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MACKEY TOPOLOGIES, REPRODUCING KERNELS, AND
DIAGONAL MAPS ON THE HARDY AND BERGMAN
. SPACES

JOEL H. SHAFPIRO

1. Introduction. Let U denote the open unit disc in the complex plane,
T the unit circle; and d) and dm Lebesque measure on U and T respectively,
both normalized to have total mass 1. The Hardy space H" consists of all
functions f analytic in I/ for which

L = sup. j; o) dmle) < =,

and the weighted Bergman space A.” {« > —1) consists of those f analytic
on U for which

Wl o = f HEPA — 2D NG < w.

If 1 € p < = these are Banach spaces in the obvious norms. In this paper,
however, we are interested in the range 0 < p < 1, in which case the appropriate
metrics are

dif, g) = {if — gli,” for H”

and

d(f: Q’) = Hf - g”v-a,J for A"

These metrics turn H? and 4 ,” respectively into F-spaces (complete, metrizable
linear topological spaces) which are not locally convex, but nevertheless have
enough continucus linear functionals to separate points (the evaluation funec-
tionals f — f{z) for z &€ U, for example: see [1, page 37 and sec. 7.4] and {8]
for H?, [111 for 4.7, and also section 2 of this paper).

in 1932 Hardy and Littlewood showed that H” C Avpp=d for 0 < p < 1,
the inclusion map being eontinuous [3; Theorem 31, pp. 411-412] {reassurance:
in this paper a/b — ¢ always means (a/b) — ¢). Recently Duren, Romberg,
and Shields [2; Theorems 1 and 7] explicitly determined the dual spaces of H”
and 4,,,-; ; and found them to be the same in the sense that every eontinuous
linear functional on 4,,,.," restricts to one on H”, and every continuous linear
functional on H” extends uniquely to one on 4,,,-.'. In short, the restriction
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map A — My» takes the dual of 4,,,-,' onto that of H®. Using standard results
about linear topological spaces (see section 2) this result can be rephrased
as follows: for 0 < p < 1the norm of A,/,-," induces the Mackey topology (strongest
locally convex topology yielding the same dual) on H* ; and A, so_z can be regarded
as the Mackey-completion of H”.

In general the Mackey topology of a non locally convex F-space with separat-
ing dual is metrizable and strictly weaker than the original topology {12, Prop. 3,
page 641]. Since it plays a erucial role in the duality theory of these spaces
(see [12, proof of Theorem 1] or [13] for example), we would like to be able
to compute the Mackey topology as explicitly as possible in concrete situations.
The usual method is the one just described for H” : find a Fréchet space (locally
convex F-space) which contains the original one and has the same dual in the
sense of the last paragraph. The Mackey topology of the original space then
turns out to be the restriction of the topology of the containing space (see
section 2 for more details). Unfortunately this method requires explicit calcula-
tion of the duals of both the original and containing spaces.

In this paper we advocate a method for computing the Mackey topology
of a non locally convex F-space without determining any dual spaces. When
applied to H? it yields a new proof of the theorem of Duren, Romberg, and
Shields; when applied to 4.7 it shows that the Mackey topology is induced
by the norm |j-1},., where ¢ = (a + 2)/p ~ 2(0 < p < 1). In addition there
are surprising connections with the behavior of the diagonal map on the H
spaces of a polydisc.

The core of our method is the following result, which we prove in the next
section.

TugorEMm 1. Suppose E is an F-space whose dual separates poinis. Then the
Mackey topology of E is the unique locally convezx topology = on E such that
(1) = 78 weaker than the E-lopology, and
(2) the E-closure of the absolutely convex hull of each E-neighborhood of zero
conlains a r-neighborhood of zero.

By the absolutely convex hull of a set S we mean the collection of finite sums
:): A.s; where s, € 8 and the A; are scalars with Z ;] < 1. Since every
linear topological space has a local base consisting of circled sets [7; Theorem 5.2,
page 35] we could as well have used the more usual notion of “convex hull”
in the statement of Theorem 1. However as stated the theorem is easier to apply.

