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MEAN GROWTH OF KOENIGS EIGENFUNCTIONS

PAUL S. BOURDON AND JOEL H. SHAPIRO

Figure 1. The shaded region is the image of the unit disk under
the Koenigs eigenfunction σ for ϕ(z) = z/(2− z4), the four fixed
points of ϕ on the unit circle corresponding to points where σ has
infinite radial limit. The function σ belongs to the Hardy space
Hp if and only if 0 < p < log(5)/ log(2).
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1. Introduction

Let U be the open unit disk in the complex plane C and let ϕ : U → U be a
holomorphic function fixing a point a in U . To avoid trivial situations, we assume
0 < |ϕ′(a)| < 1. For n a positive integer, let ϕn denote the n-th iterate of ϕ so that

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ, n times.

Over a century ago, Koenigs ([15]) showed that if f : U → C is a nonconstant
holomorphic solution to Schroeder’s functional equation,

f ◦ ϕ = λf,

then there exist a positive integer n and a constant c such that λ = ϕ′(a)n and
f = cσn, where for each z ∈ U ,

σ(z) := lim
n→∞

ϕn(z)− a

ϕ′(a)n
.(1.1)

We call the function σ defined by (1.1) the Koenigs eigenfunction of ϕ; it is the
unique solution of

σ ◦ ϕ = ϕ′(a)σ

having derivative 1 at a.
While the local study of Koenigs eigenfunctions plays a fundamental role in

complex dynamics, the study of how global properties of ϕ influence those of σ is
just beginning (see [2, 18, 19, 28]). In this paper we obtain results showing how
properties of ϕ influence the growth and mean growth of σ(z) as |z| → 1−, mean
growth being measured by Hardy-space membership.

Let f denote an analytic function on U . Recall that f belongs to the Hardy
space Hp for some 0 < p <∞ provided that the integral means

Mp(r, f) :=

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

are uniformly bounded for r ∈ [0, 1), in which case we define

‖f‖p = sup{Mp(r, f) : 0 ≤ r < 1}.
Recall that f belongs to H∞ provided it is bounded, in which case we define

‖f‖∞ = sup{|f(z)| : z ∈ U}.
If 1 ≤ p ≤ ∞ then ‖ · ‖p is a norm that makes Hp into a Banach space, while if
0 < p < 1 then ‖ · ‖pp is a “p-homogeneous norm” that makes Hp into a “p-Banach
space” (see [9, Section 3.2]). We note that information about mean-growth yields
information about maximum growth because for each f ∈ Hp, we have

|f(z)| ≤ 21/p‖f‖p
(1 − |z|)1/p .

([9, p. 36]). We also note that every holomorphic mapping ϕ : U → U induces a
bounded composition operator on Hp (see, e.g., [7] or [26]), which we’ll denote by
Cϕ :

Cϕf = f ◦ ϕ.
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The Koenigs eigenfunction σ for ϕ need not belong to any of the Hp spaces; for
example, we show this is the case when ϕ is an inner function (see Proposition 3.2).
On the other hand, when ϕ is univalent, σ must also be univalent and hence must
belong to Hp for at least 0 < p < 1/2 (see Proposition 2.3). Our main theorem
provides a sufficient condition for σ to belong to Hp. The condition is expressed in
terms of the essential spectral radius of the composition operator Cϕ : H2 → H2;
however, as we will shortly explain, it may be expressed in purely function-theoretic
terms.

Main Theorem. Let 0 < p <∞. If |ϕ′(a)|p/2 exceeds the essential spectral radius
of Cϕ : H2 → H2, then the Koenigs eigenfunction σ for ϕ belongs to Hp.

There is evidence that the preceding sufficient condition is also necessary for σ
to belong to Hp. Theorem 4.7 below establishes necessity when ϕ is analytic on the
closed disk. Furthermore, Pietro Poggi-Corradini has recently shown the sufficient
condition of the Main Theorem is necessary when ϕ is univalent [19].

