alp.ot), then so
is its conjugate function f.

In [15] Hardy and Littlewood also prove Corollary 1.4 for the
casep > 1,0 <o <1;and thecasep =1, 0 <ot <1 (Lemma 13,
page 621). The result is false for p = ot = 1. Indeed, f ¢ A(1.,1) if
and only if T coincides a.e. with a function of bounded variation
([15], Lemma 9, page 619), and the class of functions of bounded
variation is not seif-conjugate.

2. CONTAINMENTS AMONG THE SPACES Alp.o}). We observed in the
last section that the spaces A(p.,ot) decrease as either p or o
increases. The next result gives more precise information,

2.1 PROPOSITION ({15] Theorem S, p. 627). Suppose 1 <p < g < o,
O<o<t,and 8 =p'-q'. Then A(p,o) C Alg.o-8).

PROOF. By the self-conjugacy of the spaces in question, it is
enough to prove the theorem for f ¢ A(p,x) with Fourier transform
vanishing on the negative integers. Then F = P[f] is holomorphic in
U, and by Proposition 1.3:
Mp(F.r) < Cplifii, (1-1* (0 <r<1).
The Hardy-Littlewood theorem on comparative growth of means
{{15], Theorem 2, page 623; [8], Theorem 5.9, page 84) asserts that
il ¢ € Hp, with p.g. and 5 as above, then
Mgla.r) < C,quguy (1-r)78 .
we apply this result to the dilated function g = (F'), to obtain
Mg(F'r?) < Cp o Mp(F ) (1-r)8 .
fhus:
M(Fr2) < Cy Tl o (1-r)e8-1,
which, atong with another application of Proposition 1.3, proves
ine desired result. i
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Upon respectively setting of = 1/p and q = o, we justify the
claims made in the Introduction that the spaces A{p,1/p) increase
with p, and lie on the border of continuity.

2.3. COROLLARY ([15], Theorems 5 and 6, pp. 627-8).
(a) 1f 1 <p < q <oo, then A{p,1/p) C Alq.1/q}.
(b) If ot > 1/p, then Alp.o) € Ay (1/p). hence each f e Alp.o)

coincides a.e. with a continuous function.

2.4. BOUNDED MEAN OSCILLATION. Suppose f e LWT). If lis a
subinterval of [0,27C], let |1] denote its length, and write

fos T j[ f(t)dt

Set

ifne = supdyi [110-1,]t <1 2 subinterval of (0,201}
| _
The space BMO of functions of bounded mean oscillation is the
collection of f e LYT) for which ifil. < . The John-Nirenberg
theorem ([181; [14], Chapter VI, Theorem 2, page 230) implies that
BMO € LP(T) for all p < , and that the same space, with
equivalent norm, results if we redefine Hfi. by:

nfud sup{T:—r f | 1¢t)-1,|Pdt: 1 a subinterval of [0,271}.
l

As we mentioned in the Introduction, Cima and Petersen [5] used
deep results about BMO to show that A(2,1/2) C BMO. Here is a
generalization (since the spaces A(p,i/p) increase with p), for
which we give a direct proof.
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2.5. THEQREM. For 1 < p < e, Alp,1/p) C BMO.

PROOF. By the translation-invariance of both spaces, it is enough

to show that for each f e Alp.1/p) there exists C < = such that for

each 0 < § < m/2, upon letting | = [-§,5] we have:
8

= [lrw-1]Pat < c.
s

Suppose { e Alp,1/p) with ufip s <1, and fix 0 <& <7/2. Then
for all real t:

kLS
2mt 2 J' | 1(s-t) - f(s)|Pds .
~TT

We integrate both sides of this inequatity over the interval [-
28,281]; then successively use Fubini’s theorem and change variables
on the resulting inner integral to obtain:

