
NOTES ON THE DYNAMICS OF LINEAR OPERATORS

JOEL H. SHAPIRO

Abstract. These are notes for a series of lectures that illustrate how continuous linear
transformations of infinite dimensional topological vector spaces can have interesting dy-
namical properties, the study of which forges new links between the theories of dynamical
systems, linear operators, and analytic functions.

1. Introduction to transitivity

Our story begins in a separable complete metric space X on which acts a (not always

continuous) mapping T . We are interested in the behavior of the sequence

I, T, T 2, T 3, · · ·

of iterates of T , where T n denotes the composition of T with itself n times, and we will be

particularly interested in knowing when there exists a point x ∈ X for which the T -orbit

orb (T, x) = orb (x) := {x, Tx, T 2x . . . }

of x under T is dense in X. When this happens we call T (topologically) transitive and

refer to x as a transitive point for T . Before long, we will be considering T to be a linear

transformation on a metrizable topological vector space, in which case the word “hypercyclic”

will be used instead of “transitive” (more on the reason for this terminology shift later).

Note that if x is a transitive point for T then the same is true of every point in orb (T, x),

so once there is one transitive point there is a dense set of them.

Even for simple metric spaces like the unit interval or the unit circle, the study of transitive

maps can be fascinating. We begin with some elementary examples that illustrate this point.

1.1. Irrational translation modulo one. The metric space here is the closed unit interval

I = [0, 1]. Fix an irrational real number α and define and the mapping T : I → I by

Tx = x + α (mod 1). That is, Tx is what’s left when you subtract off the integer part of

x + α. Now T is not a continuous map of I, but if this causes you problems, then identify
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the endpoints 0 and 1 to make I into a circle, and regard T to be rotation of the this circle

through the angel 2πα, a continuous map. More precisely, let E(x) = e2πix, which maps I

continuously onto the unit circle T. Let R : T → T be the mapping of rotation through

the angle 2πα, i.e., Tz = e2πiαz. Then R is a continuous mapping of T onto itself, and

E ◦ T = R ◦ E, which, because E is “almost one-to-one” exhibits the action of T on I as

being “essentially the same as” that of R on T. In particular, to show that T is transitive

it’s enough to do this for R. In fact we’ll do more:

1.2. Proposition. Every orbit of R (hence every orbit of T ) is dense.

Proof. Let ω := e2πiα and note that the irrationality of α guarantees that ω is not a root of

unity. Thus

orb (R, 1) = {1, ω, ω2, . . . }

is an infinite subset of T, and therefore (because T is compact) has a limit point in T. In

particular, there is a strictly increasing sequence {nk} of positive integers such that

0 = lim
k

|ωnk+1 − ωnk | = lim
k

|ωnk+1−nk − 1| = lim
k

|Rnk+1−nk(1) − 1|,

hence 1 is a limit point of its own R-orbit. Thus, given ε > 0 there is a point ζ ∈ orb (R, 1)

such that the arc between 1 and ζ has length < ε. The successive powers of ζ therefore

partition the unit circle into non-overlapping arcs of length < ε, hence every point of the

circle lies within ε of one of these powers, all of which belong to orb (R, 1). Thus orb (R, 1)

is dense in T, establishing the transitivity of R.

To see that every R-orbit is dense, it’s enough to notice that for ζ ∈ T:

orb (R, ζ) = ζ · orb (R, 1),

and to observe that the map z → ζz is a homeomorphism of T, which therefore takes dense

sets to dense sets and in particular transfers the density of orb (R, 1) to orb (R, ζ).

Why transitivity?

Let’s return to the general situation where X is a metric space on which acts a map T ,

and let’s say that a subset E of X is T -invariant if T (E) ⊂ E.1 For x ∈ X the closure

of orb (T, x) is the smallest closed T -invariant subset of X that contains x. Thus for maps

like irrational translation mod one (or, equivalently, rotation of the unit circle through an

1Warning: This terminology is standard in operator theory, but not universal.
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angle that is an irrational multiple of π), density of every orbit is equivalent to the fact that

the only closed invariant sets are the empty set and the whole space. Such maps are called

minimal .

The more modest concept of transitivity merely asserts that open invariant sets are either

empty or dense. Perhaps it’s time to give an example of a transitive mapping that is not

minimal.

1.3. The baker map. This is the map B : I → I defined by Bx = 2x (mod 1). The name

comes from a strategy for kneading dough: take a strip of unit length, roll it out to double

the length, cut it in half, translate the right half on top of the left half, knead the two halves

together into one strip of unit length, and repeat the process.

Note that the baker map is not minimal—the origin is a fixed point! More generally, for

each dyadic rational x = q/2n (q and n positive integers with q ≤ 2n), Bmx = 0 for all

m ≥ n, so there is a dense set of points with finite orbits. Nevertheless:

1.4. Proposition. The baker map is transitive.

Proof. Represent each point x of I by a binary expansion, i.e., x = .a1a2 . . . (ai = 0 or

1) means that x =
∑∞

k=1 ak/2
k. Binary rationals q/2n have two such expansions: one that

is finitely nonzero and the other that is not. For these, choose the finite one. The binary

expansion of every other point of I is unique. For x represented as above, Bx = .a2a3 . . . ,

i.e., B performs a backward shift on binary expansions. Enumerate the countable dense

set of binary rationals in I as {b1, b2, . . . }. Form the point x ∈ I as follows: begin with

the (finite, recall) binary expansion of b1, follow it with a zero, after which you copy in the

expansion of b1 again, then two zeros, then the expansion of b2, then three zeros, then back

to b1, four zeros, b2, five zeros, b3, six zeros, etc. The idea is to get the finite expansion of

each binary rational copied into that of x infinitely often, each time followed by successively

more zeros. This produces a point x ∈ I with each binary rational a limit point of orb (B, x),

hence x is a transitive point for B.

Characterizing transitivity. Suppose the mapping T of the separable metric space X

is transitive. Let trans (T ) denote the (necessarily dense) set of transitive points of T . To

better describe trans (T ), fix a countable basis {Bj} of open sets for the topology of X. For
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example, this could be the collection of open balls of rational radius with centers in some

fixed countable dense subset of X. Then it’s easy to check that

trans (T ) =
⋂
j

⋃
n

T−n(Bj).(1)

Since trans (T ) is dense in X, so is the union on the right for each positive integer j, and

this means that for every basic open set Bj and every nonempty open set V there is a non-

negative integer n such that T−n(Bj) ∩ V = ∅, or equivalently, Bj ∩ T n(V ) = ∅. Now every

nonempty open subset of X contains a Bj, so we have just proved:

1.5. Proposition. If T is a transitive map of a (necessarily separable) metric space X, then

for every pair U, V of nonempty open subsets of X there is a non-negative integer n such

that T−n(U) ∩ V = ∅, or equivalently, U ∩ T n(V ) = ∅.

Corollary. If a map is transitive then the orbit of every nonvoid open set is dense.

In case T is a continuous transitive map on X, the description (1) shows that the set of

transitive points of T is a dense Gδ. Suppose, in addition, that X is complete. then Baire’s

Theorem asserts that the intersection of every countable collection of dense open sets is again

dense, so every countable intersection of dense Gδ’s is another dense Gδ. In summary:

1.6. Proposition. Every transitive continuous mapping of a complete metric space X has a

dense Gδ set of transitive points. Every countable collection of such maps on X has a dense

Gδ set of common transitive points.

If a complete metric space has no isolated points, then every dense Gδ set is uncountable

(see [32, §5.13, page 103], for example), so continuous mappings of such spaces are either

non-transitive, or have an uncountable dense set of transitive points.

It might appear that these remarks do not apply to the baker map, which is not continuous

on I, but by the same trick used for irrational translation mod one, we also can think of B

as acting on the unit circle. Indeed, letting E : I → T denote the exponential map of §1.1

(E(x) = e2πix), we have E ◦ B = E2, which allows the transitivity of B to be transferred to

the “squaring map” z → z2 of T. Since the squaring map is continuous, it has a dense Gδ

(and therefore uncountable) set of transitive points, and from this it’s easy to see that this

property transfers back to the (non-continuous) baker map.
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We close this section with one more consequence of the characterization (1) of the set of

transitive points, where now T is continuous and the separable metric space X is complete.

Suppose that such a T obeys the conclusion of Proposition 1 above, i.e. that for each pair U, V

of nonempty open subsets of U there is a non-negative integer n such that T−n(U) ∩ V = ∅.
Then the union on the right-hand side of (1) is a Gδ that intersects every nonempty open set,

i.e. it is a dense Gδ. The set of transitive points of T is therefore a countable intersection of

dense Gδ’s, so it is nonempty by Baire’s Theorem [32, §5.6, page 97]. Thus for continuous

maps of complete, separable metric spaces the converse of of Proposition 1 holds. These

observations form the content of:

1.7. Birkhoff’s Transitivity Theorem. A continuous map T of a complete, separable

metric space X is transitive if and only if for every pair U, V of nonempty open subsets of X

there is a non-negative integer n such that T−n(U)∩V = ∅ (or equivalently: U ∩T n(V ) = ∅).

Corollary. A homeomorphism of a complete, separable metric space onto itself is transitive

if and only if its inverse is transitive.

So far our only invertible example is translation modulo one of the unit interval by an

irrational number. In this case transitivity of the inverse is clear: it is just translation

modulo one by the negative of that irrational number. Later we will encounter many other

interesting examples of invertible transitive maps.

Transference of transitivity

We have used the exponential map E : x → e2πix to connect the behavior of some discontin-

uous maps T of the unit interval (irrational translation modulo one and the baker map) with

continuous maps R of the unit circle (irrational rotation and the squaring map, respectively)

via the “intertwining equation” E ◦ T = S ◦ E. This is a special case of something quite

general:

1.8. Definition. Suppose T : X → X and S : Y → Y are mappings of metric spaces, and

E : X → Y is a continuous map of X onto Y for which V ◦ T = S ◦ V . In this case we

call S a factor of T , and T an extension of S. If V (X) is just dense in Y we’ll say S is a

quasi-factor of S, and T a quasi-extension of T . If V is a homeomorphism of X onto Y we

say S and T are conjugate.
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Clearly conjugacy is an equivalence relation. Going back to our examples: Rotation of the

circle through an irrational multiple of π is both a factor of irrational translation mod one,

and a quasi extension of that map (via the “quasi-conjugacy” V (e2πix) = x , 0 ≤ x < 1 which

maps T continuously onto the dense subset [0, 1) of the closed unit interval). Similarly, the

squaring map on the circle is both a factor and a quasi-extension of the baker map of the

unit interval.

1.9. Proposition. If T : X → X is transitive then so is every quasi-factor of T .

Proof. Suppose V : Y → Y is a continuous map of the metric space Y onto a dense subset,

and V ◦T = S ◦V . We establish the desired result by showing that V (trans (T )) ⊂ trans (S).

To this end suppose that x is a transitive point of T . An induction shows that V ◦ T n =

Sn ◦ V for every non-negative integer n, hence V (orb (T, x)) = orb (S, V x). Since V is

continuous with image dense in Y , the image of any dense subset of X is dense in Y , in

particular this is true of the S-orbit of V x, which was just revealed as the image under S of

the dense T -orbit of x.

1.10. A shift map. In proving transitivity for the baker map B, we used the fact that

it acted as a shift on binary expansions of numbers in the unit interval. In fact, what we

were really doing was proving transitivity for a certain extension of B. Let Σ be the space

of all sequences of zeros and ones, and let β denote the backward shift on Σ, that is, if

x = (x(n) : 1 ≤ n < ∞) ∈ Σ, then

βx = (x(2), x(3), . . . ).

The metric d defined on X by

d(x, y) =
∞∑

n=1

2−j|x(j) − y(j)| (x, y ∈ Σ)

is complete on σ, and d-convergence is the same as coordinatewise convergence. Thus the

map V : Σ → I defined by

V x =
∞∑

n=1

2−jx(j) (x ∈ Σ)

is continuous, with V (Σ) = I. Clearly V ◦ β = B ◦ V , which establishes the claim that

the baker map B is a factor of β. In our proof of transitivity for β what we really did was

construct a transitive vector for β, and interpret it, via V , as a point of I.
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Here are two other well-known maps of the unit interval. I leave it mostly as exercises to

show that they are conjugate to each other, and that both are factors of the squaring map.

1.11. The quadratic map. This is the mapping Q : I → I defined by Q(x) = 4x(1 − x).

Exercise. Show that Q is a factor of the squaring map.

Outline of proof. Define V1 : T → [−1, 1] by V1(e
ix) = Re (eix) = cos x. So V is the

orthogonal projection of T onto [−1, 1]; except for the points ±1 it is two-to-one. Some

common trigonometric identities show that if z ∈ T then V1(Qz) = 2V1(z)2 − 1, so if σ

denotes the squaring map of the circle and Q1(x) = 2x2 − 1 on [−1, 1], then V1 ◦σ = Q1 ◦V1.

Thus Q1 is a factor of σ, and so inherits its transitivity.

Next, map [−1, 1] homeomorphically onto I = [0, 1] in the simplest way: V2(x) = (1+x)/2.

The map Q2 := V2 ◦ Q1 ◦ V −1
2 is therefore conjugate to Q1, hence is a factor of σ. A little

arithmetic shows that Q2(x) = (2x − 1)2. Finally the homeomorphism V3(x) = 1 − x of I

onto itself yields V3 ◦ Q2 ◦ V −1
3 = Q, hence Q is conjugate to Q2, and so is a factor of σ,

hence a transitive map.

Upon composing the maps Vj properly, you can see that the map V : T → I that comes

out of all this and exhibits the quadratic map as a factor of the squaring map (V ◦σ = Q◦V )

is: V (eix) = sin2 x.

1.12. The Tent Map. This is the map T : I → I defined by: T (x) = 2x if 0 ≤ x ≤ 1/2,

and T (x) = 2(1 − x) if 1/2 ≤ x ≤ 1.

The name comes from the shape of the graph, which is an inverted “V” based on I. The

shape of the graph is qualitatively like that of the quadratic map, so one would conjecture

that the two maps are conjugate. This would imply transitivity for the tent map, also a

reasonable conjecture if one interprets the map’s action in terms of mixing dough (it’s just

like the baker map, except that instead of cutting and translating the stretched out dough,

you just double it over at its midpoint).

1.13. Exercise. Show that if V (x) = sin2(π
2
x), so that V is a homeomorphism of I onto

itself, then V ◦ T = Q ◦ V , hence the tent and quadratic maps are conjugate.

Chaotic maps
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The following discussion comes almost entirely from [3], a beautiful short paper which dis-

cusses the question: What does it mean for a map to be “chaotic”? There seems to be no

consensus on this issue, but most authors seem to agree that chaotic maps should at least

be transitive. However transitivity by itself does not seem to capture the essence of chaos.

Consider for example the map of irrational translation mod one, acting on the unit interval.

Although it is transitive, orbits that start close together stay close together, so at least in

this respect the map is too regular to be considered truly chaotic.

To exclude such examples it seems desirable to also require a form of instability which

asserts that each point x ∈ X should have points arbitrarily close to it whose orbits, in some

uniform sense, do not stay close to orb (T, x). More precisely:

1.14. Definition. A mapping T of a metric space X depends sensitively on initial conditions

(or: has sensitive dependence) if: There exists a number δ > 0 such that for every ε > 0 and

every x ∈ X there is a point y ∈ B(x, ε) such that d(T nx, T ny) > δ for some non-negative

integer n.

The number δ in this definition is is called a sensitivity constant for T .