In proving the Main Theorem, we devote the bulk of our effort to establishing
that the essential spectral radius of Cϕ : Hp → Hp, denoted by re(Cϕ|Hp), is less

than or equal to [re(Cϕ|H2 )]2/p (see Theorem 3.8; we later show (Theorem 5.4)

that this inequality is an equality). Thus, the condition |ϕ′(a)|p/2 > re(Cϕ|H2)
of the Main Theorem says that |ϕ′(a)| exceeds re(Cϕ|Hp). Now, whenever |ϕ′(a)|
exceeds the essential spectral radius of Cϕ : Hp → Hp, the number ϕ′(a) lies in
the unbounded component of the essential resolvent of Cϕ. On the other hand,
ϕ′(a) is always in the spectrum of Cϕ : Hp → Hp (the function z − a is easily
seen to lie outside the range of the operator: see Proposition 3.3 for a proof in the
case a = 0); thus, Fredholm theory guarantees that ϕ′(a) must be an eigenvalue
of Cϕ on Hp. Since the Koenigs eigenfunction σ for ϕ spans the eigenspace corre-
sponding to ϕ′(a), we must have σ ∈ Hp. The preceding outline glosses over one
difficulty: Fredholm theory is generally developed in a Hilbert- or Banach-space
context; however, the Hardy spaces Hp for p < 1 are not Banach spaces. Fortu-
nately, customary Fredholm facts continue to hold for Hp when p < 1 ([27]; see
also the following section).

The principal ancestors of this paper are works [28] and [25]. In [28], Shapiro,
Smith, and Stegenga study the relationship between the geometry of the image of
the Koenigs function of a univalent map ϕ and the compactness of the composition
operator Cϕ : Hp → Hp (compactness is independent of p). They relate noncom-
pactness of all powers of Cϕ to the existence of a sector or “twisted sector” in
image σ(U) of the Koenigs function of ϕ and establish that the existence of such
a twisted sector shows σ fails to belong to Hp for some p. (Pietro Poggi-Corradini
[18] recently showed that if σ(U) contains no twisted sector, then σ must belong to
Hp for all p.)

In [25], Shapiro shows that the essential norm Eϕ of the composition operator
Cϕ on H2 is given by

Eϕ = lim sup
|w|→1−

(
Nϕ(w)

1− |w|
)1/2

,

where Nϕ denotes the Nevanlinna counting function of ϕ. Hence, by employing the
(essential) spectral radius formula, we have

re(Cϕ|H2) = lim
n→∞ (Eϕn)1/n ,
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which allows us to restate our Main Theorem in purely function-theoretic terms.

Main Theorem. If ϕ′(a)p/2 > limn→∞ (Eϕn)
1/n

, then σ ∈ Hp.

For certain maps ϕ, the essential spectral radius re(Cϕ|H2 ) may also be expressed
in terms of angular derivatives at boundary fixed points. Consider the following
simple situation. Suppose that ϕ is analytic on the closed disk fixing the point
a ∈ U , that ϕ(1) = 1, and that |ϕ(ζ)| < 1 for ζ ∈ ∂U\{1}. Then (see Theorem 4.1
or [6, Corollary 2.5])

re(Cϕ|H2) =

(
1

ϕ′(1)

)1/2

.

(We remark that ϕ′(1) > 1 by the Denjoy-Wolff Theorem.) Our work shows that
for such a ϕ, the condition

|ϕ′(a)|p > 1

ϕ′(1)
(1.2)

is necessary and sufficient for σ to belong to Hp. For example, if ϕ(z) = z5/30 +
z4/30 + 14z/15, then a = 0, and the preceding condition shows that the Koenigs
eigenfunction σ for ϕ belongs to Hp precisely when p < log(37/30)/ log(15/14) ≈
3.04.

By comparing the region σ(U) of Figure 2 to a sector with angular opening
approximately π/3, one may verify that our work yields Hardy-space membership
for σ that is consistent with the figure. The verification requires Littlewood’s
Subordination Principle ([9, Theorem 1.7]), the observation that σ is univalent
(because ϕ is), and the fact that a univalent mapping of U onto a sector with
angular opening π/r, such as

Sr(z) :=

(
1 + z

1− z

)1/r

,

belongs to Hp precisely when p < r (see the proof of Theorem 3.2 of [9]). Observe
that the region σ(U) in Figure 2 appears to be contained in a left-translate of the
image of Sr for r ≈ 3; thus by Littlewood’s Principle, σ should be in Hp for p ≈ 3.
Moreover, because σ(U) appears to contain the image Sr(U) for r ≈ 3, Littlewood’s
Principle also tells us that σ should not be contained inHp for p significantly greater
than 3.