26 7T
ares? > f J |f(s-1) - 1{s)|P ds dt
-28 -7

X 28
= [ ] Jts-0 - 1) [P atas
-t -28

I 5+28

=[] - e]Pares

~TC 5-28
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5 &
2z j J [1(t) - 1(s)[Pdtds
-5 -8

ws from the fact that if -8 <s,t <8, then

where the last tine follo
vide both sides of the above inequality by

s-25 <t<s+25. Now di
452 and apply Jensen's convexity theorem:

& 5
21 2 .2‘—8]8 [E‘E_[s |1(1) - f(s)\Pdt]ds

g K
z—g—s-j Elgj[f(t)-f(s)]dt ds

-& ~&

5
1
s J-\f(S)—flls’ds ‘
-5
where | = [-8,8]. Since
the desired result.

0 < § < 1t/2 is arbitrary, we have achieved
/7

The collection A{p.ot) of T € LP(T) for which
lt| » O is a closed subspace of Alp.ot), and the
tle oh” analogues With A(p.o)
p.1/p) C VMO, the space of
It has recently been
ial range [26],

2.8. “LITTLE OH."
nf - f/t* -0 as
previously stated results atl have "lit
replacing A(p.o). IN particutar, A(
functions of vanishing mean osciltation.

shown that every VMO function has connected essent

hence,

PROPOSITION.
range of 1 is connected.

If1<p<o, andfe Ap,1/p} . then the essential
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2.7. G.vENE‘RAL[ZED MEAN LIPSCHITZ SPACES. The following
?.etnerahzatlon of the spaces A(p,o) occurs frequently in the
31<erature ([311- [Ta3); (28] Chapter V, section 5: [12]). If
p.q<o, and 0 <ot <1, say a functi ' ;
. on f P
PO e LP(T) belongs to

oG

j Wf - ftug 717 gt < o

{note .that the convergence of the integral depends onity upon th
behavior of the integrand for t near 0). Our spaces A( ote)
correspénd to the limiting case q = e here. These generalﬁlzed
mean Lipschitz spaces play no role in this paper because of th
containment: A(p,q.o) C Xp.ot) ([12], page 125). )

.3' PARTIAL ASUMS AND DYADIC BLOCKS. For f ¢ LYT) and n an
integer, let T(n) denote the nth Fourier coefficient of f:

T(

f =1 int

) = L [ re)el™ ar
-7t

For n positive, write

Snf(e} = 2 f‘(k}eike

klzn

for the nth partial sum of the Fourier series of f, and setting
in) = {k an integer: 2n < |k | < 2n+1}
write - I

Afe) = D, fike®,
ke lln)
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for the nth dyadic block of that series. A standard argument
involving the M. Riesz theorem shows that for each 1 < p < « there
exists a constant Cp < = for which:
ispfity < Collfliy, and nApfuy < Confuy

for all f e LP(T), and all positive integers n. The first of these
inequalities, aio'ng with the density of trigonometric polynomials
in LP(T), shows that #s,f - fii, » O for each e LP(T) (1 <p < oa),
These matters are discussed, for example, in [24], Ch. 17, Problem
25.

In this section we survey some known resuits which relate

the mean smoothness of f with the speed at which it is approached
by s,f. The main result is:

5.1. THEOREM. Suppose 1 < p<w and 0 <ol < 1, Then for f e
LP(T), the following three conditions are equivalent.

(a) fe Alp.ot).

(b) nALfi, = 0(27"%) as n ~+ «.

(€} 0f - spfliy = O(n™™) as n - o,

The equivalence of (a) and {c) is mentioned without proof in
Hardy and Littlewood’'s paper [15]. That of (a) and (b) often serves
as the basis for the definition of spaces generalizing mean
Lipschitz spaces in various settings (see [4], [13], [27], for
example). In the next section, Theorem 3.1 will play an important
role in the proof of our A(p,1/p) Tauberian theorem. It also has
notable appeal in the case p = 2, where through the Parseval
identity it characterizes the Fourier coefficients of functions in
A(2,172).
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3.2. COROLLARY. Suppose f e L%T) and 0 < ot < 1., Then the
following three conditions on f are equivalent:

(a) Te Al2.9),

®) Y, TR

ketl(n)

() Y, IfkP

kirn

z O{2°2) as po w

on 2%  asn- o,

3.3. COROLLARY {(see [15], Lemma 12; and [5], Corollary 2.2). if
fe tI(T)and 1f(n)] = 0(17Inl) as n»oe , then f e A(2,1/2).