Some authors take “chaotic” to mean “transitive plus sensitively dependent on initial

conditions” (see, for example, [30]). However sensitive dependence has a flaw: it is not, in

general, preserved by conjugacy. To see this, let T be the map of “multiplication by two”

on the positive real axis, S the map of “translation by ln 2” on R, and V : (0,∞) → R the

natural logarithm. Then V ◦ T = S ◦ V so T and S are conjugate, but T does not have

sensitive dependence, whereas S does.2

In his classic text [15], Devaney proposed a third property that chaotic maps should have:

dense sets of periodic points. A point x ∈ X is periodic for T if there is a positive integer n

such that T nx = x. The least such n is called the period of x; in particular, fixed points are

precisely those of period one.

2However, as pointed out in [3], it is not difficult to show that if a map T of a compact metric space X
has sensitive dependence, then so does any map conjugate to T . Indeed, suppose V ◦ T = S ◦ V , where
V : X → Y is a homeomorphism onto Y . Let δ be a sensitivity constant for T , and let D(δ) denote the set
of pairs (x, x′) ∈ X ×X with d(x, x′) ≥ δ. This is a compact subset of X ×X, so its “V -image” is a compact
subset of Y × Y that is disjoint from the diagonal of that space. Since this diagonal is also compact, these
two compact sets lie some positive distance δY apart, and one checks easily that δY is a sensitivity constant
for S.
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Let per (T ) denote the set of all the periodic points of T . The same argument that showed

quasi-factors inherit transitivity now shows that they also inherit denseness of periodic points.

Indeed, if V ◦ T = S ◦ V , then V (per (T )) ⊂ per (S). Thus if V is continuous and has dense

range, and per (T ) is dense, then so is per (S). In particular, the property of having a dense

set of periodic points is preserved by conjugacy.

Reasoning that chaotic maps should have pervasive elements of both randomness and

predictability, Devaney defined a map to be “chaotic” if it has all three of these properties:

transitivity, sensitive dependence, and a dense set of periodic points [15, Page 52]. It might

appear that Devaney’s definition, relying as it does on sensitive dependence, is not in general

preserved by conjugacy, but in [3], Banks et. al. showed otherwise:

1.15. Theorem. Suppose a continuous mapping T of a metric space X is transitive and

also has a dense set of periodic points. Then T depends sensitively on initial conditions.

Proof. The first step is to observe that each point of x lies uniformly far from some periodic

orbit. More precisely:

There exists δ0 > 0 such that for each x ∈ X there is a periodic point q with

dist (x, orb (q)) > δ.

To see why this is so, note first that two periodic points for T either have the same orbit or

have disjoint orbits. Since per (T ) is assumed dense in X, there must be two periodic points

with disjoint orbits. Let 2δ0 be the distance between these orbits. Then any point of x has

to lie at distance ≥ δ0 away from at least one of these orbits.

I claim now that δ = δ0/4 is a sensitivity constant for T .

To prove this, fix x ∈ X and 0 < ε < δ. Our goal is to show that there is a point

y ∈ B(x, ε) and a positive integer m such that d(Tmx, Tmy) > δ.

Since T is transitive, it has a dense set of transitive points, so one of these, call it t lies

in B(x, ε). If d(Tmt, Tmx) > δ for some m, we are done, with y = t. So assume that each

point of orb (t) lies within δ of the corresponding point of orb (x), i.e. that the orbit of

the transitive point t is “dragging the orbit of x through the space.” In this case we’ll see

that for any periodic point p ∈ B(x, ε), some point of orb (x) is more than δ away from the

corresponding point of orb (p), and this will complete the proof (with y = p).
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So fix such a periodic point p and denote its period by n. Note that the distance from p

to orb (q) is ≥ 4δ − δ = 3δ.

Because T is continuous, there is a ball U centered at q with T j(U) ⊂ B(T jq, δ) for

j = 0, 1, 2, . . . n − 1. Because t is a transitive point for T there is a positive integer k such

that T kt ∈ U , hence for 0 ≤ j < n we have T k+jt within δ of orb (q), and so T k+jx lies

within 2δ of orb (q). Now there’s a unique integer j between 0 and n− 1 such that k + j is a

multiple of n. Fix this j and set m = k + j. We’ve already observed that Tmp = p lies more

than 3δ distant from orb (q), and have just seen that Tmx is at most 2δ distant from that

same orbit. Thus d(Tmp, Tmx) ≥ dist (Tmp, orb (q)) − dist (Tmx, orb (q)) > 3δ − 2δ = δ, as

desired.

1.16. Definition. We say a mapping T of a metric space X is chaotic if it is transitive and

has a dense set of periodic points.

Thus chaotic maps have sensitive dependence, and chaotic-ness is preserved by conjugacy;

indeed, it is inherited by quasi-factors.

Let’s try this concept out on our examples. We’ve already seen that irrational translation

modulo one (and also its factor, irrational rotation of the circle), although transitive, is not

sensitively dependent, hence not chaotic. Of the remaining maps (all of which are transitive),

recall that the tent map is conjugate to the quadratic map, which is a factor of the squaring

map, which is a factor of the baker map, which is a factor of the backward shift β on the

metric space Σ of all sequences of zeros and ones. So if we can prove β is chaotic, we’ll know

all of these factors are chaotic, too.

We already know β is transitive, so it’s enough to find a dense set of periodic points. But

this is obvious: the periodic points of β are just the periodic sequences of zeros and ones

(these correspond to binary expansions of binary rationals in the unit interval), and any

sequence x ∈ Σ is approximated to within 2−n by the periodic sequence you get by repeating

ad infinitum the first n coordinates of x. Thus we have proved:

1.17. Theorem. The backward shift, the squaring map, the tent map, and the quadratic

map are all chaotic.
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2. Hypercyclicity: Basic examples

In this section we consider complete metric spaces that are also vector spaces over the

complex numbers, and for which the vector operations are jointly continuous. That is,

vector addition, viewed as a map X × X → X, and scalar multiplication, viewed as a map

C × X → X, are both continuous. Such spaces are called F-spaces. The most common

examples of F-spaces are Hilbert spaces, and more generally Banach spaces. However there

are others, for example:

(a) The Lebesgue spaces Lp(µ) where µ is a measure and 0 < p < 1 are F-spaces, with the

metric defined by

d(f, g) =

∫
|f − g|p dµ (f, g ∈ Lp(µ)).

(b) If G is an open subset of the plane, then the space C(G) of continuous, complex-valued

functions on G can be metrized so that a sequence convergence in this metric if and only

if it converges uniformly on compact subsets of G. The resulting space is thus an F-space.

One way to obtain such a metric is to exhaust G by an increasing sequence of open subsets

{Gn}, where the closure of each Gn is compact, and contained in Gn+1. Then let dn(f, g)

be the supremum of |f(z) − g(z)| as z ranges over Gn (finite because the closure of Gn is a

compact subset of G), and set

d(f, g) =
∑

n

2−n dn(f, g)

1 + dn(f, g)
(f, g ∈ C(G)).

(c) The collection H(G) of functions that are holomorphic on G is a closed subspace of

C(G), and therefore an F-space in its own right. In fact it was in just such a space that

hypercyclicity (a.k.a. transitivity) was first observed for a linear operator. The result,

due to G. D. Birkhoff, dates back to 1929, and asserts that for each a ∈ C the operator

Ta : H(C) → H(C) of “translation by a,” defined by:

Taf(z) = f(z + a) (z ∈ C, f ∈ H(C))(2)

is hypercyclic. (Note that Ta is invertible with inverse T−a, which makes good on an earlier

promise to provide more examples of transitive, invertible maps.)

The first example of hypercyclicity for an operator on a Banach space was exhibited by

Rolewicz in 1969. The setting is the sequence space /p for 1 ≤ p < ∞, and the operator is
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constructed from the backward shift B defined on /p in exactly the same way it was defined

on the sequence space Σ in the last section:

Bx = (x(2), x(3), . . . ) where x = (x(1), x(2), . . . ) ∈ /p.(3)

B itself is a contraction on /p (‖Bx‖ ≤ ‖x‖ for each x ∈ /p), so there’s no hope of its being

hypercyclic, however Rolewicz proved that if you multiply B by any scalar of modulus > 1

the resulting operator is hypercyclic.

We begin with a sufficient condition that provides a unified proof of hypercyclicity for

both these operators, and for many others as well. This result was discovered by Carol

Kitai in her Toronto thesis [22], but she never published it, and it was rediscovered later by

Gethner and Shapiro [17]. Don’t be fooled by the seemingly complicated statement; as we’ll

see shortly, its proof is easy, and the result is often quite easy to use!

2.1. Sufficient condition for hypercyclicity. Suppose a continuous linear transformation

T on an F-space X satisfies these conditions:

(a) There exists a dense subset Y of X on which {T n} converges to zero pointwise.

(b) There exists a dense subset Z of X and a mapping S : Z → X (not necessarily either

continuous or linear) such that:

(i) TS is the identity map on Z

(ii) {Sn} converges to zero pointwise on Z.

Then T is hypercyclic on X.

Proof. Fix two nonempty open subsets U and V of X. Using the density of Y and Z, choose

y ∈ U ∩ Y and z ∈ V ∩ Z. Then T ny → 0 and Snz → 0. Thus xn := y + Snz → y, hence

xn ∈ U for all sufficiently large n.

Now even though S and T need not commute, the fact that TS = I on Z means that

T nSn = I on Z also. Thus by the linearity of T (used for the first and only time here),

T nxn = T nyn + z → z, hence T nx ∈ V for all sufficiently large n. Thus T n(U) ∩ V = ∅
for all sufficiently large n, which by Birkhoff’s Transitivity Theorem (Theorem 1.7) is more

than enough to imply that T is transitive.

For our first application, recall the backward shift B defined on /p by (3).
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2.2. Rolewicz’s Theorem [31]. For every scalar λ of modulus > 1 the operator λB is

hypercyclic on /p for each 0 < p < ∞.

Proof. Fix a scalar λ with |λ| = 1. We will apply Theorem 2.1 to T = λB. To this end let

U denote the forward shift on /p:

Ux = (0, x(1), x(2), . . . ) where x = (x(1), x(2), . . . ) ∈ /p.

and set S = λ−1U . Since BU = I on /p, we also have TS = I. Let Z = /p and note that

‖Snx‖ = |λ|−n‖x‖ → 0 as n → ∞. let Y be the collection of finitely nonzero sequences in

/p; a dense subspace of /p because p < ∞. Then for each x ∈ Y we have Bnx eventually

zero, so the same is true of Snx, hence the hypothesis of Theorem 2.1 are fulfilled. That’s

all there is to it!

We can think of λB as a special weighted backward shift. If w = {wn} is a bounded

sequence of non-zero complex numbers, define the operator Bw on /p by:

Bw(x) = (x(1)w1, x(2)w2, . . . ) (x = (x(1), x(2), . . . ) ∈ /p).(4)

Then Bw is a continuous linear operator on /p, which converges pointwise to zero on the set

Y of finitely non-zero sequences employed in the previous proof.

Suppose further that lim supn |wn| > 1. Since none of the weights wn are zero, we can

define the right inverse operator Sw on Z = /p by: Swx = (0, x(1)/w(1), x(2)/w(2), . . . ).

Once again, all hypotheses of Theorem 2.1 are satisfied, so Bw is hypercyclic without any

help from scalar multiplication. To summarize:

2.3. Theorem [17, §4]. If w is a bounded sequence of complex numbers with no element

zero, and lim supn |wn| > 1, then the weighted backward shift Bw is hypercyclic on /p for

every 0 < p < ∞.

Let’s turn now to some examples from analytic function theory. We begin with a natural

complement to Birkhoff’s translation theorem that was, surprisingly, not proved until much

later:

2.4. MacLane’s Differentiation Theorem [25, 1952]. The operator of differentiation is

hypercyclic on H(C).
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Proof. Let Y = Z denote the dense subspace of all polynomials in H(C). Let D denote the

differentiation operator and S the operator of integration from 0 to z;

Sp(z) =
N∑

n=0

an

n + 1
zn+1 (where p(z) =

∑N
n=0 anz

n).

Then for each polynomial p: DSp = p, Dnp is eventually zero, and Snp → 0 uniformly on

compact subsets of C. Thus the hypotheses of Theorem 2.1 are satisfied, so D is hypercyclic

on C.

In fact, this argument works just as well for H(G) where G is any simply connected plane

domain. All that is needed is that the polynomials be dense in H(G), and this is provided

by Runge’s Theorem. This suggests the question of whether or not simple connectivity of a

plane domain G is characterized by hypercyclicity of the differentiation operator on H(G).

This is in fact true—see [35] for the details, and for further variations on this theme.

For our final application we prove Birkhoff’s result on the translation operator mentioned

at the top of this section.

2.5. Birkhoff’s Translation Theorem [5]. For each complex number a, the operator Ta

given by (2) is hypercyclic on H(C).

Proof. Instead of working with polynomials we consider exponentials Eλ defined by:

Eλ(z) = eλz (λ, z ∈ C).

The key is that Eλ is an eigenvector for Ta with eigenvalue eaλ, so in particular if Re (aλ) < 0

then:

T n
a Eλ = exp {nRe (aλ)}Eλ → 0 in H(C) (n → ∞).

Thus if Y is the linear span of the exponentials Eλ for Re (aλ) < 0 (a half-plane H of points

λ, whose boundary is the line through the origin orthogonal to a), we see that T n
a = Tna → 0

pointwise on Y . Similarly, let Z denote the linear span of the Eλ’s for Re (aλ) > 0. Then

T n
a Eλ → 0, so if we can show that Y and Z are dense in H(C) then we’ll have the hypotheses

of Theorem 2.1 satisfied with S = Ta.

In fact much more is true!
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2.6. Density Lemma. Suppose A is any subset of C with a limit point in C, and let E(A)

be the linear span of the functions Eλ with λ ∈ A. Then E(A) is dense in H(C).

Proof. Suppose Λ is a continuous linear functional on H(C) that takes the value zero on each

exponential function Eλ for λ ∈ G. By the Hahn-Banach Theorem it is enough to prove that

Λ ≡ 0 on H(C). For each R > 0 and each f ∈ H(C) let ‖f‖R := max{|f(z)| : |z| ≤ R}.
‖ · ‖R is a norm on H(C), and the open balls for each of these norms forms a basis for the

topology of H(C). Thus the inverse image of the unit disc under λ contains an ‖ · ‖R-ball

centered a the origin for some R > 0. In other words, Λ is a bounded linear functional

relative to the norm ‖ · ‖R, so by the Hahn-Banach theorem it extends to a bounded linear

functional on C({|z| ≤ R}). By the Riesz Representation Theorem there is a finite Borel

measure µ on the closed disc {|z| ≤ R} such that Λ is represented by integration against µ;

in particular

Λ(f) =

∫
f dµ (f ∈ H(C)).

Since the support of µ is compact, the function F defined on C by

F (λ) =

∫
Eλ dµ =

∫
eλz dµ(z)

is entire, and

DnF (0) =

∫
zn dµ(z) (n = 0, 1, 2, . . . ).

But our hypothesis is that F vanishes on A, and since A has a finite limit point, the identity

theorem for holomorphic functions insures that F vanishes on C, hence the same is true of

each of its derivatives. Thus
∫

zn dµ(z) = 0 for every non-negative integer, and therefore∫
f dµ = 0 for every holomorphic polynomial f , and so for every entire function f (every

entire function is the limit, in H(C) of the partial sums of its MacLaurin series). Thus Λ

vanishes on H(C), so by the Hahn-Banach Theorem, E(A) is dense in H(C).

This completes the proof of the Lemma, and with it, the proof of Birkhoff’s Translation

Theorem.

Exercise. Use the same idea to show that for any nonconstant polynomial p, the operator

p(D) is hypercyclic on H(C), and even on H(G) for any simply connected plane domain G.