This paper is organized as follows. In the next section, we discuss p-Banach
spaces and the Fredholm theory of operators on such spaces. We also present a
detailed description of Koenigs’ solution to Schroeder’s functional equation. In
Section 3, we prove that the essential spectral radius of Cϕ : Hp → Hp, re(Cϕ|Hp),

does not exceed (re(Cϕ|H2))
2/p

and obtain as a corollary the Main Theorem. Sec-
tion 4 contains our proof of the converse of the Main Theorem, given the additional
hypothesis that ϕ be analytic on the closed disk. In Section 5, we show that for an
arbitrary mapping ψ : U → U (which need not fix a point in U),

re(Cψ|Hp) = (re(Cψ|H2 ))
2/p

,

which answers the obvious question about essential spectral radii raised by our work
in Section 3. We also establish in Section 5 that spectral radius equals essential
spectral radius for any Hardy-space composition operator induced by a mapping
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Figure 2. The shaded region is the image σ(U) of the Koenigs
eigenfunction for ϕ(z) = z5/30 + z4/30 + 14z/15 (the image was
generated using formula (1.1) with a = 0).

with Denjoy-Wolff point on ∂U . In the final section, we discuss questions suggested
by the results presented in this paper.

2. Preliminaries

In this section, we present some basic information about p-Banach spaces, Fred-
holm operators, and Koenigs eigenfunctions.

p-Banach spaces. We assume that readers are familiar with basic properties of
Banach spaces. We must work in the more general context of p-Banach spaces in
order to address the problem of Koenigs-function membership in Hp for 0 < p < 1.
Readers interested in our Hp-membership results only for the range p ≥ 1 may
wish to skip this section, for they will have no trouble adapting our results and
arguments to the simpler Banach-space setting.

The definition of p-Banach space depends upon the notion of p-norm. Let 0 <
p ≤ 1. We say that the function ‖ · ‖ : X → [0,∞) on the complex vector space X
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is a p-norm provided that for x, y ∈ X and a ∈ C

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
(b) ‖ax‖ = |a|p‖x‖;
(c) ‖x‖ = 0 ⇒ x = 0.

Thus only property (b) distinguishes a p-norm from a norm (and a p-norm is a
norm when p = 1). The reader may verify that for 0 < p ≤ 1 the function defined
on Hp by

f 7→ 1

2π

∫ 2π

0

|f(eiθ)|pdθ

is a p-norm. Here f(eiθ) denotes the radial limit of f at eiθ (which exists at almost
every point of ∂U) and the value of the integral on the right equals ‖f‖pp (see [9,
Theorem 2.6]).

A p-norm on a complex vector space X induces an invariant metric d on X :
d(x, y) = ‖x − y‖. If X is complete in the metric d, we call X a p-Banach space.
Note that p-Banach spaces are examples of locally bounded F spaces. Also note a 1-
Banach space is a Banach space. The Hardy spaces Hp for 0 < p ≤ 1 are p-Banach
spaces (which may be viewed as closed subspaces of Lp(∂U); see [9, Theorem 3.3]).

As long as linear functionals do not enter the picture, many standard Banach-
space facts carry over to p-Banach spaces, with similar proofs (see, e.g., [27]). Here’s
a listing of a few such facts.

(a) A linear map T : X → X is continuous if and only if it is bounded in the
sense that

‖T ‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
is finite.

(b) The collection of bounded linear operators on X , which we’ll denote L(X), is
a p-Banach space with p-norm defined in (a).

(c) The collection of invertible elements in L(X) is open and the spectrum of
T ∈ L(X) is contained in the closed disk centered at 0 of radius ‖T ‖1/p.

To give the reader a sense of how Banach-space proofs are modified to yield
p-Banach space facts, we’ll sketch the proof of the second assertion of (c).

Proposition 2.1. Suppose |λ|p > ‖T ‖; then T − λI is invertible on the p-Banach
space X.

Proof. We have T − λI = −λ(I − (T/λ)). Observe ‖T/λ‖ = |1/λ|p‖T ‖ < 1. The
reader may check that

∞∑
n=0

(T/λ)n

represents an inverse of the operator I − (T/λ) : X → X and thus T − λI is
invertible.