The proof of Theorem 3.1 requires some preliminary
estimates. If f is a trigonometric polynomial:
f(8) = La,e!™ (finite sum),
let us write
1'(e) = Lnayeln-1e
and forr > 0,
1{8) = Za,rteine
The lemma below generalizes to 1 <p < w some estimates that
are obvious if p = 2.

3.4. LEMMA. Suppose 0 <N <M < o0, and
f(8) = ae'™® « .. « a,e!M®.

Then for 1 <p < oo
(@) rMifu, < Nty < rNufi, (0 <r <),

and
(b)  Nufuy, < uf'n, < Mufi,.
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PROOFE. Both inequalities follow from a standard fac1:t about
convolutions: WK=fu, < UKy #fi, whenever K e L' (T) and

fe LP(T). To prove (a), observe first that for any trigonomgtric
polynomial f, if 0 <r <1, then fp = Pe=f, where Py is the Poisson
kernel. Now for f as in the hypothesis of the lemma, let h(e) = e~
iN@ 1(g) and g(8) = e" MO (8). It is easy to check that:

(1) fe) = rNelNh(8),
and .

(2) rMi(e) = eM¥g.(-8) .
From (1): .

i, = rNihelg = PN uPpehig < TNUPCI IR = TR

This proves the second inequality of (a). For the first one we use
(2) above, along with the same convolution inequality to obtain:
r“nfnp = ligrity < lgly, = ity
which completes the proof of (a). _
part (b) is proved similarly. Let g(8) = e -8 (g), and

i e'ike

K{8) = lim TN

fi+® kz-n

Since the coefficient sequence for K is symmetric about O, and
convex for non-negative n, the series on the right converges
whenever el® 2 1, moreover the resulting function is positive and
integrable on T ([8], Theorem 4.5, page 64). In particular:

ik, = K(0) = 1/N.
Now e-iNef{e) = K=g(e)}, so

Wiy < WKy liguy, = NN,
which proves the first inequality of (b).
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For the second inequatity, write:
g(8) = May + (M-1)ay_,e'® + ... + NaeiM-Ne
and

K(e)= 3, (M- lnheir® .
h§<?‘l

Then g = K*h, where h(8) = e"M®{(-8). Thus:

HE, = gy = tK*hity < 0Ky thi, = ik nfuy
and the proof is completed by observing that K is just M times the
M-1st Fejer kernel, so 1K, = M. /17

The example (8) = e!N® shows that the inequalities of Lemma
3.4 cannot be improved. The second ineguality in part {a) is a
version of Bernstein's inequality ([19], page 17, Problem12).

3.5. PROOF OF THEOREM 3.1. First some notation. If F is
hotomorphic in U, let spF and ApF denote respectively the ntn
partial sum and nth dyadic block of the Taylor expansion of F about
the origin. Since the spaces Al(p.«t) are self-conjugate for the
indices considered, it suffices to prove the theorem for functions {
whose Fourier transform vanishes on the negative integers. i.e. for
I of "power series type”. In the arguments below, "C" always
denotes a finite positive constant which may vary from line to
line, but never depends on the parameters n or r.