In fact the result of this exercise extends to any continuous linear operator L on H(G) that

commutes with D and is not a constant multiple of the identity; see [18, §5] for the details.
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Examples of non-hypercyclicity

Why do most people find it surprising that linear operators can be hypercyclic, or mixing,

or chaotic? Perhaps it’s because the most common ones—the finite dimensional operators,

are not. This is most easily seen by first considering a more general situation. Given an

F -space X, denote the dual space of X (the space of continuous linear functionals on X)

by X∗. Now if X is not locally convex we may have X∗ = {0} (e.g., X = Lp([0, 1]) with

0 < p < 1), but this does not affect our arguments. If T is a (continuous) linear operator

on X, define its adjoint T ∗ : X∗ → X∗ by T ∗Λ := Λ ◦ T for Λ ∈ X∗, so that T ∗ is a linear

transformation of X∗.

2.7. Theorem. Suppose T is a continuous linear operator on an F -space X. If the adjoint

operator T ∗ has an eigenvalue, then T is not hypercyclic.

Proof. We are saying that there is a continuous linear functional Λ on X that is not identically

zero, and a complex number α such that T ∗Λ = αΛ, so for every positive integer n we have

T ∗nΛ = αnΛ. Thus if x is any vector in X then

Λ(T nx) = T ∗nΛ(x) = αnΛ(x) (n = 0, 1, 2, . . . ),

hence Λ(orb (T, x)) = {αnΛ(x)}∞0 . Now the set on the right-hand side of this identity is

never dense in C, whereas if orb (T, x) were dense in X, then its Λ-image would be dense in

C, by the continuity of Λ (the image of a dense set under a continuous map is dense in the

image of the whole space). This contradiction proves the theorem.

Corollary. There are no hypercyclic operators on finite dimensional F -spaces.

Proof. Each finite dimensional F -space is isomorphic to C
n for some positive integer n.

Therefore for each linear operator on such a space, the adjoint can also be viewed as an

operator on C
n, i.e., as an n × n complex matrix. So T ∗ has an eigenvalue, and therefore T

is not hypercyclic.

Exercise. No compact operator on a Banach space can be hypercyclic.
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3. Mixing transformations

In this section we return to the general setting of continuous maps of complete metric

spaces. This is motivated by the fact that the proof of our sufficient condition for hyper-

cyclicity (Theorem 2.1 of the last section) actually yields much more than was promised.

In the first place, the conclusion itself is formally stronger than what’s needed to be able

to apply Birkhoff’s Transitivity Theorem; the conclusion shows that for every pair U, V of

nonempty open subsets of X there is a non-negative integer N such that T n(U) ∩ V = ∅ for

all n ≥ N (Birkhoff’s Theorem only demands one n for which the intersection is empty).

Whenever this stronger property is true of a mapping of a metric space, we call that map-

ping (topologically) mixing . Thus, for example, all the linear operators we have proved to

be transitive are actually mixing.

Next, the proof of Theorem 2.1 never made full use of linearity; it works just as well if X

is merely a complete, metrizable topological group (with the group identity taking the place

of the vector space zero element), and T is a continuous homomorphism of X into itself.

The group need not even be abelian! For example the space Σ of (0, 1)-sequences introduced

in §1.10 is a group where addition is done coordinatewise modulo two, and the backward

shift β on that space, which we proved to be transitive by constructing a point in Σ with

dense orbit, actually obeys the hypotheses of our refined sufficient condition. Thus β isn’t

just transitive, it too is mixing!

3.1. Exercise. Every quasi-factor of a mixing map is mixing.

Clearly the maps of irrational translations mod one, though transitive, are not mixing.

However all the other maps we discussed in §1 are factors of the backward shift on Σ, so

they are mixing.

3.2. Proposition. If X is a complete, separable metric space and T a continuous mapping

on X that is mixing, then for every strictly increasing sequence {n(k)} of positive integers

there is a dense Gδ subset of points x ∈ X for which {T n(k)x : k ≥ 0} is dense in X.

Proof. Fix a countable basis for the topology of X, and enumerate the pairs of basis sets,

obtaining a sequence {Ui, Vi}∞1 (with each of the basis sets occurring in each coordinate
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infinitely often). Because T is mixing:

∃ ν1 ∈ N such that n ≥ ν1 =⇒ T n(U1) ∩ V1 = ∅.

In particular,

∃ k1 ∈ N with T n(k1)(U1) ∩ V1 = ∅.

Similarly

∃ ν2 ∈ N such that n ≥ ν2 =⇒ T n(U2) ∩ V2 = ∅.

from which it follows that

∃ k2 ∈ N with k2 > k2 and T n(k1)(U1) ∩ V1 = ∅.

Continuing in this manner you get a strictly increasing sequence {n(kj)}∞j=1 such that

T n(kj)Uj ∩ Vj = ∅. In particular, for any nonvoid open subsets U and V of X there ex-

ists an index k such that T n(k)U ∩ V = ∅.
The proof of Birkhoff’s Transitivity Theorem, repeated almost word-for-word, now shows

that there is a dense Gδ set of points x ∈ X such that {T n(k)x} is dense in X.

As a special case, for each fixed positive integer n we may take nk = kn in the result above,

thus obtaining:

3.3. Corollary. If T is a continuous, mixing transformation of a complete metric space X,

then T n is transitive for every positive integer n.

By contrast:

3.4. Proposition. Not every transitive map has transitive powers.

Proof. To make examples of this phenomenon, let T be any continuous mixing map of a

complete metric space X, and form a new (X̃, T̃ ) as follows:

X̃ = X × {1, 2} and T̃ (x, 1) = (Tx, 2), T̃ (x, 2) = (Tx, 1) for x ∈ X.

So X̃ is the disjoint union of subsets X̃j = X × {j} where j = 1, 2, and T̃ maps X̃1 onto

X̃2 in the same way T would map X onto itself, and it similarly interchanges X̃2 and X̃1.

Perhaps one should think of each of these subsets as a copy of X, with the first one colored

red and the second blue. Then T̃ has the action of T , except it takes each red point to the

“same” point, but now colored blue, and vice versa.
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Now X̃ is the product of two metric spaces, X, with its metric d and the two-point space

{1, 2}, with the discrete metric δ. Therefore the metric on X̃ defined by:

d̃((x, j), (y, k)) := d(x, y) + δ(j, k)

puts the product topology on X̃, thereby making it into a complete metric space on which

T̃ acts continuously.

Clearly T̃ 2 is not transitive since it takes X̃j into itself for each j = 1, 2. On the other hand

T̃ itself transitive. Indeed, because T is assumed to be mixing, there is a dense Gδ subset

of points x ∈ X for which {T 2nx} is dense in X, and a similar set of x’s for which {T 2n+1x}
is dense. It follows that there are points x in X for which both sequences are dense. Thus

{T̃ 2n(x, 1)} is dense in X̃1, while {T̃ 2n+1(x, 1)} is dense in X̃2, hence orb (T̃ , (x, 1)) is dense

in X̃, i.e., T̃ is transitive.

By refining this construction just slightly we can create examples where the underlying

space X̃ is connected. For this, suppose X is connected and T : X → X is continuous and

mixing, but with a fixed point p ∈ X. For example, the tent and quadratic maps on [0, 1]

have these properties (both fix the points 0 and 1).

Let X̂ be X̃ with (p, 1) and (p, 2) identified to a point we’ll call p̂. Define T̂ on X̂ in the

obvious way: it’s just T̃ on X̂\{p}, and it fixes the point p̂. The resulting T̂ is continuous

on X̂, and if V : X̃ → X̂ is the identity on X̃\{(p, 1), (p, 2)} and takes (p, j) to p̂, then V is

also continuous and V ◦ T̃ = T̂ ◦ V , i.e., T̂ is a factor of T̃ , and therefore is also transitive.

But just as before, T̂ 2 is not transitive, since for j = 1, 2 it still takes each of the disjoint

sets X̃j into itself.

For a more concrete example, it might be instructive to show that the map you get by this

construction from the tent map on the unit interval is conjugate to the “double tent map”

defined on [−1, 1] by: T̂ (x) = T (x + 1) for −1 ≤ x ≤ 0 and = −T (x) for 0 ≤ x ≤ 1.

3.5. Product maps. The construction given above for T̃ is actually a special case a much

more far-reaching idea. Let {Xi} be a finite or countable collection of metric spaces. On each

Xi we can assume without loss of generality that the metric di is bounded by one (otherwise,

replace it by di/(1 + di)). Then the cartesian product X of the spaces Xi is a metric space

in the metric d =
∑

i 2
−idi, and a sequence of points converges in this product metric if and
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only if it converges in each coordinate. Thus (X, d) has the product topology; it is compact

if each (Xi, di) is compact, and complete if each (Xi, di) is complete.

Suppose Ti a mapping of Xi for each i. Then the “product map” T is defined on the

product space X by letting Ti act in each coordinate. If each Ti is continuous Xi, then T is

continuous on X (and conversely). In particular, the map T̃ constructed above is an example

of just such a product construction: Both set-theoretically and topologically X̃ = X×{1, 2},
and T̃ = T × S, where now T : X → X is the original map on X and S : {1, 2} → {1, 2} is

the permutation that interchanges 1 and 2.

3.6. Proposition. If X is the product of a finite or countable collection {Xi} of metric

spaces, and Ti is a mixing transformation of Xi for each i, then the product map T is mixing

on the product space X.

Proof. Suppose U and V are basic open sets in X, i.e. that U =
∏

i Ui with Ui open in Xi

and Ui = Xi for all i ≥ some n1. Similarly V =
∏

i Vi with Vi open in Xi and equal to Xi

for all i ≥ some, possibly different, index n2. Let n be the larger of n1 and n2. Because each

Ti is mixing we may choose a positive integer N such that

k ≥ N ⇒ T−k
i (Ui) ∩ Vi = ∅ for each 1 ≤ i ≤ n,

hence for each such k:

T−k(U) ∩ V =
n∏

i=1

(
T−k

i (Ui) ∩ Vi

)
×

∏
i≥n+1

Xi = ∅,

which shows that T is mixing.

3.7. Definition. A mapping T of a metric space X is called weakly mixing if T × T is

transitive on X × X.

We have just seen that every mixing transformation is weakly mixing, and it is easy to check

that weakly mixing transformations are transitive (more generally, if a product mapping is

transitive then the same is true of each coordinate mapping). However the converse is not

true: there are transitive maps T that are not weakly mixing. The next result implies that

the the examples constructed in the proof of Proposition 3.4 (with T is transitive but T 2

not) all have this property.
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3.8. Proposition. Suppose T is a continuous map of a complete metric space X. If T is

weakly mixing then T 2 is transitive.

Proof. We use Birkhoff’s characterization of transitivity for this setting. Fix U and V open

in X and nonempty. It is enough to find an even integer m such that T−m(U) ∩ V = ∅. Use

the transitivity of T × T to choose n > 1 such that

(T × T )−n
(
(U × U) ∩ (V × T−1(V ))

)
= ∅

But the left-hand side of this expression is just (T−n(U) ∩ V ) × (T−n(U) ∩ T−1(V )) , hence

T−n(U)∩V and T−(n−1)(U)∩V are both nonempty. Since either n or n−1 is even, it follows

that T 2 is transitive.

4. Hypercyclic composition operators

Historically the notion of transitivity was not foremost on the minds of operator theorists,

an understandable oversight since when dealing with linear operators one thinks about in-

variant subspaces, but not so much about invariant sets. Suppose X is a vector space, T a

linear transformation on X, and x a vector in X. Corresponding to the fact that orb (T, x)

is the smallest T -invariant set containing x, the linear span of this orbit is the smallest

T -invariant subspace containing x, and the closure of this linear span is the smallest closed

T -invariant subspace of X containing x. If span orb (T, x) is dense in X we say T is cyclic

and call x a cyclic vector for T .

Thus noncyclic vectors generate proper, closed, invariant subspaces, and if there are no

cyclic vectors then there are no closed invariant subspaces except for {0} and X. The

first example of a Banach space operator having only trivial closed invariant subspaces was

constructed by Enflo [16] in the 1980’s, and his work was later simplified by Read, who

eventually showed that it is even possible for an operator on a Banach space to have no

hypercyclic (i.e., transitive) vector [29], and hence no closed invariant subsets other than

the zero vector and the whole space. However none of the examples produced so far is set

in a Hilbert space, and for this special case it’s a famous open question to decide if every

bounded operator has a closed invariant subspace (or a closed invariant subset) = {0} or the

whole Hilbert space.
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So it makes sense to think of transitivity of a linear operator as a very strong form of

cyclicity. This is why operator theorists use the term ”hypercyclic” instead of “transitive.”

In this section we’ll find more examples to illustrate the point that hypercyclicity occurs

surprisingly often. Then we’ll explore a few of the ways in which hypercyclicity is a more

“robust” concept than cyclicity.

Composition operators

Recall that if G is an open subset of the plane, then the space H(G) of all complex-valued

functions holomorphic on G can be made into an F -space by a complete metric for which

a sequence {fn} in H(G) converges to f ∈ H(G) if and only if fn → f uniformly on

every compact subset of G. If G1 and G2 are open subsets of C and ϕ : G1 → G2 a

holomorphic map (not necessarily one to one or onto), then ϕ induces a composition operator

Cϕ : H(G2) → H(G1) defined by:

Cϕf = f ◦ ϕ (f ∈ H(G2)).

If G1, G2, and G3 are all open subsets of C with ϕ : G1 → G2 and ψ : G2 → G3 holomorphic

maps, then Cψ◦ϕ = Cϕ ◦ Cψ. We will focus primarily on holomorphic self-maps ϕ of plane

domains G, for which the composition formula above yields the iteration formula:

Cn
ϕ = Cϕn (n = 0, 1, 2, . . . ),

where, to avoid confusion with the n-fold pointwise product, ϕn denotes the composition

of ϕ with itself n times. This simple observation suggests that there should be intriguing

connections between the dynamical behavior of a composition operator Cϕ with that of

its inducing map ϕ. In particular, which composition operators are hypercyclic on H(G)?

In order the operators foremost, we restrict attention to the simplest setting: G = U,

the open unit disc. Note, however, that the Riemann Mapping Theorem will allow us to

transfer dynamical results about composition operators on H(U) to H(G) where G is any

simply connected plane domain = C. Indeed, Riemann’s theorem guarantees that there

is a univalent holomorphic map σ taking U onto G, hence the corresponding composition

operator Cσ is an isomorphism (one-to-one, onto, linear, bi-continuous) of H(G) onto H(U).

If ϕ : G → G is a holomorphic self-map of G, then ψ := σ ◦ ϕ ◦ σ−1 is a holomorphic

self-map of U that is (holomorphically) conjugate to ϕ. As for the corresponding operators,
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Cψ = (Cσ)−1CϕCσ, so Cψ : H(G) → H(G) is similar (i.e. linearly conjugate) to Cϕ : H(U) →
H(U).

Henceforth ϕ will always denote a holomorphic self-map of U, and we will abbreviate

“holomorphic and one-to-one” by “univalent”. Our first result severely limits the kinds of

maps that can produce hypercyclic behavior.

4.1. Proposition. If Cϕ is hypercyclic on H(U) then ϕ is univalent, and has no fixed point

in U.

Proof. Suppose ϕ has a fixed point p ∈ U. Then for f ∈ H(U), any function in orb (Cϕ, f)

must have value f(p) at p, hence the same must be true of any function in the closure of

this orbit. Thus no Cϕ-orbit is dense, hence Cϕ is not hypercyclic.

Suppose ϕ is not univalent, so there exist distinct points p, q ∈ U with ϕ(p) = ϕ(q). Then

if f ∈ H(U), each function in orb (Cϕ, f) takes the same value at p as at q, and again this

property gets passed on to functions in the closure of the orbit. Once again, no orbit can be

dense.

Note that this proof did not make any use of the special properties of the unit disc, so the

result is valid for any open set G.

In a sense to be made precise later, univalent self-maps of the unit disc are modelled by

linear fractional transformations, so we consider this class of maps first. We need to know

how these maps are classified in terms of their fixed points; then next few paragraphs review

this matter.