Fredholm operators. We present the definition of Fredholm operator in the con-
text of p-Banach spaces. Throughout this subsection, X denotes a p-Banach space.
Let Y and Z be subspaces of X . We say that X is the algebraic direct sum of Y
and Z provided X = Y + Z and Y ∩ Z = ∅. If both Y and Z are closed we write
X = Y ⊕ Z and remark that in this case the natural projections from X onto Y
and from X onto Z are continuous.
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We say that the bounded operator T on X is Fredholm provided that

(a) the range of T , ran T , is closed and has finite codimension in X , and
(b) the kernel of T , ker T , is finite dimensional and there is a closed subspace Y

of X such that X =ker T ⊕ Y .

Note that if (a) holds, then X = ran T ⊕M for some finite-dimensional subspace
M of X (because finite-dimensional subspaces of X are closed).

We define the index i of the Fredholm operator T by

i(T ) = dimension(ker T )− codimension(ran T ).

For our work, the crucial property of the index is its continuity as a mapping from
the collection of all Fredholm operators on X into the integers, where the collection
of Fredholm operators is topologized as a subset of L(X) (see [27]). Observe that
a Fredholm operator of index zero is either invertible (in L(X)) or has nontrivial
kernel.

Fredholm operators may be characterized as “invertible operators modulo the
compact operators”. Recall that a bounded operator T is compact on X provided
some open set containing 0 is mapped by T into a set that has compact closure; finite
rank operators (ran T is finite dimensional) are examples of compact operators. The
following result, which may be regarded as the fundamental theorem of Fredholm
theory, explains what is meant by “invertible modulo the compact operators” (for
a proof, see [27]).

Atkinson’s Theorem. Suppose that T is a bounded linear operator on the p-
Banach space X. The following are equivalent.

(a) T is Fredholm;
(b) there is an operator S ∈ L(X) such that both I−ST and I−TS are finite-rank;
(c) there is an operator S ∈ L(X) such that both I−ST and I−TS are compact.

Because Fredholm operators are “essentially invertible”, we have the associated
notions of “essential” spectrum, spectral radius, and norm. The essential spectrum
of an operator T on the p-Banach space X is {λ ∈ C : T − λI is not Fredholm}.
The essential spectral radius of T , denoted re(T ), is, of course, the supremum of
the moduli of elements in the essential spectrum of T . The essential norm of
T : X → X , denoted ‖T ‖e, is given by

‖T ‖e = inf{‖T −K‖ : K is compact on X}.
Observe that ‖T ‖e ≤ ‖T ‖ and that by Atkinson’s Theorem,

re(T )p ≤ ‖T ‖e.
We also have the essential spectral radius formula

re(T )p = lim
n→∞ (‖T n‖e)1/n(2.1)

(see [11]).
The following observation is crucial to our work.

Proposition 2.2. Suppose that |α| > re(T ); then T−αI is Fredholm of index zero.

Proof. That T − αI is Fredholm is obvious. To show its index is zero, we use the
continuity of the Fredholm index. Choose c > 1 large enough so that |cα|p > ‖T ‖
and observe that T − cαI is Fredholm of index zero (in fact, T − cαI is invertible).
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Now for each s ∈ [1, c] the operator T −sαI is Fredholm (because α exceeds re(T ));
thus,

g(s) := i(T − sαI)

is a continuous mapping from [1, c] into the integers. Because g(c) = 0, g(1) =
i(T − αI) = 0.

Koenigs eigenfunctions. We call any function mapping the open unit disk U into
itself a self-map of U . Let ϕ be a holomorphic self-map of U that is not an elliptic
automorphism of U (elliptic automorphisms are those holomorphic automorphisms
that fix a point in U). Orbits of points in U under ϕ all converge to a distinguished
fixed point ω of ϕ called the Denjoy-Wolff point of ϕ.

Denjoy-Wolff Theorem. There is a point ω in the closure of U such that for
each z ∈ U ,

ϕn(z) → ω as n→∞.