(1) = (2). Suppose f € Alp,o) is of power series type, so its
Poisson integral F = PIf] is holomorphic on U. Fix a positive
integer n. Then for 0 <r < 1 we have:

MplBa(zF)r) < CMy(zF)r) < C(1 - r)*!
where the first inequality follows from the M. Riesz theorem
{since 1 < p < o), and the second from Proposition 1.3, the
characterization of mean Lipschitz spaces by Poisson integrals.
Now set r = 1-2°M, and use successively both left-hand inequalities
in Lemma 3.4:
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2n(1-od > CMg(AL(2F).r)

zCrzm1 AR N (notation as in Lemma 3.4)
n p

>C2M uagfig, .
-1 n-Not ired.
Thus AT, <C7 2 , as desire

(2) - (3). Suppose f e LP(T) obeys (2), and n is a fixed

positive integer. Choose N = 2i-1 s that N < n < 2N. By the M.

Riesz theorem,

If - sl 1, < CUf - syfly

< © Y AT
k>j-1

< C Z 2“?(0(
k>j-1

< Coi«

< e,

which is {3).

(3) - (1). Suppose f e LP(T) satisfies (3), i.e.
Isqf - flp < Cneot (n= 1.2..).

Then by the M. Riesz theorem:
Kanfly, 2 c27 | -
for each positive integer n, sO using both right-hand inequatities In

Lemma 3.4, we obtain:
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< Zrznit(A 3N
n’p

97

(by right-hand inequality of 3.4(a.

]
< Xr? 2“*’|§Aﬂfup (- - - “ v 3.4(0)

< CXr2pntl-e
where in each line the range of summation is 0 < n < . Since

n
r2ﬂ2n{]-d) < i r_k ;(-d .
k:2n—1+]

the previous estimate gives

Mp(F'r) < CZkork < ¢c/(1-n)'-e,
which, by Proposition 3.1, shows that f e A(p.x), and completes
the proof of the Theorem,. /77

4. TAUBERIAN NATURE OF A(p,1/p). Here we give our simple proof
of the fact that the Fourier series of a function f e A(p.1/p)
converges at a point whenever it is Abel summable there. As noted
in the Introduction, A(1,1) is essentially the space of functions of
bounded variation, so we always assume without further mention
that 1 <p <. We begin with a review of some summability
matters, and hope the reader will not be offended that we begin at
the beginning.

4.1. SUMMABILITY. Let {a,: 0 < n < =} be a sequence of complex

numbers. The series Xa, is said to be:
(i) summabie (to S) if the sequence of partial sums
Sp = 8g * 8 * .. * @
converges (to S):
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(ii) Cesaro summable (to §) if the sequence of arithmetic

means
n=(sg+ sy + .t s)/(n+1)

converges {to S); and
(iii) Abel summable (to §) if

lim iar z

r+1- n=0

where the tacit assumption is, of course, that the series on the

left converges for all 0 <r < 1.
[f f e LNT) and © is real, then we say the Fourier series of f

converges in one of these modes to § if the corresponding
numerical series T a, does, where ag = f(0), and

2, = f-mei"® .« f(nel™  (n>0).
In particular, the Fourier series of f converges at © if and only if
the sequence (s,f(8): n > 0) of symmetric partiat sums defined in
section 3 converges, and it is Abel summable at @ if andonty if

3 f(n)rhlei® = P[f)re'®)

converges as r - 1-.
As everyone Knows: summability = Cesaro summability = Abel

summability, but in general, not conversely. Here is the main .

result of this section.

4.2. Alp.1/p) TAUBERIAN THEOREM. If the Fourier series of
fe Alp,1/p) is Abel summable at 8, then it is summable at ©.

As we mentioned in the Introduction, Hardy and Littl fewood
proved this result under the stronger hypothesis that the Fourier
series be Cesaro summable. Their proof, which involved
interpolation between ordinary Cesaro summability and negative
order Cesaro boundedness, is considerably more complicated than
the one we will present for the stronger result stated above.

Bourdon, Shapiro & Sledd: Fourier series 99

However their proof does give additional information: it implies
that the Fourier series is Cesaro convergent for certain negative
orders.