To see how Theorem 1 works in a simple case, let us find the Mackey topology
of the sequence space I (0 < p < 1), using first the “‘old method”, and then
the Theorem. Both methods require the elementary fact that I C ', and
the I' topology is weaker on I* than the original topology. This is just condition
(1) of Theorem 1 with E = " and r = the I, topology. It also shows that every
continuous linear functional on I' restricts to one on #. Conversely, each
continuous linear functional on [* can be represented in the usual way by a
bounded sequence {7, sec. 14, Problem A, Page 130], so I” and I' have the same
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dual in the sense described previously {(namely I”), hence I' induces the Mackey
topology on I,

Theorem 1 provides a more direct approach. Let E = " and » = the I’
topology on I7.  We have already pointed out that condition (1) of the Theorem
holds, so we need only check condition (2). Now each z in I* whose I' norm
is <1 ean be writien as

(1.1) T = 2 ke

where e, is the nth standard basis vector (1 in the nth place and 0 elsewhere),
and (¢,) is a scalar sequence with 3 |t/ < 1. Thus the partial sums of the
series in {1.1) are absolutely convex combinations of the vectors (e.),". More-
over the vectors e, lie in the [".unit ball, and the partial sums converge to &
in . This shows that the I” closure of the absolutely convex hull of the I
unit ball contains a r-neighborhood of zero: those members of ” with I norms
< 1. Thus (after some scalar multiplication) we see that condition (2} is
satisfied, which completes the “dualless” proof that I' induces the Mackey
topology on I” (0 < p < 1).

The strategy for H® and A,” (0 < p < 1) is similar: we take £ = H” or
A7 and let 7 be the topology induced by the norm |}-{}, , where o = 1/p — 2
for H* and (a + 2)/p — 2 for 4,”. Condition 1 of Theorem 1 follows from
the previously mentioned result of Hardy and Littlewood (immediately for H”,
after a little work for 4,7). Condition (2) is verified, not by using a basis
as was done for I”, but by using a reproducing kernel to represent elements
of H? or A,” as limits of appropriate absolutely convex combinations. The
details of this occupy sections 3 and 4, with section 2 reserved for background
material and the proof of Theorem 1.

In the final section we connect these results with an open problem about
the diagonal map on the H” spaces of a polydisc.

2. Background material and proof of Theorem 1. If E is a real or complex
linear space and F is a subspace of the algebraic dual of £, then there is a unique
strongest locally convex topology u on £ for which F is precisely the space
of g-continuous linear functionals [7; sec. 18, page 173]. p is calied the Mackey
topology of the pair (¥, F), and denoted by m(k, F): it is Hausdorff if and only if
F separates points of E.

1f E is a linear topological space with (topological) dual E’, and the topology
of E is already m(E, E"), then we call E a Mackey space. Theorem 1 is an
immediate consequence of the following basic result [7; Corollary 22.3, page 210]:

ProposiTION. Every pseudo-metrizable locally convex space is a Mackey space.

Note that this result also justifies the “old way’” of finding the Mackey
topology of a non locally convex F-space.
Proof of Theorem 1. (cf. {12, Prop. 3, page 641]). By a local base for a vector
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topology we mean a base for the neighborhoods of zero. For a subset 4 of £
et A denote the E-closure of the absolutely convex hull of E. Let # denote
the Mackey topology of E. We will be done if we can show that the family
of sets

{7 : U a neighborhood of zero in K}

is a local base for u. It is easy to check [7; Theorem 5.1, page 34] that this
family is a local base for some vector topology r on E, which is clearly weaker
than the original topology. Since E is metrizable its topology has a countable
local base {U,}, hence {U,} is & countable local base for r. Thus 7 is pseudo-
metrizable [7, Theorem 6.7, page 48}, hence the above Proposition guarantees
that (E, 7) is a Mackey space. To finish the proof, then, we need only show
that E' is the r-dual of E.