The Denjoy-Wolff point ω of ϕ may be characterized as follows:

• if |ω| < 1, then ϕ(ω) = ω and |ϕ′(ω)| < 1;
• if |ω| = 1, then ϕ(ω) = ω and 0 < ϕ′(ω) ≤ 1,

where when ω ∈ ∂U , ϕ(ω) is the angular limit of ϕ at ω and ϕ′(ω) is the angular
derivative of ϕ at ω. Recall that ϕ is said to have angular derivative at ζ ∈ ∂U if
there is an η ∈ ∂U such that

∠ lim
z→ζ

ϕ(z)− η

z − ζ

is finite, where ∠ lim denotes the angular (or nontangential) limit. By the Julia-
Carathéodory Theorem, ϕ has finite angular derivative at ζ if and only if ϕ′ has
angular limit at ζ while ϕ has angular limit of modulus 1 at ζ. For these results,
the reader may consult [7, Chapter 2] or [26, Chapters 4 and 5].

If the Denjoy-Wolff point ω of ϕ lies on ∂U or if ω ∈ U and ϕ′(ω) 6= 0, then
ϕ has a linear-fractional model : there exist a nonconstant holomorphic function f
and a linear-fractional transformation ψ such that

f ◦ ϕ = ψ ◦ f.(2.2)

This model is the work of a number of authors, whose efforts stretch over nine
decades: Koenigs ([15]: 1884), Valiron ([29]: 1931), Baker and Pommerenke ([21, 1]:
1979), and Cowen ([5]: 1981). When ω is in U , the linear-fractional map ψ in (2.2)
may be taken to be a dilation, ψ(z) = λz for some scalar λ, and (2.2) becomes
Schroeder’s functional equation.

For the remainder of this paper we will assume that the Denjoy-Wolff point ω of
ϕ lies in U and will focus on the mean-growth of solutions of Schroeder’s functional
equation. In the analyzing mean-growth (i.e., Hardy-space membership), we may
assume without loss of generality that ω = 0. The reason is that each solution to
Schroeder’s equation corresponding to a self-map ϕ having nonzero Denjoy-Wolff
point in U may be transformed through composition with a disc automorphism into
a solution corresponding to a self-map having Denjoy-Wolff point 0. The process
is simple. Suppose ω ∈ U\{0} is the Denjoy-Wolff point of ϕ and that f is a
holomorphic solution to Schroeder’s equation:

f ◦ ϕ = λf for some scalar λ.
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Set

αω(z) :=
ω − z

1− ω̄z
and Φ(z) := (αω ◦ ϕ ◦ αω)(z);

thus, Φ is a self-map of U fixing 0 that is conjugate to ϕ via the (self-inverse)
automorphism αω. Because f ◦ ϕ = λf , the function g := f ◦ αω satisfies

g ◦ Φ = λg.(2.3)

Observe that g is a solution to Schroeder’s equation for a self-map with Denjoy-
Wolff point 0 and that information about the the mean growth of g transfers to
f = g ◦ αω since composition with αω preserves Hp.

Let ϕ be a nonconstant holomorphic self-map of U such that ϕ(0) = 0 and ϕ
is not an elliptic automorphism. Suppose that f is a holomorphic function on U
satisfying Schroeder’s functional equation

f ◦ ϕ = λf.(2.4)

We record some simple observations.

• If λ = 0, then using analyticity and the fact that ϕ is nonconstant, we must
have f ≡ 0.

• If λ = 1, then f ◦ ϕn = f for all positive integers n, and by the Denjoy-Wolff
theorem f must be constant: f(z) = f(0) for all z ∈ U .

• If λ 6= 1, then f(0) = 0.
• Suppose that λ 6∈ {0, 1} and that ϕ′(0) = 0. Then f ≡ 0 (otherwise note that

the order of the zero of f ◦ ϕ at 0 exceeds the order of the zero of f at zero,
contradicting (2.4)).

Thus, to avoid trivial situations, we add the assumption that ϕ′(0) 6= 0 and
seek nonconstant solutions of (2.4). Summarizing our assumptions, we have: ϕ is
an analytic self-map of U that fixes 0 and satisfies 0 < |ϕ′(0)| < 1 (the condition
|ϕ′(0)| < 1 is equivalent—by the Schwarz Lemma—to our requirement that ϕ not
be an elliptic automorphism).