The crucial Tauberian concept in our proof is that of siow
oscillation,

4.3. DEFINITION. A sequence {an: n > 0) is said to be sfowly
oscillating if for every € > O there exists X = X(e) > 1 and a
positive integer N = N(e) such that :

max{la; - acle n<j. k<xnf<e
whenever n > N,

For example, if ja,| = O{(1/n), then the corresponding

sequence of partial sums is slowly oscillating. This shows that
the next result is a generalization of Littlewood's O{1/n)
Tauberian theorem.

4.4. SASZ’'S TAUBERIAN THEOREM. Suppose (a,) is a numerical
sequence whose partial sums (s;) form a slowly osciiiating

sequence. If the series Za, is Abel summable, then it is
summable.

This result originally appeared in [29]. An eminently
readabie proof is presented in [30]. Theorem 4.2 follows
immediately from Sasz’'s theorem and:

4.5. THEOREM. For every f e Alp.isp) and real 8, the numerical
sequence (s,f(68):n > 0) is slowly oscillating.
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PROOF. According to the definition of slow osciilation, our goal is

to prove that:

(1) Tim max |s f(e) - s f(8)| » 0 asx~1+.
neo adnsxn M

To this end, fix n < m and let

Q (8) = Z elk®
nm n<k km
Then:

(2) 5.7(8) - 5f(8) = Qpy*T(8) = Qe (T - s)(8),

where the last equality follows from the fact that s f*Qny = 0.
Upon applying Holder's inequality and the translation invariance of
Lebesgue measure to (2) we obtain:

(3)  |spf(e) - spf@)] < U7 - saf iy KRpmly
where p’ is the index conjugate to p. Now

|Qnm®) | < 2Kp_q-1(8),

where
Ky(8) = |1 vel® e+ elms |
l sin (m+1)(8/2)
sin (8/2)
Thus

1/p
1Qumllp < 28Kp gty < C(m - mr,
where C is a constant that does not depend on m or n. The last

inequality is a straightforward computation bgsed on the closed-
form expression for K, and a change of variable. We leave the

details to the reader. From inequality (3) above and Theorem 3.1:
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[507(8) - suf(8)| < C(m - )P 1%,

so for » > |:

sup |s f(e) - s f(e)] < c(n-1)i7P.
n<mghn M n

This inequaiity yields (1), and completes the procf of the Theorem.

4.6. THE TAUBERIAN NATURE OF BMO. Recall from section 2 that
Alp,1/p) C BMO. However BMO, or even VMO, cannot replace
Alp.1/p) in Theorems 4.2 or 4.5, since there exist continuous
functions on T whose Fourier series diverge at a given point.
Nevertheless, Ramey and Ullrich [23] have recentiy shown that BMO
ts a Tauberian condition linking Abel and various other methods of
summability. They work on the real line R, instead of the circle,

To state their result efficiently we need the notion of normalized
dilate. If K € LY(R) and y > 0, et Ky(x) = y='Kix/y). Thus

K'e LYR), and Ky, = IKi,. Ramey and Ullrich prove the
following Tauberian theorem for BMO(R).

THEOREM ([23], Theorem 4.4). Suppose f e BMO(R). x ¢ R, and
PIfl{x,y) » L as y - O+. Then aiso Ky (x) » L whenever K ¢ L'(R)

obeys the following additional conditions:

() |K(x)| <constant(1 + x2)! for all real X, and

() [kax = 1.

-

The proof of this result involves an elegant mixture of
functional analysis (weak* convergence in BMO(R)). and function
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theory (normal families), along with the crucial observation that
the BMO{R) norm is dilation invariant. Actuaily Ramey and Ullrich
work in higher dimensions, but state their result oniy for K the
characteristic function of a ball. However their proof gives the
full result stated above. Letting K be respectively the
characteristic function of the interval [-1/2,1/2], and the Fejer

(Cesaro) kernel:
1
K{x) = = [

this result yields:

sinx2
" .