Every r-continuous linear functional is in K’ since r is weaker than the £-
topology. Conversely, suppose A € E’. Then M is bounded on an E-neighbor-
hood of zero, hence on its absolutely convex hull (by linearity of A}, and finally
on the E-closure of this absolutely convex hull (by E-continuity of A). Condi-
tion (2) insures that this last set contains a r-neighborhood of zero, so A is
bounded on a r-neighborhood of zero, hence r-continuous. This completes
the proof.

The rest of this section contains results about Hardy and Bergman spaces
that will be needed later on. For f analytic in U we use the notation

M2 = j; Hrw) [ dmlw).

It is well known that 3,(f; ) increases with r on the interval [0, 1).
The result of Hardy and Littlewood mentioned in Section 1 follows by taking
g = [ = 1in the following more general theorem.

Turorem A {5; Theorem 31, pp. 411-412]. IfO0 < p < gl 2 p,anda =
p~' — ¢, then there exists a constant K = K{(p, g, ) such that
1
[ migna =o' dr < K i
9
for each f in H”.
COROLLARY A. For 0 < p < 1there exists K = K(p) > 0 such that

il 1seme < K T
for all | €& H?.
We will also require a simple growth estimate for functions in 4.7

TueorEM B. Fora> —1land 0 < p < o there exisls a constant € = Cla, p)
such that

M 1) < C iflly.e (1 — )7t
joreach f € AT and0 <r < L
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Proof. Since M,{f; ) increases on 0 < r < 1 it is enough to prove the result
for } < r < 1. For this range of r we have:

Wlh..” > f MPG: o)1 — p)p do

> oM [ = 9" de
= (20: + 2)‘4M,,p(f;?')(l - T)a+l!

where the monotonicity fo A,{f; ») justifies the second inequality. This
completes the proof,

From this estimate and another result of Hardy and Littlewood {5; Theorem
27, page 406} we obtain:

CoroLLaRY B. For0 < p < @ and a > —1 there exists C = C(p, @) > 0
such that

Ht < Cllfllye (1 = [y =27
for every f in A7,
It follows from this Corollary that for each z in I/ the linear functional

f—i  (inAL)

is continuous on A,” ; and that the topology of 4,7 is stronger than the topology
« of uniform convergence on compact subsets of UU. The completeness of 4.”
follows quickly from this last fact. Corollary B also shows that every bounded
subset of A,” is a normal family, hence the unit ball of A" (being «-closed
by Fatow’s Lemma) is x-compact. The same results hold for H* (0 < p < =),
and follow from similar inequalities (replace a by —1 in Corollary B {1; page 36]).

To handle the spaces A ,” we need a result on fractional integration. Suppose
g > 0and f(2) = 2 a2 is analytic on U. Following Duren, Romberg, and
Shields {2] we define the fractional integral of | of order 8 to be

w

1
fialz) = ,g,mf(n +n.1 T .2

it is easily seen to be analvtic in U. As noted in {2] this definition differs from
the original one given by Hardy and Littlewood in [53] by a factor of Z ;in
particular

@) fm@ =" [ 10 d.

The inequality we require is due to Duren, Romberg, and Shields.

TueoreM C [2; Theorem 5, page 43l For « > —1 and 8 > 0 there exists
C = Cle, 8 > 0 such thal

C Watlie € Wl avs £ C lifimlls.a

for every { analytic in U.
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Finally we record a pair of standard estimates:

Tueorem D. Suppose &« > —1 and v > 1 + a. Then there exists C =
Cla, v} > 0 such that for 0 < p < 1:
{a} {1; Chapter 4, sec. 6]

fr 1 — pwl{™™ dmw) < CA — p)'™"

(here C depends only on o, of course),
(b) [14; Lemma 6, page 291]

‘[E (0 — )"l — ) dr <COE — p)'* ",

3. The Mackey topology of H” (0 < p < 1), In this section we give a proof
based on Theorem 1 of the following result of Duren, Romberg, and Shields:

TreoreM 2 [2; Theorems 1 and 7). The Mackey topology on H” is induced
by the norm [|-|}.1/-2 (0 < p < 1)

Proof. Leto = 1/p — 2. By Corollary A the norm |i || . is defined on H,
and induces a topology r weaker than the original one. Thus condition (1)
of Theorem A holds, so we need only verify condition (2).