4.2. Linear fractional transformations. Recall that a linear fractional transformation

(henceforth, “a LFT”) is a mapping of the form

ϕ(z) =
az + b

cz + d
where ∆ := ad − bc = 0.(5)

The condition ∆ = 0 is necessary and sufficient for ϕ to be nonconstant, as you see when

c = 0 by checking the formula:

ϕ(z) − a

c
= −∆

c

1

cz + d
.

When c = 0 then the condition ∆ = 0 implies that neither d nor a is zero, hence ϕ is a

nonconstant affine mapping of C. We extend ϕ to a mapping of the extended complex plane
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Ĉ := C∪{∞} onto itself by defining ϕ(∞) = a/c and ϕ(−d/c) = ∞ if c = 0, and ϕ(∞) = ∞
if c = 0 (the affine case). If Ĉ is then identified with the Riemann Sphere Σ via stereographic

projection, then ϕ becomes a homeomorphism of Σ onto itself.

We employ the classification of LFT’s in terms of their fixed points. Each LFT has one

or two fixed points in Ĉ. If there’s just one fixed point the map is called parabolic. If a

parabolic map ϕ has its fixed point at ∞, then it’s easy to check that ϕ is a translation:

ϕ(z) = z + τ for some complex number τ . If, however, its fixed point is p ∈ C, then the

LFT α(z) = 1/(z − p) takes p to ∞, and so α ◦ ϕ ◦ α−1 is an LFT that fixes ∞, and so is

a translation. Thus: the parabolic LFT’s are precisely the ones that are (linear-fractionally)

conjugate to translations.

Note also that ∞ is an attractive fixed point for any translation, in the sense that the

sequence of iterates converges to ∞ uniformly on compact subsets of C. Thus if ϕ is any

parabolic LFT with fixed point p ∈ Ĉ, then the sequence of iterates {ϕn} converges to p

uniformly on compact subsets of Ĉ\{p}.
The other possibility is that ϕ has two distinct fixed points, say p and q. If these are 0

and ∞ then ϕ is a complex dilation: ϕ(z) = κz for some κ ∈ C. In the general case, one

fixes an LFT α that maps p to ∞ and q to zero, (e.g., α(z) = (z − p)/(z − q)), in which

case α−1 ◦ ϕ ◦ α fixes 0 and ∞, hence is a “κ-dilation,” as above. Now κ is not uniquely

determined: the maps z → κz and z → (1/κ)z are linear-fractionally conjugate to each

other. But this is as bad is things can get—if one conjugation of ϕ to an LFT with fixed

points 0 and ∞ gives you a multiplier of κ, then any other one will give either κ or 1/κ (see

[34, Chapter 0] for more details).

If κ is positive we say ϕ is hyperbolic, otherwise ϕ is loxodromic. Note that in the hyperbolic

or loxodromic cases one of the fixed points is attracting and the other repelling. The only

other possibility is |κ| = 1 in which case ϕ is called elliptic. Here the fixed points are neither

attracting nor repelling.

4.3. Linear fractional maps of the unit disc. How does our classification of linear frac-

tional maps fare if we additionally require that the unit disc be taken into itself? Let LFT(U)

denote this class of maps, and Aut (U) denote the subclass of “conformal automorphisms of



LINEAR DYNAMICS 25

U, i.e., linear fractional maps that take U onto itself. Since we aim to study hypercyclic

composition operators, we will focus on maps in LFT(U) that fix no point of U.

If ϕ ∈ LFT(U) is parabolic, then, because the fixed point is attractive, it must lie on the

unit circle. Upon conjugating by an appropriate rotation we may assume this fixed point is

1. Now the map z → (1 + z)/(1 − z) takes the unit disc onto the open right half-plane P,

and takes 1 to ∞, so this map conjugates ϕ to a translation of P into itself, i.e., a map of

the form w → w + τ where Re τ ≥ 0. Note that ϕ maps U onto itself if and only if Re τ = 0.

So parabolic maps are LFT-conjugate to translations of the right half-plane into itself, with

the automorphisms corresponding to the pure imaginary translations.

Similarly, if ϕ ∈ LFT(U) is hyperbolic and an automorphism, then both its fixed points

must lie on ∂U (as before, this is clear for the attractive one, and the repelling one is

attractive for ϕ−1, which is also an automorphism of U). In this case any LFT that sends

one of these fixed points to the origin and the other to ∞ conjugates ϕ to a positive dilation

(as we have seen), and takes the unit circle to a straight line, with U going to one of the

half-planes bounded by this line. Conjugation by an appropriate rotation takes this half-

plane to P, while leaving the dilation unchanged. Thus: every hyperbolic automorphism of

U is conjugate to a positive dilation of P.

Finally, if ϕ ∈ LFT(U) is hyperbolic, but not an automorphism, then its attractive fixed

point must still lie on ∂U, while the repulsive one is either in U (the case we’re not con-

sidering) or outside the closure of U. By conjugating with a rotation we may assume the

attractive fixed point is 1. Let q denote the repulsive one. Then the reflection q∗ of q in

the unit circle lies in U, so for an appropriate unimodular constant ω the U-automorphism

z → ω(p∗−z)/(1−p∗z) takes p∗ to zero while fixing 1. This map therefore takes p to ∞, and

therefore conjugates ϕ to a map Φ ∈ LFT(U) that fixes both 1 and ∞. Thus Φ(z) = az + b

where |a| + |b| ≤ 1 (since Φ(U) ⊂ U) and a + b = 1 (since Φ(1) = 1). It follows that

0 < a, b < 1, so Φ(z) = az + 1 − a for some 0 < a < 1. Note that Φ also belongs to LFT(U),

and that ϕ is LFT(U)-conjugate to Φ. Note further that Φ is a hyperbolic automorphism of

the half-plane H := {Re z < 1} and that its attractive fixed point is 1, the same as for ϕ.

With these results in hand we can classify those ϕ ∈ LFT(U) that induce hypercyclic

composition operators on H(U). The result is surprisingly unsubtle:
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4.4. Theorem. Every ϕ ∈ LFT(U) with no fixed point in U induces a hypercyclic composi-

tion operator on H(U).

Proof. The idea is to reduce everything, case by case, to Birkhoff’s translation theorem (2.5).

Fix ϕ ∈ LFT(U) with no fixed point in U. Then ϕ is either parabolic or hyperbolic.

(a) If ϕ is parabolic then we know that there is a LFT σ mapping U onto P such that

ϕ = σ−1 ◦ Tτ ◦ σ, where Tτ (w) = w + τ for w ∈ P, and τ is a complex number with non-

negative real part (so τ maps P into itself). As we saw at the beginning of this discussion,

the composition operator Cσ : H(P) → H(U) establishes a similarity (in the language of

previous sections: a linear conjugacy) between Cϕ on U and Cτ on P. So it is enough to

prove that Cτ is hypercyclic on H(P).

For this, note that the restriction map R : H(C) → H(P), defined by Rf := f |P for

f ∈ H(C) is a 1-1 continuous linear map from H(C) into H(P) (it can be viewed as the

composition operator induced by the identity map P → C). Moreover RCτ = CτR, where

in the first instance Cτ is acting on H(C) and in the second on H(P). Finally, the range of

R, namely H(P) is dense in H(C)—this is a consequence of Runge’s theorem which insures

that the polynomials are dense in both spaces (their density in H(C) is also obvious from the

convergence properties of power series). Thus Cτ on H(P) is semi-conjugate to Cτ on H(C),

and therefore the former operator inherits the hypercyclicity that Birkhoff’s Translation

Theorem provides for the latter one.

(b) Suppose ϕ is a hyperbolic automorphism. Then ϕ is LFT-conjugate to a dilation

∆r : P → P, defined by ∆R(w) = rw for some fixed 0 < r < 1. The principal branch Λ of the

logarithm takes P univalently onto the horizontal strip S = {W : |ImW | < π/2}, and the

corresponding composition operator effects a similarity between C∆ρ : H(P) → H(P) and

the translation operator TΛ(ρ), now acting on H(S). Just as we saw in the parabolic case,

the map that restricts an entire function to S is a continuous linear embedding of H(C) into

H(S) with dense range, and it reveals TΛ(ρ), acting on H(S) as a quasi-factor of the same

operator acting on H(C). Hence, as before, the translation operator on H(S) is hypercyclic,

and therefore so is its conjugate, Cϕ on H(U).

(c) Finally, suppose ϕ ∈ LFT(U) is hyperbolic, but not an automorphism. Then we have

seen that ϕ is LFT(U)-conjugate to the restriction to U of a hyperbolic automorphism Φ
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of the half-plane P = {Re z < 1}. So it is enough to show CΦ is hypercyclic on H(U). By

part (b) above, CΦ on H(P ) is conjugate to a composition operator induced by a hyperbolic

automorphism of U, and so is hypercyclic. The same observations we employed to prove

part (b) show that CΦ acting on H(U) is a quasi-factor of Cϕ acting on H(P ), so it too is

hypercyclic. This completes the proof of our theorem.

4.5. Chaos. In §1.16 we defined a map to be chaotic if it is transitive and has a dense set

of periodic points. Which of the linear maps we’ve proved transitive are chaotic?

Answer: All of them!

To see this, recall that the operators of differentiation and translation have the exponential

functions Eλ(z) = eλz as eigenvectors: DEλ = λEλ, and TaEλ = eaλEλ. Thus if λ is an

n-th root of unity, Eλ is a periodic point of D with period n. Any linear combination of

such periodic points is again periodic, with period equal to the least common multiple of

the original periods. Since the set of roots of unity is dense in the unit circle, the Density

Lemma shows that D has a dense set of periodic points. The same argument works for Ta,

except now you start with exponentials Eλ such that eaλ is a root of unity.

As for composition operators on H(U) induced by linear fractional maps, our proof that

they are all hypercyclic established that they are all quasi-factors of translation operators

acting on H(C), and therefore they inherit the chaotic behavior just proved for those oper-

ators.

Remark. You can think of conformal automorphisms with no fixed point in U as “non-

Euclidean translations” of the unit disc, with the attractive fixed point of ϕ (which necessarily

lies on ∂U) playing the role that ∞ plays in the Euclidean case. From this point of view the

fact that such maps induce hypercyclic composition operators on H(U) can be viewed as

the non-Euclidean analogue of Birkhoff’s Translation Theorem. Thus it is only fitting that

the non-Euclidean result, which was proved about sixty years ago by Seidel and Walsh [37],

actually follows from Birkhoff’s.

Beyond linear-fractional

Having disposed of the linear-fractional case, it’s time to ask whether or not a composition

operator induced by an arbitrary univalent self-map of U is hypercyclic or chaotic on H(U).
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Given the special nature of the proofs used in the linear-fractional setting, one might be

tempted to dismiss the question as too general to admit a definitive solution. However one

would be wrong; one of the landmark theorems of classical analytic function theory renders

the general problem an almost trivial consequence of our analysis of the linear-fractional

situation. This is:

4.6. The Linear Fractional Model Theorem. If ϕ is a univalent, holomorphic self-map

of U, then there exists a linear-fractional map ψ and a univalent map σ : U → C such that

σ ◦ ϕ = ψ ◦ σ. If ϕ has no fixed point in U then there are two possibilities:

(a) ψ can be taken to be dilation: ψ(z) = rz for some 0 < r < 1, and σ(U) ⊂ P, or

(b) ψ can be taken to be a translation: ψ(z) = z + τ for some τ in C.

There is actually much more to this remarkable theorem, and we’ll talk about this in a

moment. Note that the two cases distinguished above correspond precisely to what happens

for hyperbolic and parabolic maps in LFT(U), so in some sense these maps are “models” for

univalent self-maps of U that fix no point of U. Just how one distinguishes hyperbolic from

parabolic behavior for such general self-maps of U is a fascinating question, which we will

discuss shortly. But first note that theorem above makes short work of the hypercyclicity

problem for composition operators on H(U).

4.7. Theorem. Suppose ϕ is a univalent holomorphic self-map of U that has no fixed point

in U. Then Cϕ is chaotic on H(U).

Proof. The proof is the same one we used in the linear fractional case. In case ψ is a dilation,

so that σ(U) ⊂ P, a further mapping by the principal branch Λ of the logarithm replaces it

by a translation that takes G := Λ(σ(U)) into itself. Since G is simply connected, Runge’s

Theorem insures that the polynomials are dense in H(G), hence the entire functions are

dense in H(G). The rest follows just as before; our translation, and therefore Cϕ itself, is

exhibited as a quasi-factor of the same translation acting on H(C). In the parabolic case

the same proof works, except that now there is no need to call upon the logarithm.

Remarks. Recall that in the proof of Birkhoff’s Translation Theorem (Theorem 2.5) it was

the sufficient condition 2.1 that proved hypercyclicity for translation operators on H(C).

Thus by the first paragraph of §3: Every translation operator on H(C) is mixing. Since all
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the composition operators on H(U) that we studied above turned out to be quasi-factors

of such translations: Every composition induced on H(U) by a univalent, fixed-point-free

holomorphic self-map of U is mixing. So thus far, all our hypercyclic examples turn out to

be both chaotic and mixing. This is not the case in general. For example, in [8] examples

are given of hypercyclic translation operators T on some Hilbert spaces of entire functions

for which the spectrum of T is the single point {1}. Since periodic points of linear operators

are eigenvectors whose eigenvalue is a root of unity, these translation operators have no hope

of being chaotic. We will see in the next section that, thanks to an example of Salas, not

every hypercyclic operator is mixing.

Iteration and linear fractional models.

The Denjoy-Wolff Theorem. In a certain sense, every holomorphic self-map of U has an

attractive fixed point: if there is not one in U, then there is a unique boundary point that

serves the purpose. This is the content of the famous Denjoy-Wolff Theorem, which figures

importantly in many aspects of the study of composition operators. To simplify its statement

let’s adopt some terminology.

• A point p ∈ ∂U is a boundary fixed point of ϕ if ϕ has non-tangential limit p at p.

• The notation
κ→ indicates uniform convergence on compact subsets of U,

• If the derivative of ϕ has a nontangential limit at a boundary point p of U, and the non-

tangential limit of ϕ at p (whose existence follows easily from that of the derivative) has

modulus one, we say ϕ has an angular derivative at p, and denote the limit by ϕ′(p).

It may seem harsh to require that ϕ have non-tangential limit of modulus one at any

boundary point at which its angular derivative is to exist, but when dealing with composi-

tion operators, this is exactly what makes the concept meaningful (see [34, Chapter 4], for

example).

4.8. The Denjoy-Wolff Iteration Theorem. Suppose ϕ is an analytic self-map of U that

is not an elliptic automorphism.

(a) If ϕ has a fixed point p ∈ U, then ϕn
κ→ p and |ϕ′(p)| < 1.

(b) If ϕ has no fixed point in U, then there is a point p ∈ ∂U such that ϕn
κ→ p. Furthermore:

∗ p is a boundary fixed point of ϕ; and

∗ the angular derivative of ϕ exists at p, with 0 < ϕ′(p) ≤ 1.
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(c) Conversely, if ϕ has a boundary fixed point p at which ϕ′(p) ≤ 1 then ϕ has no fixed

points in U, and ϕn
κ→ p.

The fixed point p to which the iterates of ϕ converge is called the Denjoy-Wolff point of

ϕ. Part (a), which is an exercise based on the Schwarz Lemma, is not really part of the

original theorem; it is included here only for completeness. For a proof of Theorem 4.8, and

for further connections with the theory of composition operators, see [34, Chapter 5] or [13,

Section 2.4].

Classification of linear-fractional maps

The Denjoy-Wolff Theorem suggests a “linear-fractional-like” classification of arbitrary holo-

morphic self-maps of U. For motivation, let’s review how the linear-fractional self-maps of

U fall into distinct classes determined by their fixed-point properties (cf. [34]: Chapter 0).