COROLLARY. If the Fourier integral of f e BMO(R) is Abel
summable to L at x e R, then it is Cesaro summable to L at x, and
also:

+h

X
lim T_J’ f(tydt = L.
pe0+ 2N x-h

This Coroltary can be transferred to the unit circle by means
of the Poisson summation formula, and the observation that if a
27t-periodic function is in BMO(T), then it is in BMO{(R). Thus: the
Coroliary above remains true if R is replaced by T and “Fourier
integral” is replaced by ‘Fourier series”.

Since Alp.i/p) € BMO(T), this result for the circle, along
with Hardy and Littlewood's original Tauberian theorem for
Alp,1/p). give another proof of Theorem 4.2. In [15] (Theorem 1,
page 613) Hardy and Littlewood also state that the convergence of
the integral average in the above Corollary is a necessary and
sufficient condition for the Fourier series of f e Alp.i/p) to
converge at the point x. This also follows from the considerations
above: If the averages converge to L, then as is well known ([24],
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:heorem 11.2, page 257), PIfI(rei®) » L as r - 1-. Thus by Theorem

-2, 5,1(8) > L. Conversely, if spf(8) = L, then since A(p,1/p) C
BMO, the circle version of the Ramey-Ullrich Corotlary above
asserts that the integral averages converge to L.

3. Alp,1/p} AND FUNCTION THEORY. In this final section we
Survey some function theoretic situations in which the spaces
Alp.1/p) arise naturally.

5.1. HARDY‘§ INEQUALITY. That the coefficient condition HOIE
Q(!/In [} suffices for f € BMO seems to be part of the folkiore. It
15 usually obtained by duality from Hardy's inequality:

if(n)|
no S ity

1
for f e H' (see [2], page 25, for example). However, following [5]
Corollary 3.3 gives the result directly, and therefore by duality

provides a different proof of Hardy's inequality (although with a
less precise constant).

. ‘In'fact, F:oroilaru 3.3 gives a result more general than
ardy’s inequality. Flett [12) has shown that for 1 <p <o, Alp,a)

is the gual space of the space X(p',1-o) consisting of functions u
harmonic on U for which |

TC
”U“x z fMp,(u.r){l N o L
-7t

and the two spaces are paired by integration on the circle, Now
the same duality argument that lead from Hardy's inequality to the
O(l/.n) sufficient condition for BMO can be reversed to give a
yerswn of Hardy's inequality for X(2,1/2). Since A(2,1/2) C BMO
It follows easily that the reverse inequality is true of the:
preduals: ReallH'} ¢ X(2,1/2). More directly, this last inclusion
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follows from a result of Hardy and Littiewood (I8], Theorem 5.11,
p. 87]). Thus, the o(1/n) sufficient condition for membership in
A(2.172) leads to an improvement of Hardy’s inequality.

5.9 BLASCHKE PRODUCTS. Suppose (z,) is a sequence of points in
the unit disc, arranged in order of increasing modulus. Let dn = 1 -
Iz,,|. and suppose Ed, < . Then the infinite product

z z -z

B(z) = © =
n=0 1-2,2

where Wy = Z,/ 12,1, converges uniformly on compact subsets of U
to a bounded holomorphic function B, called the Blaschke product
with zeros (z,) . Moreover, B is an inner function, that is, its
radial limit
B*(el®) = lim B(re'®),

which exists a.e. by Fatou's theorem, nas modulus 1 a.e (see [8],
Chapter 2, or [24], Sections 15.21-15.24, pages 333 -336).