A calculation with power series shows that for any 8 > —1 the function

B (- ¥
3.1 Ke o) =6+ 1) s

is a reproducing kernel for U; that is,

3.2) f@=Lmem&® € U)

for all  analytic in U and integrable with respect to the measure (1 — {¢{*)dA(0).
Fix 8 > o. Then in particular (3.2) holds for all f in 4,, hence (by Corollary A)
forall fin H?, Forz [ € U let

3.3) J(O& = J@E ) = (1 — DK, ).

Each J(¢) is an analytic function (of 2) in a neighborhood of the closed unit
dise, hence a member of H*. We claim that the colleetion of all such functions
is a bounded subset of H” ; that 1s,

3.4) M = supf{[[J(OlL,:F € U} < =.
To prove this, first note that the definition of J quickly yields for 0 < r < It

[ W@ear dnw) < €20 — 1) 16 )

where Cs = 2°(8 + 1), and
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, I, ©) = fr 1 — Fra[ ®*" dma).

Now {8 + 2)p > 1 (since 8 > ¢ = 1/p — 2), so part (a} of Theorem D vields
16, ) < €A — i) < - L)
where ( is a positive constant independent of { € U and 0 <7 < 1. Thus

WOl = sup [ @ dme)

<Gy

which eompletes the proof of (3.4).
We are going to show that each f in H” with ||fil;., < 1 liesin the H"-¢losure
of the absolutely convex hull of the ball

v = €1 Il < M},

for M given by (3.4). As in our discussion of I” (section 1), this will show that
the H'-closure of the absolutely convex hull of every H™-ball contains a r-

neighborhood of zero, establishing condition (2) of Theorem 1 and completing
the proof.

So Jet f &€ H” with ||fjl,.» < 1. Then we can rewrite (3.2) as

@2) = [JeDaw €€V
where

du() = (1 — RO

is a complex Borel measure on U of total variation Hillee < 1. Now (3.2
expresses | as a sort of generalized absolutely convex combination of functions
J(¢), which ke in V; so to complete the proof we must interpret the right side

of (3.2 as an H”-limit of honest absolutely convex combinations of elements
of V.

For0 < r < 1let ,(z) = f(rz). Then f, € H", and it is a standard fact
that §, — f in H* as r — 1—{1; Theorem 2.6, page 21]. Bo we need only show
that for each fixed 0 < r < 1 the function f, is an H™-limit of absolutely convex
combinations of members of V. Fix 0 < r < 1. From {3.2") we have

(3.5) 1@ = [ Iz duw) €€ V).
An easy calculation shows that the function

&, ) = J{rz, D)

is uniformly continuous on U/ X U (the fact that 8 > ¢ again enters here),
so given ¢ > 0 we can partition U into a finite number of disjoint semi-open
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polar coordinate reetangles U, , -+, U, such that for each 2 € U:
(3.6) sup{lJ{rz, {) — Joz, ) L P E U} < e
fork = 1,2, --- ,n Choose {, & U, (independent of 2) and set

8.(2) = 2 T2, eu(U)

forz &€ U. Since
S U < Wl () €1,

S, is an absolutely convex combination of functions J,{{) defincd by
J() @) = J(rz, ).

Now (3.4) and the definition of the H” “norm” show that ||J.(Dil, < M for
each { & U, hence each J,({) € V. Thus 8, is an absolutely convex combination
of elements of V, so it only remains to show that

(3.7) lim [|f, — 84l = 0.

el +

In fact, it follows from (3.5) that for each z € U:

1.6) — 8.3 Z [ 16,9 = Tz, 1)1 )

]

IA

> [ Wm0 = Iz, 20141l ©

< e E Wl (from (3.6)

= ¢ |u| (1)
< e

Thus S, — f, uniformly on U, hence in H” ; and the proof is complete.