These are:

• Maps with interior fixed point. We didn’t concentrate much on this case previously,

but by an argument based on the Schwarz Lemma, the interior fixed point is either

attractive, or the map is an elliptic automorphism. In both cases the map is conjugate

to a dilation z → λz for some complex number λ with 0 < |λ| ≤ 1.

• Hyperbolic maps with attractive fixed-point on ∂U. Upon chasing through the classifi-

cation of these maps as conjugate to dilations of the right half-plane, you see that they

are the self-maps of U having no fixed point in U, with derivative < 1 at the attractive

boundary fixed point.

• Parabolic maps. These have exactly one fixed point on the Riemann Sphere, necessarily

lying on ∂U. These maps are characterized by the fact that they have derivative = 1

at the fixed point.

The parabolic self-maps of U fall into two subclasses, which one distinguishes by examining

their the action of the corresponding maps on the right half-plane:

• The automorphisms. These are distinguished by the property that each orbit is sepa-

rated in the hyperbolic metric (meaning that, for each z ∈ U, the hyperbolic distance

between successive points of the orbit (ϕn(z)) stays bounded away from zero).
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• The nonautomorphisms. For these, the orbits are not hyperbolically separated, i.e., the

hyperbolic distance between successive orbit points tends to zero.

An elementary argument establishes these last two statements. The first just reflects the

fact that automorphisms are hyperbolic isometries. The second is best viewed in the context

of the right half-plane P. Suppose ψ is a parabolic self-map of U with fixed point at 1, and

let

T (w) =
w + 1

w − 1
, and Ψ := T ◦ ψ ◦ T−1.

Thus T is a linear-fractional mapping of U onto P that takes 1 to ∞, and one easily checks

that Ψ(w) = w + ψ′′(1). It follows that ψ′′(1) has non-negative real part (otherwise Ψ could

not map P into itself), and since ψ is not an automorphism of U, ψ′′(1) cannot be pure

imaginary. Now hyperbolic discs in P of fixed radius have this property: their Euclidean

size is proportional to the real part of their hyperbolic center (see section 4, or [35, Chapter

4] for the details). Our hypothesis on the translation distance ψ′′(1) insures that for each

w ∈ P the Ψ-orbit (Ψn(w)) has unbounded real part, but fixed Euclidean distance |ψ′′(1)|
between successive points. Thus for all sufficiently large n, the hyperbolic disc of radius ε

about Ψn(w) contains Ψn+1(w), hence the orbit of w is not separated.

Motivated by the classification of linear-fractional self-maps of U, and encouraged by

the restrictions the Denjoy-Wolff Theorem places on the values the derivative of an arbitrary

self-map can take at the Denjoy-Wolff point, we introduce the following general classification

scheme.

4.9. Classification of arbitrary self-maps. A holomorphic self-map ϕ of U is of:

• dilation type if it has a fixed point in U;

• hyperbolic type if it has no fixed point in U and has derivative < 1 at its Denjoy-Wolff

point;

• parabolic type if it has no fixed point in U and has derivative = 1 at its Denjoy-Wolff

point.

As in the linear-fractional case, the maps of parabolic type fall into two subclasses:

• Automorphic type: Those with an orbit that’s separated in the hyperbolic metric of U.

• Non-automorphic type: Those for which no orbit is hyperbolically separated.
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It can be shown that either all orbits are separated or none are separated (for a special case

of this, see [7, §4]). With these ideas in hand we can state the full-strength version of the:

4.10. Linear-Fractional Model Theorem. Suppose ϕ is a univalent holomorphic self-

map of U. Then there exists a holomorphic univalent map σ : U → C and a linear-fractional

map ψ such that ψ(U) ⊂ U, ψ(σ(U)) ⊂ σ(U)), and

σ ◦ ϕ = ψ ◦ σ.(6)

Furthermore:

(a) ψ, viewed as a self-map of U, has the same type as ϕ.

(b) If ϕ is of hyperbolic type then ψ may be taken to be a conformal automorphism of U.

(c) If ϕ is of either hyperbolic or parabolic-automorphic type, then σ may be taken to be a

self-map of U.

We call the pair (ψ, G) (or, equivalently, (ψ, σ)) a linear-fractional model for ϕ).

The fact that ψ maps the simply-connected domain G = σ(U) into itself follows immedi-

ately from the functional equation (6). This equation establishes a conjugacy between the

original map ϕ acting on the unit disc and the linear-fractional map ψ acting on G. Since

the action of ψ is known, the subtleties of ϕ lie encoded in the geometry of G.

History of the LFM Theorem. The Linear-Fractional Model Theorem is the work of a

number of authors, whose efforts stretch over nearly a century. The dilation case is due to

Koenigs ([23]: 1884). In this case equation (6) is Schröder’s equation: σ ◦ ϕ = λσ, where

(necessarily) λ = ϕ′(0) (see [35, Chapter 6] for more details). The hyperbolic case is due to

Valiron. If one replaces the unit disc by the right half-plane, sending the Denjoy-Wolff point

to ∞, then the resulting functional equation is again Schröder’s equation, but this time

λ is the reciprocal of the angular derivative of the original disc map at the Denjoy-Wolff

point ([38]: 1931). Finally the parabolic cases were established by Baker and Pommerenke

([28, 2]: 1979), and independently by Carl Cowen ([10]: 1981). Once again the situation is

best viewed in the right half-plane, rather than the unit disc, with the Denjoy-Wolff point

placed at ∞. Then equation (6) is just σ ◦ ϕ = σ + i in the automorphic case [28], and

σ ◦ ϕ = σ + 1 in the nonautomorphic case [2]. In [10] Cowen unified the proof of the Linear-

Fractional Model Theorem by means of a Riemann-surface construction that disposes of all
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the cases in one stroke (see also [13, Theorem 2.53]). He later introduced linear-fractional

models into the study of composition operators, using them to investigate spectra [11]. These

models have also figured prominently in previously-mentioned work on subnormality [12] and

compactness [36].

Distinguishing the parabolic models. The problem of distinguishing the two parabolic

cases of the Linear-Fractional Model Theorem is, in general, quite delicate. It’s shown

in [7, §4] that if ϕ has enough differentiability at the Denjoy-Wolff point, then cases are

distinguished by the second derivative of ϕ at that point. There is, however, some subtlety

here; it’s shown in [7, §6] that, for example, C2-differentiability at the Denjoy-Wolff point is

not enough to allow the second derivative to distinguish the two cases.

Necessity of Univalence. Although we have stated the Linear-Fractional Model Theorem

only for univalent maps ϕ, the result is true even if ϕ is not univalent, provided we are willing

to give up the conclusion of univalence for the intertwining map σ. (In case ϕ is of dilation

type, with fixed point p ∈ U, we must also assume that ϕ′(p) = 0.)

5. Why hypercyclicity is interesting

We’ve observed hypercyclic phenomena in some interesting classes of operators—weighted

shifts and composition operators. There is much more to say about composition operators

(see §6), but right now I’d like to shift gears and discuss some of the functional analytic

aspects of hypercyclicity.

Suppose, for example, that you are an operator theorist interested in invariant subspaces.

Then you are interested in cyclicity, so why bother with hypercyclicity, except that it is a

formally stronger concept than the one you want to study? One answer is that if an operator

is hypercyclic then it will, in general, have a far greater proliferation of cyclic vectors than

one that is merely cyclic. Indeed, we have already noted that for a hypercyclic operator the

collection of hypercyclic vectors is a dense Gδ set. By contrast, the cyclic vectors for a cyclic

operator need not be dense.

Here is an example. On H(U) let Mz denote the operator of “multiplication by the

independent variable z”, i.e.,

Mzf(z) = zf(z) (f ∈ H(U) and z ∈ U)
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(admittedly, there is some abuse of notation here).

5.1. Proposition. f ∈ H(U) is a cyclic vector for Mz if and only if f has no zero in U.

Before proving this result, lets note that by Hurwitz’s Theorem (an immediate consequence

of the argument principle) any limit in H(U) of a sequence of never-vanishing holomorphic

functions is either identically zero or never-vanishing itself. Thus Proposition 5.1 has this

consequence:

5.2. Corollary. The operator Mz on H(U) is cyclic, but its collection of cyclic vectors is

not dense.

Proof of Proposition 5.1. If f vanishes at some point of U then so does everything in

orb (Mz, f), hence so does anything in the closure of this orbit. So the orbit-closure can’t be

dense, i.e., f can’t be cyclic (note that this argument works for any plane domain).

Conversely, if f vanishes nowhere on U then 1/f ∈ H(U), and so by power-series conver-

gence, there is a sequence of polynomials {pn} that converges in H(U) (i.e., uniformly on com-

pact subsets of U) to 1/f . Thus the sequence {pnf}, which is contained in span {orb (Mz, f)},
converges in H(U) to 1, and so 1 belongs to the closure of the linear span of orb (Mz, f).

Now the aforementioned linear span is Mz-invariant, hence so is its closure, and so every

polynomial belongs to this closure. In other words, the linear span of orb (Mz, f) is dense in

H(U), i.e., f is cyclic for Mz.

Note that the argument of the last paragraph works for any simply connected plane

domain—all that’s needed is the polynomials approximating 1/f , and in this generality

the power series convergence argument gives way to Runge’s theorem. In fact this character-

ization of cyclic vectors holds in any plane domain, but now one needs to use the full strength

of the fact that H(G) is a topological algebra with identity. I leave this as an exercise for the

interested reader, noting only that the key to success is the fact that a proper closed ideal

of H(G) is maximal if and only if it consists of all functions that vanish at a pre-assigned

point of G [24, Proposition 13.9, page 110].

Recall that all of our hypercyclic examples so far have been chaotic, and therefore, by

Theorem 1.15 these maps have sensitive dependence on initial conditions. In fact, for linear

operators, hypercyclicity itself implies sensitive dependence.
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5.3. Proposition. Every hypercyclic operator on an F -space has sensitive dependence on

initial conditions.

Proof. Suppose T is hypercyclic on X and let HC(T ) denote the collection of hypercyclic

vectors for T . Fix x ∈ X and note that HC(T )+x is a dense Gδ subset of X (because HC(T )

has this property, and translation by x is a homeomorphism of X). Thus any neighborhood

of x contains a point y of HC(T ) + x. Since x − y is a hypercyclic vector for T , the orbit of

x exhibits the appropriate divergence from the orbit of y.

Exercise. If a continuous linear operator on an F -space X is hypercyclic, then every vector

in X is a sum of two hypercyclic vectors.

So far it has been the sufficient condition 2.1 that has yielded hypercyclicity in all our

examples. In the first two paragraphs of §3 we noted two ways in which this condition

is more powerful than first advertised: (a) When properly rephrased it works for continu-

ous homomorphisms of complete, metrizable, topological groups; (b) It provides, not just

hypercyclicity, but a stronger property: mixing.

Question. Does every mixing operator on an F-space obey the hypotheses of Theorem 2.1?

I don’t know the answer to this one, but by the end of this section I hope you’ll agree

that the question is a reasonable one. There is a corresponding question for hypercyclicity

whose formulation depends on the observation that the proof of Theorem 2.1 (our sufficient

condition for hypercyclicity ) works just as well under much weakened hypotheses. Here is

the theorem that this proof actually gives:

5.4. The Hypercyclicity Criterion. Suppose T is a continuous linear transformation an

F-space X, and that for some subsequence of positive integers n(k) ↗ ∞:

(a) There exists a dense subset Y of X on which {T n(k)} converges to zero pointwise.

(b) There exists a dense subset Z of X and a sequence {Sk} of mappings S : Z → X (not

necessarily either continuous or linear) such that:

(i) {T n(k)Sk} converges pointwise on Z to the identity map on Z,

(ii) {Sk} converges to zero pointwise on Z.

Then T is hypercyclic on X.
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Note that if T satisfies the hypercyclicity criterion then so does T ⊕ T , i.e., in the termi-

nology of §3.7, T is weakly mixing. It is an open question whether or not every hypercyclic

operator on an F -space satisfies the hypotheses of the hypercyclicity criterion. However in

this direction we have a striking recent result of Bès and Peris [4]:

5.5. Theorem. Suppose T is a continuous linear transformation of a separable F -space X.

Then T is weakly mixing on X (i.e., T ⊕T is hypercyclic on X ⊕X) if and only if T satisfies

the hypotheses of the hypercyclicity criterion.

Proof. It’s easy to see that if T satisfies the hypotheses of the hypercyclicity criterion on X,

then the same is true of T ⊕ T on X ⊕ X, hence T is weakly mixing. It’s the converse that

requires some work!

Suppose, then, that T ⊕ T is hypercyclic on X ⊕ X. Fix a vector (x, y) ∈ X that is

hypercyclic for T ⊕ T . We will verify the hypotheses of the hypercyclicity criterion for T

with Y = Z = orb (T, x) (dense in X because x is a hypercyclic vector for T ); the trick is to

find the subsequence {n(k)} and the approximate right-inverses Sk.

Since T is hypercyclic, its range is dense in X, hence the range of TN is also dense for

every positive integer N . From this it is easy to check that for each N the vector (x, TNy)

is hypercyclic for T ⊕ T . In particular, for each zero-neighborhood U in X there is a vector

u ∈ U such that (x, u) is hypercyclic for T ⊕ T .

Let’s denote the distance from a vector v ∈ X to the origin by ‖v‖ (this is just for

notational convenience: unless X is a Banach space, ‖ · ‖ will generally not be a norm).

By the work of the last paragraph, we can inductively choose a strictly increasing sequence

{n(k)} of positive integers and a sequence {uk} of vectors in X so that:

‖uk‖, ‖T n(k)x‖, and ‖T n(k)uk − x‖ are all <
1

k
∀ k ∈ N.(7)

From the second of these conditions, T n(k) → 0 pointwise on Y . We define the approximate

right inverses from Z = Y → X by setting

Sk(T
nx) = T nuk (k = 0, 1, 2, . . . ).

The definition is well-made because x is a hypercyclic vector for T , hence the points in

its orbit must be distinct (if two points of an orbit coincide, the entire orbit is eventually
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periodic, hence finite). Because ‖uk‖ → 0 it follows that Sk → 0 pointwise on Y . Finally,

for each k, n ∈ N:

T n(k)Sk(T
nx) = T n(k)+nuk = T nT n(k)uk → T nx as k → ∞,

where the convergence on the right is provided by the last inequality of (7) above. Thus

T n(k)Sk → I pointwise on Y , as desired.

This proof has a curious consequence: If an operator on an F-space satisfies the hypotheses

of the hypercyclicity criterion, then it satisfies those hypotheses with Y = Z.

5.6. Hypercyclicity vs. mixing. At this point it’s appropriate to mention a striking

example, due to Hector Salas [33] of a bilateral weighted shift T on /2(Z) which, along with

its adjoint, is hypercyclic. By way of contrast, note that in the Rolewicz example λB where B

is the backward shift on /2 and λ a scalar of modulus > 1, the (Banach space) adjoint can be

identified with λ−1S, where S is the forward shift, so T ∗ is, in this case, a strict contraction,

hence not hypercyclic. This example, and others like it, made the Salas example seem quite

surprising.

Furthermore, in Salas’s example, the weighting coefficients of the shift T are real, so with

respect to the standard orthonormal basis for /2(Z) the matrices for both T and T ∗ have

only real entries. It follows from this and an intriguing unpublished result of James Deddens

(see below) that T ⊕ T ∗ is not even cyclic! Now we saw in Proposition 3.6 that any direct

sum of mixing transformations is again mixing, so in the Salas example, either T or T ∗ is

not mixing. In particular:

5.7. Theorem. There exist hypercyclic operators on Hilbert space that are not mixing, hence

do not satisfy the hypotheses of our first sufficient condition, Theorem 2.1.

Because the result of Deddens is striking, useful, easily proved, and unpublished, I’d like

to end this section by giving it a proper statement and proof.