Suppose B(z) = £ B(n)z" is the Taylor expansion of B about
the origin. In 1862 D.J. Newman and H.S. Shapiro [21] proved a
number of interesting results about the Taylor coefficients of
Blaschke products, and more generally, of inner functions. In the
first place, they showed among inner functions, only the Biaschke
products with finitely many factors have Taylor coefficients which
tend to zero like o{1/n). This can be seen in modern terms as
follows. It is known [Ste], [26] that among inner functions, only
the finite Blaschke products can have boundary function belonging
to VMO, and we know from section 2 that A2,1/2) C VMO, Now the
o(1/n) coefficient condition for an inner function f implies that

(*) ﬂEIﬂk)lQ » 0 asn- o,

iki>n
which, by the “little oh” version of Corollary 3.2, is necessary and
sufficient for * e A(2,1/2). Note that this argument actually
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;mproves the Newman-Shapiro result; it shows that any inner
unction whose Taylor coefficients
obey (*) above must be a fini
Blaschke product. e
Newman and Shapiro also constructed Blaschke products B

with coefficients ]B(n)f = O{1/n). In fact they showed that any
Blaschke product for which

(1) SUP o dp, 7dy < 1

has this property. In our language: condition (1) implies B* «
A(2,172). In the converse direction, Ahern [1] showed in 1879
that (for Blaschke products) necessary and sufficient for

(2) dy= Of@")  (some O<a<1)

is

(3) i i | Btn) |2 = OllogN)
k=0 n=k

({[A], Lemma 3.1 and Theorem 3.3, ;ﬁages 327 - 331). Now if B* ¢
A(2,172), then by our Corollary 3.2, the estimate (3) above holds,

hence the‘e zeros of B must satisfy (2). Finally, in 1982 Verbitskii
[34] obtained the complete result:

THEOREM. For B a Blaschke i
product, the following four conditi
are equivalent: ’ e

(a) The zeros of B can be decomposed into finitely many
sequences, each of which satisfies (1) above,
{b) B* e A(2.1/2},

{c) B® e Alp.1/p) for some 1 < p < oo,
(d) 1B(n)1 = o(i/n).
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5 3. UNIVALENT FUNCTIONS. S is the class of analytic, univalent
runctions f on U for which f(0) = 0 and £'(0) = 1. The associated
logarithmic function g(z) = loglf(z)/z] was shown by Baernstein [3]
to belong to BMOA, the class of sunctions in H? with boundary
function in BMO, and an alternate proof was later given by Cima
and Schober [6]1. Thus it is natural to ask if g must actually belong
to A(2,1/2). However Hayman [16] has constructed an example
which shows that this is not the case. On the other hand, in [6]
cima and Schober show that it is the case if f is a support point
of S. This raises the apparently open question, first asked by Allen
Shields, of whether g « A(2.1/2) whenever f is an extreme point
of S (for more details see [9]). Duren and Leung [8] have shown
that g e A(2,1/2) whenever the modulus of f dominates a positive
multiple of {1 - Z1)-2 on some sequence that tends to the boundary.

Of course, smoothness classes of anatytic functions show up
in many other contexts. For example, applications to
approximation theory and operator theory can be found in the
appendix by Hruschev and Pelier to Nikolskii's book (20l

Bourdon, Shapiro & Sledd: Fourier series 107

BIBLIOGRAPHY

513 ‘P. “Ahern: “The mean modulus and the derivative of an ipner
unction®, Indiana Univ. Math. J. 28 (1979), 311 - 347

i2sl l[A.‘Ba?rn*‘a‘tein I, “Analytic functions of bounded mean
° citlation,” in Aspects of Contemporary Complex Analysis
onference Proceedings, edited by D.A. Brannan and J.G. Clunie
Academic Press, New York, 1980, - '

[ ] i 3
‘ I SCIE]BUOE& "

g! v

(5 i

bo]u dJ.A. Cima and K.E. Petersen, “Some analytic functions whose
ndary values have bounded mean oscillation,” Math. Z. 14

(19786), 237-247. ' B

1] R ” '

o : : and G. Schober, “Analytic functions with bounded
n oscillation and logarithms of HP functions,” Math. Z. 1

(1878) 295 - 300. | A

[71  R.A.
o mA DF:-Vore a.nd R.C. Sharpley, "Maximal functions measuring
othness,” Memoirs Amer. Math. Soc. 47, #293, (1984) 1-115

y ] ¥ W Y I

’ 1



108 Bourdon, Shapiro & Sledd: Fourier series

[10] C. Fefferman and E.M. Stein, “HP spaces of several variables.’
Acta Math. 129 (1972) 137-193.