Koenigs obtained solutions to Schroeder’s equation (2.4) as limits of sequences
of normalized iterates of ϕ. We motivate his approach as follows. Suppose that f
satisfies (2.4) and that f ′(0) 6= 0. Differentiating both sides of (2.4) and evaluating
the result at zero, we find that λ = ϕ′(0). Thus for each nonnegative integer n, we
have

f ◦ ϕn = ϕ′(0)nf.

Differentiating both sides of the preceding equation and rearranging the result yields

f ′(ϕn)
ϕ′n

ϕ′(0)n
= f ′.

Because ϕn approaches zero uniformly on compact subsets of U (by, e.g., the
Schwarz Lemma), the sequence

f ′(0)
ϕ′n

ϕ′(0)n
→ f ′(2.5)
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uniformly on compact subsets of U . Now, integration of both sides of (2.5) over
the line segment with endpoints 0 and z (z ∈ U) yields

f(z) = f ′(0) lim
n→∞

ϕn(z)

ϕ′(0)n
.

Hence, if f is a solution to Schroeder’s equation such that f ′(0) 6= 0, then f must
be a constant times the pointwise limit of the sequence

ϕn
ϕ′(0)n

(2.6)

of normalized iterates of ϕ.
Koenigs showed that the sequence (2.6) converges uniformly on compact subsets

of U and that its limit, which we label σ, satisfies

σ ◦ ϕ = ϕ′(0)σ and σ′(0) = 1.(2.7)

That

σ = lim
n→∞

ϕn
ϕ′(0)n

(2.8)

satisfies (2.7) is easy to establish; Koenigs also showed that σ is the unique func-
tion satisfying (2.7) (uniqueness also follows from the argument of the preceding
paragraph). We call (2.6) the Koenigs sequence of ϕ, and its limit σ, the Koenigs
eigenfunction of ϕ. Any eigenfunction corresponding to the eigenvalue ϕ′(0) must
be a constant multiple of the Koenigs eigenfunction σ.

Now, observe that for any nonnegative integer n, the function σn satisfies

σn ◦ ϕ = ϕ′(0)nσn.

Thus the set of eigenvalues of Cϕ, viewed as a linear transformation of the vector
space H(U) of all functions holomorphic on U , contains

E := {ϕ′(0)n : n = 0, 1, 2, . . .}.
Koenigs’ work shows that E is precisely the set of eigenvalues of Cϕ : H(U) → H(U)
and that each eigenvalue is simple; in other words, nonzero solutions to Schroeder’s
equation (2.4) exist only when λ = ϕ′(0)n for some nonnegative integer n, in which
case f = cσn for some scalar c. Thus information about the growth of σ yields
information about the growth of every solution of Schroeder’s equation for ϕ.

Notational convention. For the remainder of this paper we assume that ϕ is a
holomorphic self-map of U such that ϕ(0) = 0 and 0 < |ϕ′(0)| < 1 and that σ is
defined by (2.8).

By the Schwarz Lemma, our assumption that |ϕ′(0)| < 1 simply insures that ϕ
does not map U one-to-one onto itself (since ϕ fixes the origin, this is equivalent to
saying that ϕ is not a rotation).

Because σ is the limit of a sequence of normalized iterates of ϕ, in most cases
obtaining a closed-form formula for σ is impossible. Thus one shouldn’t in gen-
eral expect sharp growth estimates for σ to come easily. There are, however, the
following elementary results.

Proposition 2.3. The Koenigs function σ for a univalent self-map ϕ must belong
to Hp for all p < 1/2.
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Proof. By (2.8) and Hurwitz’s Theorem, the Koenigs function for a univalent ϕ
must itself be univalent. Since any univalent function belongs to Hp for all p < 1/2
(see, e.g., [9, Theorem 3.16]), the proposition follows.

The following result is well-known (for a proof, see [4] or [26, Section 6.4]).

Proposition 2.4. Suppose that for some positive integer k, the composition oper-
ator Cϕk : H2 → H2 is compact; then the Koenigs function σ of ϕ belongs to Hp

for all p.

Compactness of Cϕ on Hp spaces has been characterized in terms of the dis-
tribution of values of ϕ (see [25] or [26]). If ϕ is univalent this criterion reduces
to non-existence of the angular derivative at every point of the unit circle. The
connection between compactness and Koenigs eigenfunctions is studied further in
[28] (see also [26, Chapter 9]).