5.8. Deddens’s Theorem (1982). Suppose T is a bounded linear operator on a separable

Hilbert space H whose matrix, with respect to some orthonormal basis of H, consists entirely

of real entries. Then T ⊕ T ∗ is not cyclic.
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Proof. Suppose f, g ∈ H. We’ll prove the theorem by writing down a vector in H ⊕ H
that is orthogonal to the T ⊕ T ∗-orbit of (f, g). Let {en}∞0 be the promised orthonormal

basis for H relative to which all the matrix entries 〈Ten, em〉 are real. Now f and g have

representations f =
∑

anen and g =
∑

bnen relative to this basis, with square-summable

coefficient sequences {an} and {bn} respectively. Therefore there exist vectors f and g in H
defined by f =

∑
anen, and g =

∑
bnen.

I claim that (−g, f) is orthogonal in H ⊕ H to the orbit of (f, g). Indeed, for each non-

negative integer n:

〈(T ⊕ T ∗)n(f, g), (−g, f)〉 = 〈(T nf, T ∗ng), (−g, f)〉

:= −〈T nf, g〉 + 〈T ∗n, f〉 = 〈−T nf, g〉 + 〈g, T nf〉

= 〈−T nf, g〉 + 〈T nf, g〉 = 〈−T nf, g〉 + 〈T nf, g〉

= 0,

where the next-to-last equality we finally use the fact that all the matrix coefficients 〈Ten, em〉
are real.

6. Composition operators on H2

So far we’ve considered composition operators only on the full space H(U) of functions

holomorphic on the unit disc. Now I’d like to shift the scene to a more subtle setting: the

Hardy space H2, which is a subspace of H(U) that, in its natural norm, is a Hilbert space. H2

is arguably the best place to study the interaction between the theories of linear operators

and analytic functions. The purpose of this section is to prepare the way for the next one,

in which we’ll study hypercyclicity for linear-fractionally induced composition operators on

H2, discovering in the process some interesting contrasts with the H(U) case.

In this section I’ll develop some basic properties of H2 and prove that that every compo-

sition operator restricts to a continuous mapping of H2 into itself. If you’ve already had an

introduction to Hardy spaces and composition operators on them, skip this section. What’s

here comes almost verbatim from [34, Chapter 1].

6.1. The Hardy space H2. For f ∈ H(U) and every non-negative integer n, let f̂(n) =

f (n)(0)/n!. Then the series
∑∞

n=0 f̂(n)zn is the Taylor series of f with center at the origin:
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it converges uniformly on compact subsets of U to f . The Hardy space H2 is the collection

of functions f ∈ H(U) with
∑∞

n=0 |f̂(n)|2 < ∞.

We equip H2 with the norm that is naturally associated with its definition:

‖f‖ =

( ∞∑
n=0

|f̂(n)|2
)1/2

,(8)

and note that this norm arises from the natural inner product

〈f, g〉 :=
∞∑

n=0

f̂(n)ĝ(n) (f, g ∈ H2).(9)

Let T be the “Taylor transformation” from H2 into the sequence space /2 defined by

Tf = f̂ . The mapping T is clearly linear, and from the definition of the H2 norm, it is an

isometry: ‖Tf‖ = ‖f‖ for every f ∈ H2.

6.2. Proposition. T maps H2 onto /2. In particular, H2 is a Hilbert space in the inner

product (9).

Proof. Because square-summable sequences are bounded, a simple geometric series estimate

shows that if the complex sequence Ea = {an}∞0 lies in /2, then the associated power series∑∞
n=0 anz

n converges uniformly on compact subsets of U to an analytic function f . By

the uniqueness of power series representations, an = f̂(n) for every n, hence Tf = Ea, so

T (H2) = /2.

Thus H2 is the sequence space /2, disguised as a space of analytic functions. Note in

particular that:

6.3. Corollary. The sequence of monomials {zn : n = 0, 1, 2, . . . } is an orthonormal basis

for H2.

Some properties of the functions in H2 can be easily discerned from the definition of the

space. Here is one.

6.4. Growth Estimate. For every f ∈ H2 and z ∈ U, |f(z)| ≤ ‖f‖(1 − |z|2)−1/2.
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Proof. Use successively the triangle inequality and the Cauchy-Schwarz Inequality on the

power series representation for f :

|f(z)| = |
∞∑

n=0

f̂(n)zn| ≤
∞∑

n=0

|f̂(n)| |z|n

≤
( ∞∑

n=0

|f̂(n)|2
)1/2 ( ∞∑

n=0

|z|2n

)1/2

= ‖f‖ 1

(1 − |z|2)1/2
.

The exercise below shows that the exponent in the Growth Estimate is best possible.

Exercise. For α real let fα(z) = (1 − z)−α. Show that fα ∈ H2 if and only if α < 1/2.

Suggestion: Use the Binomial theorem and Stirling’s formula to show that f̂α(n) ≈ nα−1.

6.5. Corollary. Convergence in H2 implies uniform convergence on compact subsets of U.

Proof. Suppose {fn} is a sequence of functions in H2, f is a function in H2, and ‖fn−f‖ → 0.

Our goal is to show that fn → f uniformly on compact subsets of U.

For this, suppose K is a compact subset of U. Let r = max{|z| : z ∈ K}. Then for z ∈ K,

the Growth Estimate yields:

|fn(z) − f(z)| ≤ ‖fn − f‖
(1 − |z|2)1/2

≤ ‖fn − f‖
(1 − |r|2)1/2

,

which shows that as n → ∞,

max
z∈K

|fn(z) − f(z)| ≤ ‖fn − f‖
(1 − |r|2)1/2

→ 0,

i.e. that fn → f uniformly on K.

However some properties of H2 do not follow easily from the definition. For example, is

every bounded analytic function in H2? In order to answer this question reasonably, we need

a different description of the norm.
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6.6. Proposition. A function f ∈ H(U) belongs to H2 if and only if

lim
r→1−

1

2π

∫ π

−π

|f(reit)|2 d θ < ∞.

When this happens, the limit of integrals on the left is ‖f‖2.

Proof. The functions einθ form an orthonormal set in the space L2([0, 2π]), hence for each

0 ≤ r < 1 the integral on the right is
∑∞

n=0 |f̂(n)|r2n. The result now follows from the

monotone convergence theorem.

It is now an easy matter to show that every bounded function in H(U) belongs to H2. In

fact, we can do better. Let H∞ denote the collection of bounded analytic functions on U,

and for b ∈ H∞ let ‖b‖∞ = sup{|b(z)| : z ∈ U}. The integral representation given above for

the H2 norm shows immediately:

6.7. Proposition. If b ∈ H∞ and f ∈ H2 then bf ∈ H2 and ‖bf‖ ≤ ‖b‖∞‖f‖.

In particular, upon taking f ≡ 1 we obtain:

Corollary. If b ∈ H∞ then b ∈ H2 with ‖b‖ ≤ ‖b‖∞.

6.8. Multiplication operators act on H2. Proposition 6.7 reveals an interesting class

of linear transformations on H2. For b ∈ H∞ let Mb denote the operator of (pointwise)

multiplication by b. That is, Mbf = bf . Clearly Mb, when viewed as a mapping on all of

H(U), is linear (note that for this we don’t need b to be bounded). According to Proposition

6.7, Mb maps H2 into itself, with ‖Mbf‖ ≤ ‖b‖∞‖f‖ for each f ∈ H2, hence Mb is a bounded

linear operator on H2 with norm ≤ ‖b‖∞. We call Mb the multiplication operator induced

by b. The most famous of these is the one induced by the identity map b(z) ≡ z. If we

identify H2 with the sequence space /2 this mapping of “multiplication by z” gets revealed

as the forward shift on /2, which appeared in previous sections as the right inverse of the

backward shift.

Do Composition operators act on H2?

This is not a trivial question. Suppose you have f ∈ H2 and want to determine if Cϕf ∈ H2.

Using the definition of H2 we would substitute ϕ(z) for z in the power series expansion of

f , expand the various powers of the power series of ϕ by the binomial theorem, and regroup

the resulting double series to identify the new powers of z, which are now complicated
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numerical series involving the coefficients of f and those of the powers of ϕ. Done this way,

there seems to be no reason why Cϕf should be in H2. A calculation using the alternate

characterization of H2 provided by Proposition 6.6 fares just as badly, since it raises the

specter of an unpleasant, and possibly non-univalent, change of variable in an integral.

After these pessimistic observations, it is remarkable that composition operators do pre-

serve the space H2, and do so continuously. The key to this is the following result, proved

by Littlewood and published in 1925.

6.9. Littlewood’s Subordination Theorem. Suppose ϕ is a holomorphic self-map of U

and ϕ(0) = 0. Then Cϕ is a contraction mapping on H2.

Proof. The proof is helped significantly by the backward shift operator B, defined on H2 by

Bf(z) =
∞∑

n=0

f̂(n + 1)zn (f ∈ H2).

The name comes from the fact that B shifts the power series coefficients of f one unit to the

left, and drops off the constant term. Clearly, ‖Bf‖ ≤ ‖f‖ for each f ∈ H2, and one might

expect this fact to play an important role in the proof, but surprisingly it does not! Only

the following two identities are needed, and they hold for any f ∈ H(U):

f(z) = f(0) + zBf(z) (z ∈ U),(10)

Bnf(0) = f̂(n) (n = 0, 1, 2, . . . ).(11)

To begin the proof, suppose first that f is a (holomorphic) polynomial. Then f ◦ϕ is bounded

on U, so by the work of the last section there is no doubt that it lies in H2; the real issue is

its norm.

We begin the norm estimate by substituting ϕ(z) for z in (10) to obtain

f(ϕ(z)) = f(0) + ϕ(z)(Bf)(ϕ(z)) (z ∈ U).

Let us rewrite this equation in the language of composition and multiplication operators:

Cϕf = f(0) + MϕCϕBf .(12)

At this point, the assumption ϕ(0) = 0 makes its first (and only) appearance. It asserts that

all the terms of the power series for ϕ have a common factor of z, hence the same is true
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for the second term on the right side of equation (12), rendering it orthogonal in H2 to the

constant function f(0). Thus,

‖Cϕf‖2 = |f(0)|2 + ‖MϕCϕBf‖2 ≤ |f(0)|2 + ‖CϕBf)‖2,(13)

where the last inequality follows from Proposition 6.7 above (since ‖ϕ‖∞ ≤ 1). Now succes-

sively substitute Bf, B2f, · · · for f in (13) to obtain:

‖CϕBf‖2 ≤ |Bf(0)|2 + ‖CϕB2f‖2

‖CϕB2f‖2 ≤ |B2f(0)|2 + ‖CϕB3f‖2

...
...

‖CϕBnf‖2 ≤ |Bnf(0)|2 + ‖CϕBn+1f‖2.

Putting all these inequalities together, we get

‖Cϕf‖2 ≤
n∑

k=0

|(Bkf)(0)|2 + ‖CϕBn+1f‖2

for each non-negative integer n.

Now recall that f is a polynomial. If we choose n be the degree of f , then Bn+1f = 0,

and this reduces the last inequality to

‖Cϕf‖2 ≤
n∑

k=0

|(Bkf)(0)|2 =
n∑

k=0

|f̂(k)|2 = ‖f‖2,

where the middle line comes from property (11) of the backward shift. This shows that Cϕ

is an H2-norm contraction, at least on the vector space of holomorphic polynomials.

To finish the proof, suppose f ∈ H2 is not a polynomial. Let fn(z) =
∑n

k=0 f̂(k)zk, the

n-th partial sum of the Taylor series of f . Then fn → f in the norm of H2, so by Corollary

6.5 fn → f uniformly on compact subsets of U, hence fn ◦ϕ → f ◦ϕ in the same manner. It

is clear that ‖fn‖ ≤ ‖f‖, and we have just shown that ‖fn ◦ ϕ‖ ≤ ‖fn‖. Thus for each fixed

0 < r < 1 we have

1

2π

∫ π

−π

|fn(ϕ(reit))|2 d θ = lim
n→∞

1

2π

∫ π

−π

|fn(ϕ(reit))|2 d θ

≤ lim sup
n→∞

‖fn ◦ ϕ‖ ≤ lim sup
n→∞

‖fn‖ ≤ ‖f‖.

To complete the proof, let r tend to 1, and appeal one last time to Proposition 6.6.
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To prove that Cϕ is bounded even when ϕ does not fix the origin, we need to study conformal

automorphisms of U from a different point of view. For each point p ∈ U, define the

holomorphic function αp on U by:

αp(z) :=
p − z

1 − pz
.

The map so defined belongs to Aut (U), interchanges p with the origin, and is its own

inverse (see, for example, [32], §12.2–12.6, pp. 254–256). Write p = ϕ(0). Then the holomor-

phic function ψ = αp ◦ϕ takes U into itself and fixes the origin. By the self-inverse property

of αp we have ϕ = αp ◦ ψ, and this translates into the operator equation Cϕ = CψCαp . We

have just seen that Cψ maps H2 into itself. Thus, the fact that Cϕ does the same will follow

from the first sentence of the next result.

6.10. Lemma. For each p ∈ U, Cαp is a bounded linear operator on H2, with

‖Cαp‖ ≤
(

1 + |p|
1 − |p|

) 1
2

.

Proof. Suppose first that f is holomorphic in a neighborhood of the closed unit disc, say in

RU = {|z| < R} for some R > 1. Then the limit in formula (6.6) can be passed inside the

integral sign, with the result that

‖f‖2 =
1

2π

∫ π

−π

|f(eit)|2d θ.(14)

This opens the door to a simple change of variable in which the self-inverse property of αp

figures prominently:

‖f ◦ αp‖2 =
1

2π

∫ π

−π

|f(αp(e
it))|2d θ

=
1

2π

∫ π

−π

|f(eit)|2|α′
p(e

it)|dt

=
1

2π

∫ π

−π

|f(eit)|2 1 − |p|2
|1 − p̄eit|2dt

≤ 1 − |p|2
(1 − |p|)2

·
(

1

2π

∫ π

−π

|f(eit)|2dt

)

=
1 + |p|
1 − |p| · ‖f‖2.
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Thus the desired inequality holds for all functions holomorphic in RU; in particular it holds

for polynomials. It remains only to transfer the result to the rest of H2, and for this we simply

repeat the argument used to finish the proof of Littlewood’s Subordination Theorem.

At this point we have assembled everything we need to show that composition operators

map H2 into itself.

6.11. Theorem. Suppose ϕ is a holomorphic self-map of U. Then Cϕ is a bounded linear

operator on H2, and

‖Cϕ‖ ≤
√

1 + |ϕ(0)|
1 − |ϕ(0)| .

Proof. As outlined earlier, we have Cϕ = CψCαp , where p = ϕ(0), and ψ fixes the origin.

Since each of the operators on the right-hand side of this equation sends H2 into itself, the

same is true of Cϕ.

As for the inequality, this follows from Lemmas 6.9 and 6.10. I leave the details to you.

7. Hypercyclic composition operators on H2

Now it’s time to consider hypercyclicity for composition operators on H2. The argument

that showed such operators can only be induced by fixed-point-free univalent (holomorphic)

self-maps of U works again to give the same result for H2. So we begin, as before, with

linear fractional maps, once again looking initially at the automorphisms. In dealing with

composition operators on H(U) we could cavalierly map the unit disc to other domains,

ultimately identifying our operators as quasi-factors of translation operators on H(C). this

doesn’t work in H2, where the situation is a lot more rigid, so we have to take our stand

pretty much in the unit disc. The material of this section follows very closely that of [34,

§7.1, §7.2].