Tssentially the same proof characterizes the Mackey topology of H(U™) for
0 < p < 1: here are the essential points. Let U”, T%, d\, , and dm, denote
the n-fold products of U, 7, d\, and dm respectively. For 0 < p < « the
Hardy space H™(U™) is the collection of complex valued functions f analytic
on U" such that

Il = s [ il dme) <

(see [9; Chapter 3] for basic material on these spaces); and the weighted Bergman
space A,(U") {a > —1) is the family of analytic functions { on U™ for which

il = [ WP v o) < =,
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where

we) = T1 = ) for 2= (20, 2 € U

iml
With this notation Theorem A remains true for { in H*(U"). This was proved
by Arlene Frazier in [4]: it is not a simple deduction from the one variable case.
So condition (1) of Theorem 1 is satisfied with £ = H™(U") and r the topology

induced on H*(U") by the norm ||-]l1.1,5-2 (0 < p < 1). We are going to show
that condition {2) is also satisfied, which yields:

THEOREM 2': Theorem © remains true if H® and A,,,-,' arve replaced by thewr
counterparts on U".

Proof, 1et

L6 = Je ) = T T, 8
forz=1(z, - ,z)and{ = &, -, {&) € U, where J is given by (3.3)
and (3.1) with 8 > ¢ = 1/p — 2. Fubini’s theorem and (3.4) yield
sup{|[J.D 18 € U™ < =,
while for { € H*(U"), Fubini’s theorem and (3.2') give the integral representation

10 = [ Juter 8 dutt)
where

du(t) = 1w an()-

The rest of the proof goes exactly as before: we omit the details.

4. The weighted Bergman spaces. Using the methods of the last two
sections we determine the Mackey topology of A.” when 0 < p < L.

TeEOREM 3. Fora > —land0 < p < llet o = (a + 2)/p — 2. Then
A C A, and the Mackey topology of A,” is induced by the norm of A.'.

Note that Theorem 2 can be regarded as the limiting case a = —1 of this
result. The case « = 0 appeared in {10] where it was obtained by caleulating
dual spaces.

Proof of Theorem 3. Just as in the last section we will verify the hypotheses
of Theorem 1, this time with E = 4,” and r the topology induced by the 4,
norim.,

Condition (1). We need to show that there is a positive constant C = C(p, a)
such that

(41) Hﬂll-v 5 C ﬁﬂlv.u
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foreach f € 4.% As in section 3, this requires Corollary A, but now we need
to do some extra work., Fix § € 4.7 and 0 < p < 1. In what follows, the
symbol “C” denotes a positive constant, possibly different at each cceurrence,

but always independent of § and p. From Theorem C and Corollary A respec-
tively, we have:

42) f i @] AN < C [[fllasmes < C 11l -

Let ¢ = fi1/5-2, . Then a change of variable, inequality (4.2), and Theorem B
respectively vield

& 1
o [ Mg du = [ Mitgire) dr
g [H]

< CMP( o)1~ o) 72 i, 070
Multiplying through by the appropriate power of 1 — p we obtain

@3 a - oo [ s duf < €l M 0 - 0

We elaim that the quantity in braces on the left side of (4.3) dominates
Mg, 30y Indeed:

Mg s p) = nggll(m)idm(w)

[ %“"”)"1 [ o as

o [ [ ot du e

dt (by{2.1))

A

= f M(g;w) du (by Fubini).
&
Thus (4.3) vields
Mgy ;oML ~ )77 < C il M XL~ p)°

Integrating both sides of this inequality with respect to p over{0, 1), and applying
Theorem C to the resuiting right hand side, we obtain

Holh cesnzme £ C Homlhicarnsm: < C [flh«
But g = f{i,,-21 , 80 using Theorem C on this last inequality:

E'I.f;lh(d‘r?l/n—l‘ S C Hfl]/?"“?}“i.(ﬂ‘rﬂ/:p S C H]‘Hv.a
which is the desired result.
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Condition (2). Suppose f € A, and ||fii,.. < 1. As in section 3 we need

only show that f lies in the 4 ,"-closure of the absolutely convex hull of a bounded
subset of 4.7,

Choose 8 > o and define J(£)(2) = J(z, {) by (3.3) and (3.1), so we have the
representation (3.2) for all { in 4,” and z in U. As in section 3:

{4.4) M o= sup Tl € Ul < =
To prove this, fix { € U and calculate:

IOl = [ 176, 0F (4 = &) 6

= = e KGO (= DT e

< ¢l — [TDTID),
wherey = 2+ 8)p — (a + 2),Cp = 22(8 + 1), and

1) = ft (Ol ) NN

El — fzi(ﬁ“”
_r . dm{e) }
= j; - {L_ ll _ g—_eruhzw rdr
f‘ (1 — )% dr
— o (1 _ ii_iT)(§+2)v—l :

where the last inequality follows from part (a) of Theorem D (section 2},

beeause (8 + 2)p — 1 > 1 + « > 0. Applying part (b) of Theorem D to the
last integral, we obtain

I < ¢ - |7,
hence
IO, < CL — i]7) I
< G0

where C is independent of ¢ € U. This proves (4.4). )
The rest of the proof proceeds just as in section 3; and we omit the de_talls.
Again we need to know that §, — f, this time in A,7; but this follows quickly

from the fact that M ,(f ;) increases on 0 < r < 1, and the Lebesgue Dominated
Convergence Theorem,

5. The diagonal map. Tor [ a complex valued function on U" we define
Af(z) = }((Z, I 2)

for z in U, and call A the diagonal map. Clearly A takes functions analytic
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on /" to functions analytic on U, Horowitz and Oberlin {6] ,extending previous
work of Rudin [9; pages 53 and 62] have shown that A is a continuous linear
transformation taking H*(U™) onto A,..." for 1 £ p < =. Duren and Shields {3]
have shown that even when 0 < p < 1 the diagonal map takes H*(U™) contin-
uously into 4,_,", but it is not known if A is onlfe in this case.

We are going to prove some results which connect this problem with the work
of the previous sections. Although they do not prove that A{H*(L/")} = A,.,°
for 0 < p < 1, these results tend to support the eonjecture. In addition they
yield short proofs of the “onto-ness” of & : H'(U™) —> A,-,".

Our first result appears implicitly in [6; page 770, part (¢)]. To state it we
need the notion of the absolulely p-conver hull of a set 8. This is the collection
of finite sums z A8, where s; & 8 and the ); are scalars with z <l
{0 < p < 1). A set is absolufely p-convex if it coincides with its absolutely
p-convex hull, For p = 1 we get the usual notion of absolute convexity.
Clearly linear transformations preserve absolute p-convexity.

TheEOREM 4. For 0 < p < 1 the image under A of the unit ball of H*(U™)
contains the closure in A._" of the absolutely p-convex hull of the H™ unit ball,

To see how this relates to the previous work, consider the case p = 1. We
know from {the proof of) Theorem 2 that for some § > 0 the set

S = H'" closure of the absolutely convex hull of the H'" unit ball

contains every function in H'* with |If]l,..-e < 8. Thus the closure in A,_,'
of § containg the ball of radius 8, so by Theorem 4 the A-image of the H*/" unit
ball contains an A,_,~ball. Thus A takes H' (") onto 4,_,', providing an easy
proof of the result of Horowitz and Oberlin for the case p = 1 (in this case their
original proof required & complicated duality argument).

The same reasoning would yield the onto-ness of A 1 H*(U") — 4, for

0 < p < 1if we eould prove the following

Coniecture. For 0 < p < 1 the closure in A,_," of the p-convex hull of the
H*™ ynit ball condains an A,_," ball (n = 2,3, --+).