[11] T.M. Flett, "Some more theorems concerning absolute
summability of Fourier series and power series,” Proc. London
Math. Soc. (3) 8 (1958), 357-387.

[zl “Lipschitz spaces of functions on the circle and
the disc,” J. Math. Anal. & App. 39 (1972), 125-138.

3

[13] M. Frazier and B. Jawerth, "Decomposition of Besov spaces,”
indiana Univ. Math. J. 34 {1985), 777-799.

[14] J. Garnett, Bounded Analytic Functions, Academic Press,
New York, 1981.

[15] G.H. Hardy and J.E. Littlewood, A convergence criterion for
Fourier series,” Math. Z. 28 (1928), 612 - 834.

{161 W. Hayman, “The logarithmic derivative of multivalent
functions,” Michigan Math. J. 27 (1980), 149 - 179.

(171 S. Janson, "Generalization of Lipschitz spaces and an
application to Hardy spaces and bounded mean oscillation,” Duke
Math. J. 47 {1880), 959-982.

[18] F. John and L. Nirenberg, “On functions of bounded mean
oscillation,” Comm. Pure Appl. Math. 14 {(1961), 415-426.

[19] Y. Katznelson, Introduction to Harmonic Analysis, J. Wiley
& Sons, New York, 1968,

Bourdoen, Shapiro & Sledd: Fourier series 109

[20] N.K. Nikolskii, Treatise on the Shift Operator. Springer-
Verlag, New York, 1985,

?21] D.J. Newman and H.S. Shapiro, “The Taylor coefficients of
inner functions,” Michigan Math. J. 9 (1962), 249-255.

[22] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math.
Series 1, Dept. of Math. Duke Univ. Durham, N.C. 1976.

(23] W. Ramey and D. Ullrich, "On the behavior of harmonic
functions near a boundary point,” preprint1987.

[24] W. Rudin, Real and Complex Analysis, 2nd ed. McGraw Hill,
New York, 1874.

[25]1 H. S. Shapiro, “A Tauberian theorem related to approximation
theory,” Acta Math. 120 (1968), 279 - 292,

[26] J. H. shapiro, “Cluster set, essential range, and distance
estimates in BMO,” Michigan Math. J. 34 (1987), 323 - 336.

[27] .W. T. Sledd, “Some resuits about spaces of analytic
functions introduced by Hardy and Litttewood,” J. London Math.
Soc. (2) 9 (1974), 328 - 336, ‘

[28] E. M. Stein, Singular Integrais and Differentiability

Properties of Functions. Princeton Univ. Press, Princeton, N.J
1870. T

{29? 0. Szasz, "Converse theorems of summability for Dirichiet
series,” Trans. Amer. Math. Soc. 39 (1936) 117 - 130



110 Bourdon, Shapiro & Sledd: Fourier series

[30] . Introduction to the Theory of Divergent Series,
Lecture notes, Univ. of Cincinnatti, Cincinnatti, Ohio 1944.

[31] - [33] M. H. Taibleson, “On the theory of Lipschitz spaces of
distributions on Euclidean n-space; |. Principal properties; Il
smoothness and integrability of Fourier transforms; IHI.
Translation invariant operators, duality, and interpolation,” J.
Math. Mech. 13 (1964), 407 - 479; 14 (1965), 821 - 839 15
{1966) 973 - 981.

[34] 1.E. Verbitskii, “On Taylor coefficients and LP moduli of
continuity of Blaschke products®, Zap. Nauchn. Sem. Leningrad.
Otdel. Inst. Steklov. (LOMI) 107 (1982), 27 - 35 (Russian, English
summary). MR 84d:30058.

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN 48824