7.1. Theorem. Suppose ϕ ∈ Aut (U) fixes no point of U. Then Cϕ is hypercyclic on H2.

Proof. As discussed in §4.3, the automorphism ϕ, being non-elliptic, has a unique attractive

fixed point α ∈ ∂U. If there is another fixed point β, then this too must lie on the unit circle

since it is the attractive fixed point for the inverse of ϕ, which is again an automorphism of
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U. Suppose first that we are dealing with the case of two fixed points. We will produce the

cast of characters required for the hypothesis of the Theorem 2.1.

Let Y denote the set of functions that are continuous on the closed unit disc, analytic on

the interior, and which vanish at α. We claim that Cn
ϕ → 0 on Y . For this, note that for

every ζ ∈ ∂U\{β} we have ϕn(ζ) → α, hence if f ∈ Y then f(ϕn(ζ)) → f(α) = 0. Since f

and ϕn are continuous, we can use boundary integral representation (14) of the H2 norm,

the Lebesgue Bounded Convergence Theorem, yields the desired result:

‖Cn
ϕf‖2 =

1

2π

∫ π

−π

|f(ϕn(eit))|2d θ → 0 (n → ∞).

There are several ways to see that Y is dense in H2. Here is one based on elementary

Hilbert space theory. Suppose f ∈ H2 is orthogonal to Y . Then for every non-negative

integer n, the polynomial zn+1 − αzn belongs to Y , so it is orthogonal to f :

0 =< f, zn+1 − αzn >= f̂(n + 1) − ᾱf̂(n).

It follows upon iterating this identity that f̂(n) = ᾱnf̂(0) for each n. Since α has modulus

one, all the Taylor coefficients of f have the same modulus, and since f ∈ H2, these coef-

ficients must all be zero. Thus the only H2 function orthogonal to Y is the zero function.

Since Y is a linear subspace of H2, it must therefore be dense.

We note for further reference that the only property required here of α is that it lie outside

of U; the argument actually shows:

If α /∈ U then the set of polynomials that vanish at α is dense in H2.

To finish the proof let S = C−1
ϕ = Cϕ−1 . As noted above, ϕ−1 is also an automorphism of

the disc, with attracting fixed point β (the repulsive fixed point of ϕ). So if we take Z to be

the set of continuous functions on the disc that are holomorphic in the interior and vanish at

β, then S maps Z into itself, and the previous arguments apply to show that Z is dense and

Sn → 0 on Z. The hypotheses of Theorem 2.1 are therefore satisfied, so Cϕ is hypercyclic,

indeed, even mixing, on H2.

The case where ϕ has just one fixed point is even easier; take Y as before, and set Z = Y .

I leave the details to you.

7.2. The Linear Fractional Hypercyclicity Theorem. Suppose that ϕ ∈ LFT(U) has

no fixed point in U. Then:



LINEAR DYNAMICS 47

(a) Cϕ is hypercyclic on H2 unless ϕ is a parabolic non-automorphism.

(b) If ϕ is a parabolic non-automorphism, then Cϕ fails to be hypercyclic in a very strong

sense: Only constant functions can be limit points of Cϕ orbits.

Proof of (a). We have already proved the result for automorphisms, so it remains to do it

for hyperbolic non-automorphisms. Let ϕ be such a map, and suppose α and β are its fixed

points, with α the attractive one. As before we seek to find the dense sets Y and Z, and the

map S that will satisfy the hypotheses of Theorem 2.1.

The space Y is exactly the one that worked in the automorphic hypercyclicity result, and

it works again with no change in the argument. It is the space Z that requires some care.

Suppose first that the repulsive fixed point β lies on the line through the origin and α,

but is on the other side of the origin from α. Let ∆ be the disc whose boundary is the circle

perpendicular to this line that passes through α and β, so now U is inside ∆ and ∂U is

tangent to ∂∆ at α.

Since ϕ fixes α and β, and preserves angles, it maps the boundary of ∆ onto itself, and

therefore takes ∆ onto either itself or the exterior of ∂∆. But ϕ takes U into itself, so the

latter possibility is ruled out. Therefore ϕ is a conformal automorphism of ∆.

Let Z be the collection of functions that are continuous on ∆, analytic on ∆, and which

vanish at β. As we noted above, the fact that β lies outside U insures that the polynomials

that vanish at β form a dense subset of H2, thus Z is dense. Define the map S : Z → Z by

Sf(z) = f(ϕ−1(z)) (z ∈ U).

The fact that ϕ−1(z) is not always in U is of no importance here, nor is the fact that S

is neither defined nor bounded on H2. What is important is that ϕ−1(∆) ⊂ ∆, that S is

defined on Z, and that CϕS is the identity on Z, all of which is obvious. In addition, the

fact that ϕ−n(ζ) → β for each ζ ∈ ∂U yields, precisely as in the last section, that Sn → 0 on

Y . Thus the hypotheses of the Theorem 2.1 are again satisfied, so Cϕ is hypercyclic on H2.

If the repulsive fixed point β is not in the required position (it could even be at ∞ for

example), then there is a conformal automorphism γα of U that fixes α and takes β to the

desired position. (This is a simple exercise: instead of the unit disc, work in the right half-

plane, with ∞ in place of α. An appropriate affine map gives the desired automorphism of



48 JOEL H. SHAPIRO

P). Then ϕ = γα◦ψ◦γ−1
α , where ψ is a linear fractional self-map of U that has its fixed points

arranged properly, so Cψ is hypercyclic, and Cϕ is similar to Cψ, hence also hypercyclic.

Remarks. Once it has been observed that ϕ is an automorphism of the larger disc ∆, a more

elegant line of argument suggests itself. Define the space H2(∆) in some obvious way, show

that it is a dense subspace of H2 and has a stronger topology. Then use the Automorphism

Theorem to conclude that Cϕ is hypercyclic on H2(∆), and transfer this hypercyclicity to

H2 by noting that Cϕ on H2 is a quasi-factor of Cϕ on H2(∆).

It is also interesting to investigate why the proof given above for hyperbolic non-automorphisms

does not work for parabolic ones. The point is that in the hyperbolic case the big disc ∆ is

precisely the union of the successive inverse images of U under ϕ:

∆ =
⋃
n

ϕ−n(U).

If, on the other hand, ϕ is a parabolic non-automorphism, then this union turns out to

be Ĉ\{α} (as is easily seen by representing the map as a translation of the right half-plane

strictly into itself), hence the set Z defined in the proof above contains only the zero function.

Proof of (b). Now we assume that ϕ ∈ LFT(U) is a parabolic non-automorphism, so it has

only one fixed point in Ĉ, and this lies on ∂U. Without loss of generality we may take this

fixed point to be +1 (otherwise conjugate ϕ by an appropriate rotation to produce a similar

composition operator induced by a parabolic automorphism with fixed point at +1).

We return to an earlier idea, seeking to understand parabolic self-maps of U by mapping

the unit disc to the right half-plane, where the parabolic map becomes a translation. Since

our particular map fixes the point 1, we use the transformation w = (1 + z)/(1 − z), which

takes our the original map ϕ to an LFT Φ that maps P into itself and fixes only the point at

∞. Thus Φ is translation of the right half-plane, Φ(w) = w + a where necessarily Re a > 0

(Re a is ≥ 0 because Φ(P) ⊂ P, and > 0 because Φ is not an automorphism of P). Similarly,

the n-th iterate ϕn of ϕ gets transformed into “translation by na:” Φn(w) = w + na.

Our proof will depend on knowing how quickly the ϕ-orbits of points in U get close to

each other, and to the attractive fixed point +1. Suppose z in U and w is the corresponding

point in P, so

w =
z + 1

z − 1
and z =

w − 1

w + 1
.
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Then:

1 − z =
2

w + 1
and 1 − |z|2 =

4Rew

|w + 1|2
It follows, then, that if z ∈ U, w is the point of P corresponding to ϕ(z), and w0 that of

ϕ(0), then w + na corresponds to ϕn(z) and w0 + na to ϕn(0). Thus:

1 − |ϕn(z)|2 =
4(Rew + nRe a)

|w + na + 1|2
and

ϕn(z) − ϕn(0) =
2(w0 − w)

(w0 + na + 1)(w + na + 1)
,

from which follows:

lim
n→∞

n(1 − |ϕn(z)|2) = c1 and lim
n→∞

n2|ϕn(z) − ϕn(z0)| = c2,(15)

where c1 and c2 are non-zero constants that depend on z and a.

Now fix f ∈ H2. Our goal is to show that if the orbit of f under Cϕ clusters at some

g ∈ H2, then g must be a constant function. For this we need a growth estimate on differences

of functional values that is analogous the one obtained in Growth Estimate 6.4 for the values

themselves. We begin with the derivative. For z ∈ U,

|f ′(z)|2 =

∣∣∣∣∣
∞∑

n=1

nf̂(n)zn−1

∣∣∣∣∣
2

≤
( ∞∑

n=1

|f̂(n)|2
) ( ∞∑

n=1

n2|z|2(n−1)

)

≤ ‖f‖2 2

(1 − |z|2)3
.

Upon taking square roots on both sides of the last inequality, we get this growth estimate

on the derivative of f :

|f ′(z)| ≤
√

2
‖f‖

(1 − |z|2)3/2
(z ∈ U).

To get the desired estimate on differences, suppose z, w ∈ U and |z| ≤ |w|. To estimate

f(z) − f(w) we integrate f ′ over the line segment joining z and w, and use the inequality
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above:

|f(z) − f(w)| ≤
∫ w

z

|f ′(ζ)||dζ|

≤
√

2 ‖f‖
∫ w

z

|dζ|
(1 − |ζ|2)3/2

≤
√

2 ‖f‖ |w − z|
(1 − |w|2)3/2

.

Thus for each pair of points z, w ∈ U,

|f(z) − f(w)| ≤
√

2 ‖f‖ |w − z|
(min{1 − |w|, 1 − |z|})3/2

.(16)

In (16) above, substitute ϕn(z) for z, and ϕn(0) for w, and use the estimates of (15) above;

the result is

|f(ϕn(z)) − f(ϕn(0))| ≤ const.
|ϕn(z) − ϕn(0)|

(min{1 − |ϕn(z)|, 1 − |ϕn(0)|})3/2

≤ const.
n−2

n−3/2
=

const.√
n

,

where the constant in each line depends on f , z, and ϕ, but not on n. Thus

lim
n

[f(ϕn(z)) − f(ϕn(0))] = 0 (z ∈ U).(17)

To finish the argument, suppose g ∈ H2 is a cluster point of the Cϕ - orbit of f . Then for

some sequence nk ↗ ∞ we have f ◦ ϕnk
→ g in the norm of H2, and therefore pointwise on

U. By (17) this implies

g(z) − g(0) = lim
k

[f(ϕnk
(z)) − f(ϕnk

(0))] = 0,

hence g ≡ g(0). Thus only constant functions can be limit points of the Cϕ-orbit of an H2

function.

Hypercyclicity for more general composition operators on H2

Suppose ϕ is a holomorphic self-map of U, with linear fractional model (ψ, G). As usual,

denote by σ the Riemann map of U onto G. The basic principle behind operating here is:

If the polynomials in σ are dense in H2, then cyclic behavior for Cψ on H2 can be

transferred to cyclic behavior for Cϕ.

For example, suppose Cψ is hypercyclic on H2, so that ψ is a holomorphic self-map of U

that’s either hyperbolic or a parabolic automorphism. According to the Linear Fractional
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Model Theorem, we may take G ⊂ U, so if we let V : H(U) → H(U) denote Cσ acting on the

restrictions to G of functions in H2, we can interpret the functional equation ψ ◦ σ = σ ◦ ϕ

as asserting that V Cψ = CϕV . Now our hypothesis on σ is that V has dense range in H2,

so Cϕ is a quasi-factor of Cψ and therefore Cϕ inherits the hypercyclicity of Cϕ. The same

holds for other concepts such as cyclicity, chaos, mixing.

One way to insure that the polynomials in σ are dense in H2 is to employ

7.3. Walsh’s Theorem. Suppose G is a simply connected domain whose boundary is a Jor-

dan curve. Let the holomorphic function σ map U univalently onto G. Then the polynomials

in σ are dense in H2.

The result that is usually called Walsh’s Theorem actually asserts that the polynomials in

z are uniformly dense in A(G), the subalgebra of C(G) consisting of functions holomorphic

on G (see, for example, [26, Theorem 3.9, page 98]). A theorem of Carathéodory asserts

that F extends continuously and univalently to G, so Walsh’s original result asserts, in our

situation, that the polynomials in F are dense in A(U), which is clearly dense in H2, and

this yields Theorem 7.3 (see [34, §8.1] for more details).

The main point of the monograph [7] is to find conditions on a univalent holomorphic

self-map ϕ of U which guarantee that G is the interior of a Jordan curve. The main result

shows that:

If the Denjoy-Wolff point ω of ϕ lies on ∂U, and

* the closure of ϕ(U) touches ∂U only at ω, and

* ϕ has “sufficient differentiability” at ω,

then the composition operator induced on H2 by ϕ has the same hypercyclic be-

havior as its linear fractional model, i.e., Cϕ is hypercyclic (indeed chaotic and

mixing) if ϕ is of hyperbolic or parabolic automorphic type, and not hypercyclic if

ϕ is of parabolic non-automorphic type.

Here “sufficient differentiability” varies from case to case, but C4 works for all of them. Of

course the negative result about parabolic non-automorphic type maps cannot be deduced

from regularity of the model. Instead, enough differentiability is assumed at the Denjoy-

Wolff point to allow the estimates that worked in the linear fractional case to be used for

the more general one. For specific references to these results, see Table II on page 12 of
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[7]. To give you a feeling for how the arguments go, I present below the hyperbolic case,

taken almost word-for-word from [34, §8.3, pp. 134–137]. In order to simplify notation, let’s

agree that a Jordan domain is a simply connected plane domain whose boundary is a Jordan

curve.

7.4. A Valiron-type Theorem. Suppose ϕ is a univalent holomorphic self-map of U of

hyperbolic type, with C2-smoothness at its Denjoy-Wolff point ω. Suppose further that the

closure of ϕ(U) lies in U∪{ω}. Then there exists a hyperbolic ψ ∈ LFT(U) and a holomorphic

univalent map σ of U onto a Jordan domain contained in U, such that σ ◦ ϕ = ψ ◦ σ.

Proof. We may without loss of generality suppose that the Denjoy-Wolff point is +1. Write

λ = ϕ′(1), let H denote the half-plane {Re z < 1}, and set ψ(z) = λz + (1 − λ), so ψ

is a hyperbolic automorphism of H. We’ll first find a mapping σ with all the required

properties, except that its image will lie in H. The theorem as stated will follow upon

mapping H conformally onto U.

We’ll be able to copy the original Koenigs argument almost word-for-word if we use the

map z → 1 − z to map U onto the open disc U0 of radius one and center +1. Let’s still

use the notation ϕ for the resulting self-map of U, which now fixes the origin, at which it is

assumed to be C2-smooth. This means that ϕ has the “finite Taylor expansion”

ϕ(z) = λz + z2B(z) (z ∈ U0)(18)

where 0 < λ = ϕ′(0) < 1, and the function B is bounded on the closure of U0. The idea

is to resurrect Koenigs’s original proof for the interior fixed point case, but where Koenigs

used the Schwarz Lemma, we will employ an estimate derived from (18). We will obtain a

solution σ of Schröder’s equation σ ◦ ϕ = λσ on U0, with σ a Jordan map with positive real

part.

We proceed, just as did Koenigs, obtaining σ as a limit of normalized iterates σn = λ−nϕn.

Note first that since ϕ has positive real part, so does each of its iterates, and therefore so

does each map σn. We claim that the sequence {σn} converges uniformly on U0.