Unfortunately the methods of section 3 do not seem to apply when p < L
The difficulty lies in trying to interpret the integral in (3.2} as an absolutely
p-convex combination; and we have no substitute to offer. The “‘converse”
result—that the 4,_," elosure of the absolutely p-convex hull of the H*™ unit
ball lies in some A,.,” ball—is true, and follows from Theorem A by replacing p
with p/nandsettingg =l=p (0 <p<ln =23, --).

Proof of Theorem 4. For { € H™™ the classical factorization theory [1; section
2.4 allows us to write

f“f;fz,"‘,fn
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where {; € H” and l[f;ll, = Wl ™ (1 < 7 £ m). So letting

F(zl 1 B2 "7 zn) = jl{zl)}'2{z2) e fn{zn)
forz,,z;, -+, 2 & U; we have F &€ H*(U") and

ey 1Pl = il
(@) AF = {.

So the image under A of the H*(U™) unit ball B contains the H*™ unit ball;
and since B is absolutely p-convex, A(B) actually contains the absolutely
p-convex hull of the H*" unit ball. Now a : H*(U") - A._,” remains con-
tinuous when both spaces have their respective topologies of uniform convergence
on compact sets, and since B is compact in this topology (see section 2), s0 1s
A(B). Since this topology is weaker on 4,5 than the original one, we see that
A(B) is closed in A,_.*, which completes the proof of Theorem 4,

In [6] Horowitz and Oberlin prove that A takes H™(U™) onto A,_y" for 1 <
p < o« by using the Cauchy kernel to construct an operator

S An.” — HY(U)

such that AS is the identity operator on 4,..s". However this did not work for
p = 1, where they had to employ a duality argument. The next result shows
that their method for 1 < p < « can be made to work for H{U™, and even

for A (U™, if the Cauchy kernel is replaced by one of the sort used in proving
Theorems 2 and 3.

THEOREM 5. For 0 < p < landn = 2,3, 4, -+ ; choose B > n/p — 2
and let
Tz, a0 = 6+ DA - PP TLa = G
forze 22, - s 2, b E U, For f € Awy-n sel
St 2y 0z = [ @Gz w8 D Q).

Then 8] € Ay, (UT), and AS is the idenlity map on Anpppz. If p = 1 the
same is brue with H (U™) replacing A,/p-2 (U").

Proof. We consider only the case 0 < p < 1. The proof for p = 1 is essen-
tially the same (in fact, easier). So fix f & A,p—z. Because of the choice of 8,
the integral in the definition of Sf converges absolutely foreach (z,, -+~ ,2.) €
U, and 87 is analytic on U". By (3.1} and {(3.2) we have foreachz € U

: ASHE = [ 16K B O = 16)

s0 AS is the identity on 4,,,-.'; and it only remains to show that 8f € Ayyp-2 (U
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For convenience let ¢ = 1/p — 2. Then, using the multivariable notation
introduced at the end of section 3:

CRY 1871 = [ 1810w dne)
< [{[ e o1 wer s} 10 o)

= 6+ D [ 107 - (P 10 )

where

10 = [ @ = It & ae)

1 _ j: a— T)g{j; iI _ fmi—(ﬂww- dm(w)}?‘ dr.

Since § > n/p — 2, we have (8 <+ 2)/n > 1/p, from which it follows that both
B+ 2)/nand (B+ 2)/n — 1 — sare >1. Thus parts (a) and (b) of Theorem D
can be applied suecessively to I(}), vielding

I(é-) S C j: (I — j")c(l — “«Ir)lu(ﬁ-pz}/ﬁ dr

S C(l - Eg,{)2+c~(8+2}/n
= C(1 — [
where C is independent of { € U. Upon substituting this estimate into (5.1)

we obtain

(5.2) 18711 < 2C°6 + 1 [ HO1A = 5177 i)

which completes the proof.

CoroLLaRY. For0 < p < landn = 2, 3,4, --- , the dingonal map is a
bounded linear operator taking A,,,_,' (U™ onto A,,,_.".