For this, let β = max{|B(z)| : z ∈ U0}, and let ∆ be the intersection of U0 with the closed

disc of radius (1 − λ)/2β centered at the origin. By (18) above we have

|ϕ(z)| ≤
(

1 + λ

2

)
|z| (z ∈ ∆).(19)
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Since (1 + λ)/2 < 1, this last inequality insures that ϕ(∆) ⊂ ∆, so inequality (19) can be

iterated for each z ∈ ∆ to yield

|ϕn(z)| ≤
(

1 + λ

2

)
|ϕn−1(z)| ≤

(
1 + λ

2

)2

|ϕn−2(z)| · · · ≤
(

1 + λ

2

)n

|z|.

By our definition of ∆, this last estimate shows that

|ϕn(z)| ≤ 1 − λ

2β

(
1 + λ

2

)n

(z ∈ ∆)(20)

for each non-negative integer n. Note that the origin is now playing the role of the Denjoy-

Wolff point for ϕ, so ϕn → 0 uniformly on compact subsets of U0. We are assuming that ϕ

takes U0 into U0 ∪{0}, so the closure of ϕ(U0)\∆ in U0 is compact. Thus ϕn → 0 uniformly

on U0. In particular, there is a positive integer N such that

ϕn(U0) ⊂ ∆ (n ≥ N).

Following Koenigs, we set

F (z) =
ϕ(z)

λz
(z ∈ U0),

and note that for each z ∈ U0 the expansion (18) implies

|1 − F (z)| = λ−1|z||B(z)| ≤ λ−1β|z|.(21)

Now fix z ∈ U0. If j ≥ N then ϕj(z) ∈ ∆, so using respectively (21) and (20) above (with

j − N in place of n and ϕN(z), which belongs to ∆, in place of z), we obtain

|1 − F (ϕj(z))| ≤ β

λ
|ϕj−N(ϕN(z))| ≤ 1 − λ

2λ

(
1 + λ

2

)j−N

for each z ∈ U0. Since N is independent of the point z ∈ U0, this last inequality shows that

each term of the infinite series
∑ |1 − F (ϕj(z))| is dominated by the corresponding term

of a convergent geometric series. Thus
∑ |1 − F (ϕj(z))| converges uniformly on U0, by the

Weierstrass M-test. Since this convergence is passed on to infinite product
∞∏

j=0

F (ϕj(z)) = z−1 lim
n→∞

σn(z),

the sequence {σn} therefore converges uniformly on U0 to a function σ that fixes the origin,

is continuous on U0, is holomorphic and univalent on U0, and obeys Schröder’s equation on

U0. Furthermore, σ has positive real part on U0 since it is non-constant there and, as we

noted above, each σn has positive real part.
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Thus, in order to show that σ(U0) is a Jordan domain, it only remains to check that σ

is univalent on ∂U. But this follows from Schröder’s equation and the univalence of ϕ on

U0. The argument is this: If σ(z1) = σ(z2) for a pair of points z1, z2 ∈ ∂U0, then upon

multiplying by λ and using Schröder’s equation (which we have just proved holds on the

closed disc) we see that σ(ϕ(z1)) = σ(ϕ(z2)). If neither z1 nor z2 is zero, then both ϕ-images

belong to U0, on which we know σ is univalent. Thus ϕ(z1) = ϕ(z2), so z1 = z2 since ϕ is

assumed to be univalent on U0.

Suppose on the other hand that one of the original points, say z1 is zero. Then Schröder’s equa-

tion and the fact that σ(0) = 0 yield σ(ϕ(z2)) = 0. But if z2 = 0, then ϕ(z2) ∈ U0,

contradicting the fact that Reσ > 0 on U0. Thus z2 = 0, so σ is univalent on U0.

In summary, we have shown that there is a continuous, univalent map σ defined on U0 that

has non-negative real part, is holomorphic on U0, and satisfies Schröder’s equation σ◦ϕ = λσ

on U0.

Upon transferring this result back to the unit disc by means of the map z #→ 1 − z our

accomplishment looks like this:

If ϕ obeys the hypotheses of the Theorem, then it has a Jordan model (ψ, σ), where

ψ(z) = λz + (1 − λ), and σ maps U into the half-plane {Re z < 1}.

The only problem remaining is that G need not lie in U, but this is easily remedied. Let

τ be a linear fractional transformation that takes the half-plane {Re z < 1} onto the unit

disc, and fixes +1. Necessarily τ ∈ LFT(U). Define:

• ψ̃ = τ ◦ ψ ◦ τ−1, another member of LFT(U) with attractive fixed point at +1,

• G̃ = τ(G), a Jordan sub-domain of U, and

• σ̃ = τ ◦ σ, a univalent mapping of U onto G̃.

Since ψ is hyperbolic, so is ψ̃, and σ̃ ◦ ϕ = ψ̃ ◦ σ̃, so (ψ̃, G̃) is the desired linear fractional

model for ϕ.

8. Why hypercyclicity is VERY interesting

In this section we show that hypercyclic operators have special properties not possessed

by general transitive mappings.
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We observed in the first section of these notes that nontrivial transitive mappings might

have non-transitive squares: in fact, the nontrivial permutation map of the discrete metric

space {1, 2} onto itself as this property, as does every product of this map with a transitive

one. With this construction we see that even continuous group homomorphisms can be

transitive without having transitive squares. Carol Kitai, in her 1982 dissertation ([22],

Remark 2.13) asked if this could happen in the linear setting, and in 1995 Shamim Ansari

gave a striking argument to show that that it cannot:

8.1. Ansari’s Theorem [1]. If T is a hypercyclic operator on a metrizable topological vector

space X, then T n is hypercyclic for any positive integer n.

Here is a way to think about trying to prove Ansari’s Theorem: Let x be a hypercyclic vector

for T , and fix an integer n > 1. Then

orb (T, x) = orb (T n, x) ∪ orb (T n, Tx) · · · ∪ orb (T n, T n−1x),(22)

Now in any topological space, if a finite union of sets is dense, at least one of the sets must

be somewhere dense (i.e., its closure must contain a nonempty open set). To see why this is

so, we may assume the collection of sets with dense union is minimal , i.e., if we remove one

them, then union of what remains is not dense. So remove one of the sets in this minimal

collection. The closure of what remains misses a nonvoid open subset of the space, and this

open subset must therefore belong to the closure of what was removed. So that removed

set is somewhere dense. Returning to our hypercyclic situation, (22) therefore guarantees

that least one of the sets orb (T n, T kx) is somewhere dense. Thus Ansari’s Theorem will

be proved if we can show that for linear operators, somewhere dense orbits are everywhere

dense. Note that our examples of (nonlinear) transitive maps with nontransitive squares also

show that, in the general situation, somewhere dense orbits need not be dense.

Here is another open question, this one posed by Domingo Herrero in 1992 [20]: Suppose

{x1, x2, . . . xN} is a finite subset of an F -space X, and
⋃n

j=1 orb (T, xj) is dense in X; is T

hypercyclic on X? Herrero’s question was just recently answered in the affirmative, indepen-

dently by George Costakis and Alfredo Peris. To get a nice statement, let’s call an operator

for which a finite union of orbits is dense “multihypercyclic.”
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8.2. The Costakis-Peris Theorem [9, 27]. Every multi-hypercyclic operator is hyper-

cyclic.

Note that, like Ansari’s theorem, this result would follow easily if we could prove that for

linear operators, somewhere dense orbits are everywhere dense. Peris in [27] posed this

problem explicitly, and within the last few months Paul Bourdon and Nathan Feldman

solved it affirmatively, thus providing a unified proof of both Ansari’s Theorem and the

Costakis-Peris Theorem.

8.3. The Bourdon-Feldman Theorem [6]. Suppose T is a continuous linear operator on

a locally convex F -space X, and x ∈ X. If orb (T, x) is somewhere dense in X, then it is

dense in X.

Proof. Actually, Bourdon and Feldman prove their result for any locally convex (Hausdorff)

topological vector space over the complex scalars. You’ll see below that neither completeness

nor metrizability ever plays an essential role in the argument. However the Hahn-Banach

theorem enters at one point in the proof, so local convexity is required. I don’t know if this

result is true in topological vector spaces that are not locally convex.

For convenience we’ll employ the following notation throughout the proof:

• orb (T, x) will henceforth be abbreviated just orb (x).

• The closure of orb (x) will be denoted clorb (x).

• The interior of the clorb (x) will be denoted clorb◦ (x).

• P is the collection of (holomorphic) polynomials with complex coefficients. If S ⊂ P
and y ∈ X then S(T ) = {p(T ) : p ∈ S}, and S(T )y = {p(T )y : p ∈ S}.

In this notation, to say that a vector y ∈ X cyclic for an operator T on X is to assert that

P(T )y is dense in X.

The proof will be broken up into five steps. Throughout, we assume x ∈ X has a some-

where dense orbit, i.e., clorb◦ (x) = ∅ (although in Step I this will not be used).

Step I. If y ∈ orb (x) then clorb◦ (y) = clorb◦ (x).

Proof. That clorb◦ (y) ⊂ clorb◦ (x) follows from the corresponding set containment for orbits.

Now clorb (x) differs from clorb (y) by just a finite set of isolated points, from which follows

the reverse containment.
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Step II. Each element of orb (x) is a cyclic vector for T .

Proof. Suppose y ∈ orb (x). By Step I, orb (y) is somewhere dense, and since orb (y) ⊂
orb (x) ⊂ P(T )x we see that P(T )x is somewhere dense. Now P(T )x is a vector space,

hence so is its closure. Since this closure contains an open set, it is the whole space. Thus y

is cyclic for T .

The next step provides the crucial element of the argument. To put it in perspective, note

that clorb (x) is T -invariant.

Step III. The complement in X of clorb◦ (x) is T -invariant.

Proof. By Step I we may replace x by any element of its orbit without disturbing clorb◦ (x).

Now clorb◦ (x) is a nonempty open set, each point of which is a limit point of orb (x), so

some point of orb (x) belongs to clorb◦ (x). Replace x by this point. In other words:

Without loss of generality we may henceforth assume that x ∈ clorb◦ (x).

Suppose, in order to reach a contradiction, that X\clorb◦ (x) is not T -invariant, i.e., that

for some y /∈ clorb◦ (x) we have Ty ∈ clorb◦ (x). Actually:

We may assume that y /∈ clorb (x).

Indeed, if we’re unlucky and y is in clorb (x) then (since it’s not in clorb◦ (x)) it must be on

the boundary of clorb (x). In particular, there is a point y′ /∈ clorb (x), but close enough to

y that Ty′ is close enough to Ty to keep it in the open set clorb◦ (x) (we use the continuity

of T here). Then rename y′ as y.

We may also assume that y = p(T ) for some p ∈ P\{0}.

This is a similar argument: x is cyclic for T (Step I), i.e., P(T )x is dense in X, so we

can find p ∈ P so that p(T )x is close enough to y that it lies in the (open) complement

of clorb (x), and so that its T -image stays in clorb◦ (x) (continuity of T , and open-ness of

clorb◦ (x) again). Note that p is not the zero polynomial, since p(T )x = Tp(T )x.

Now because clorb (x) is T -invariant, and contains Tp(T )x,

clorb (x) ⊃ T np(T )x = p(T )T n+1x (n = 0, 1, 2, . . . ),

hence clorb (x) ⊃ p(T )(orb (Tx)). Upon taking closures:

clorb (x) ⊃ p(T )clorb (Tx) ⊃ p(T )clorb◦ (Tx) = p(T )clorb◦ (x),(23)
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(the last equality following from Step I). But x ∈ clorb◦ (x) (recall that we showed earlier

that there was no loss of generality in assuming this), so by (23) above, p(T )x ∈ clorb (x).

But this is a contradiction; we have chosen p so that p(T )x /∈ clorb (x).

Step IV. P(T ) has dense range for every p ∈ P\{0}.

Proof. This is the only place where we use local convexity and the fact that the scalar field

is C. Fix p ∈ P\{0} and factor it into linear factors: p(z) = (z − α1)(z − α2) . . . (z − αn),

where α1, . . . , αn are complex numbers. Then p(T ) has a similar decomposition into linear

factors T − αjI, so it is enough to show that each such factor has dense range.

For this, fix α ∈ C and suppose the range of T − αI is not dense in X. Then, thanks to

local convexity, the Hahn-Banach Theorem provides a continuous linear functional Λ on X

that annihilates ranT − αI, but is not identically zero on X. Now Λ ◦ (T − αI) = 0, so

Λ ◦ T = αΛ. We are saying, of course, that α is an eigenvalue of T ∗, with eigenvector Λ.

Now just as in the proof of Theorem 2.7 we have:

Λ(orb (x)) = {αnΛ(x) : n = 0, 1, 2, . . . }.(24)

In this case Λ(clorb◦ (x)) is a nonvoid open subset of C (continuous linear functionals are

open maps), hence Λ(orb (x)) is somewhere dense in C. But it’s a simple exercise to check

that {αnΛ(x)} is nowhere dense in C, regardless of the value of Λ(x), so thanks to (24) we

have arrived at a contradiction. This all began with the assumption that ran (T −αI) is not

dense in X, so that couldn’t have been correct.

Step V. Completion of the proof. We are assuming that clorb◦ (x) = ∅ and want to show

that orb (x) is dense, i.e., that clorb (x) = X.

So suppose not. Recall that x is cyclic for T (Step II), so P(T )x is dense in X, and

therefore one can find a subcollection Q ⊂ P\{0} of polynomials such that Q(T )x is a dense

subset of the nonvoid open set X\clorb (x), and therefore a dense subset of X\clorb◦ (x).

We showed in Step III that this latter set is T -invariant, so Q(T )(orb (x)) ⊂ X\clorb◦ (x),

hence by continuity of T :

X\clorb◦ (x) ⊃ Q(T )(orb (x)) ⊃ Q(T )(clorb (x))(25)

For convenience, write P ′ for P\{0}.
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Claim: p ∈ P ′ ⇒ p(T )x /∈ ∂clorb◦ (x).

Suppose we have proved this Claim. The vector subspace P(T )x, being dense in X, is infinite

dimensional, so there is no doubt that P ′(T ) is connected.3

This connected set is the disjoint union of two subsets:

G = (P ′(T )x) ∩ clorb◦ (x) and H = (P ′(T )x) ∩ (X\clorb◦ (x)).

Clearly G is relatively open in P ′(T )x, and thanks to the Claim, so is H! Furthermore,

neither G nor H is empty: x ∈ G, and Q(T )x ⊂ H. This contradicts the connectedness of

P ′(T )x, and finishes the proof.

It remains to prove the Claim. Suppose for the sake of contradiction that p(T )x ∈
∂clorb◦ (x) for some p ∈ P ′(T ). Consider the set

D := clorb◦ (x) ∪ Q(T )x,

which is dense in X because the collection Q of polynomials has been chosen to make Q(T )

dense in the complement of clorb◦ (x). Now

p(T )D = p(T )clorb◦ (x) ∪ p(T )Q(T )x,

and by the T -invariance of X\clorb◦ (x) (Step III), the second term on the right lies in

X\clorb◦ (x). But so does the first term on the right! Indeed, p(T )x /∈ clorb◦ (x) (because it’s

assumed to be in ∂clorb◦ (x)), so by a now-familiar argument, p(T )clorb◦ (x) ⊂ X\clorb◦ (x).

Thus p(T )D lies entirely in X\clorb◦ (x), so is disjoint from the nonvoid open set clorb◦ (x),

thus contradicting the density of D. This completes the proof of the Claim, and with it, the

proof of the Bourdon-Feldman Theorem.

The Bourdon-Feldman Theorem is a beautiful piece of work, but don’t let my introduction

to it fool you into thinking it makes trivial the results of Ansari and Costakis-Peris. The proof

of the Bourdon-Feldman Theorem has many elements that went into proving the previous

two results. As we mentioned earlier, the original question it answers was asked by Peris in

[27]; furthermore the phenomena of cyclicity and connectedness play an important role in

Ansari’s proof [1].

3Since we work with complex scalars here, all that’s really needed is that the vector space have dimension
= 0, however the argument above shows that this part of the argument works even for real scalars.
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