The “onto-ness” of A follows immediately from Theorem 5. The fact that

A takes A,,,.,'(U™) continuously inio 4,,,-," is a consequence of the following
result,

ProrosiTioN. Let X and Y be F-spaces with separating duals, and let X and T
be their respective Mackey completions. Suppose T is @ continuous linear map
taking X into Y. Then there is a unique extension T of T to a continuous linear
map taking X into ¥. If in addition T{X) = Y, then T(X) = 7.

Before proving this, let us finish the proof of the Corollary. Recall that for
0 < p < 1 the space 4, (U™ contains H*(UJ") and induces the Mackey
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topology on it {end of section 3), while for n > 1 the space A,/ contains

. A,_.” and induces its Mackey topology (Theorem 3, section 4). Moreover the
proofs we gave of these resuits show that each of the smaller spaces is dense in
its containing space {it is easy to see this directly: the polynomials are dense in

. each space). Thus A,,.. (U") can be identified with the Mackey completion
of H*(U™), in the sense that there is a linear homeomorphism from 4,,,-. (U™)
onto [H?(U™)) that restricts to the identity of H*(U™); and the same is true of
Anps and A, 7. Thus the Proposition insures that the diagonal map A4,
which is known to take H”(U™) continuously into 4,_.%, extends to a bounded
linear operator A taking A,,,- (U") into 4,,,-;'. It is easy to check that A is
still the diagonal map, which completes the proof of the Corollary.

This argument also shows that the Corollary can be restated as follows:

Forn > 1and 0 < p < 1 the diagonal map takes the Mackey
completion of HP(U™) onto that of A._»".

The last part of the Proposition shows that the Corollary, viewed in this way,
is actually a weaker form of the conjecture that A takes H™(U") onto A,
< p<l,n>1)

Proof of the Proposition. We denote the convex hull of a set 8 by eonv 8.

The argument used to prove Theorem 1 shows that if E is an F-space, then the
family of sets

tconv U: U an E-neighborhood of zero}

is a local base for the Mackey topology of E (see also {12; Prop. 3, page 6417).

Now suppose T : X — Y is continuous. Then for each neighborhood V of 0
in Y there is a neighborhood U of 0in X such that (T} C V. Bince T is linear
it follows that 7' {conv V) C eonv V, so (by the last paragraph) T is continuous
even when X and ¥ have their Mackey topologies. Thus T' has a unique exten-
sion to a continuous linear transformation 7' : X — g

1f, in addition, T(X) = Y, then T is an open mapping [7; Theorem 114
page 99]. By the description of the Mackey topology given in the first para-
graph, T remains open when X and Y have their Mackey topologies.

Now let {U/,},” be a sequence of Mackey neighborhoods in X such that
whenever z, & U, (1 < n < =), the partial sums of the series 3. z.form a
Cauchy sequence in the Mackey topology of X (for example, fix a metric d for
the Mackey topology of X, and let U, be the d-ball of radius 2™, By the
open-ness of T there exists a Mackey neighborhood V., of zero in Y such that
T DV, (1 <n< w)

Now suppose § € ¥. Then there is a sequence (y.)o~ In Y such that

) §= 2 Un
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where the series converges in ¥, and
(2} 1. EV, for n> L

Choose 2, € X such that Tz, = y, for all n > 0, making sure thatnz,, e U,
for n > 1. Then the series Zﬂgoﬁ z, converges to an element £ & X, and by
the continuity of T

S fr= N Tr= Y=
r=0 = #ww=

Thus T(X) = ¥, and the proof is complete.

We note in closing that because AS is the identity mapon 4,,,-,' (0 < p < 1),
we have (SA)® = 8SA; hence SA is a bounded projection taking A,,,_," (™)
into itself. Now S is one-to-one {since SA = identity), s0 the nuli space of SA
coincides with that of A: those funetions in A,,, (U™ which vanish on the
diagonal of U". Thus the null space of A is a closed complemenied subspace
of 4,,-2"(U™). The same is true for p = 1, with H'(U") replacing 4,,,-,' (™).
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