3. A sufficient condition for inclusion in Hp

Recall that ϕ denotes a holomorphic self-map of the open unit disk U such
that ϕ(0) = 0 and 0 < |ϕ′(0)| < 1, while σ denotes the Koenigs eigenfunction
corresponding to ϕ, so that

σ ◦ ϕ = ϕ′(0)σ and σ′(0) = 1.

In this section we present for 0 < p < ∞ a sufficient condition for σ to belong to
Hp; in the next section we show that the condition is necessary when ϕ extends
analytically across ∂U .

Koenigs eigenfunctions need not belong to any Hp classes; in fact, if ϕ is inner
then its Koenigs function fails to belong to the Nevanlinna class. Recall that the
Nevanlinna class N contains all of the Hardy spaces and consists of those functions
f holomorphic on U such that

sup{
∫ 2π

0

log+ |f(reiθ)|dθ : r ∈ [0, 1)} <∞.

Recall also that each function f in N has finite radial limit at almost every point
of ∂U and that if f∗ : ∂U → C denotes the radial limit function of f , then

log |f∗| ∈ L1(∂U)

(see, e.g. [9, Theorem 2.2]).
The following Lemma is well-known; see, for example, [23, Theorem 2] or [7,

Proposition 2.25].

Lemma 3.1. Suppose that ϕ is an inner function and that g is an analytic function
on U belonging to the Nevanlinna class. Then

(g ◦ ϕ)∗ = g∗ ◦ ϕ∗

almost everywhere on ∂U .

Sketch of proof. Use Lindelöf’s theorem (see [22, p. 259]) to establish the result
when g is bounded. Then use the fact than every function in N is a quotient of
bounded functions (see [9, Theorem 2.1]).

Let m denote normalized Lebesgue measure on ∂U .
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Proposition 3.2. Suppose that ϕ is an inner function such that ϕ(0) = 0 and
0 < |ϕ′(0)| < 1. Then the Koenigs map σ for ϕ doesn’t belong to the Nevanlinna
class.

Proof. Suppose that σ does belong to the Nevanlinna class. Using integrability of
log |σ∗| and the fact that ϕ∗ is a measure-preserving transformation on ∂U (see
[17]), and then applying the preceding lemma, we have∫

∂U

log |σ∗|dm =

∫ 2π

0

log |σ∗ ◦ ϕ∗|dm

=

∫
∂U

log |ϕ′(0)σ∗|dm

=

∫
∂U

log |σ∗|dm+ log |ϕ′(0)|.

Thus log |ϕ′(0)| = 0, which contradicts our hypothesis that 0 < |ϕ′(0)| < 1.

We remark that in the preceding proposition the assumption that ϕ be inner
cannot be weakened to the assumption that ϕ∗ have modulus 1 on a set of positive
measure. Example 1.6 from [28] dramatizes the difference between these hypotheses
by showing there exists a self map ϕ with radial limits of modulus one on a set of
positive measure whose Koenigs eigenfunction belongs to Hp for all p.

We now seek a sufficient condition for the Koenigs function σ of ϕ to belong to
Hp. Because

f ◦ ϕ = ϕ′(0)f

if and only if f is a constant multiple of σ, we see that ϕ′(0) is an eigenvalue of
Cϕ : Hp → Hp if and only if σ belongs to Hp. Thus information about the point
spectrum of the composition operator Cϕ : Hp → Hp yields information about the
Hardy classes to which the Koenigs function of ϕ belongs. Although ϕ′(0) may fail
to be in the point spectrum of Cϕ : Hp → Hp (when, e.g., ϕ is inner), it is always
in the spectrum. In fact, ϕ′(0)n belongs to the spectrum for every nonnegative
integer n. This may be seen for Cϕ operating on the Hilbert space H2 through a
matrix computation (see, e.g., [7, Proposition 7.32]). For the Hp setting we employ
a different argument.

Proposition 3.3. For each p > 0, the spectrum of Cϕ : Hp → Hp contains ϕ′(0)n

for every nonnegative integer n.

Proof. Let p > 0 and let n be a nonnegative integer. If n = 0, then ϕ′(0)n = 1 is
an eigenvalue for Cϕ. Suppose that n = 1 and that the range Cϕ −ϕ′(0)I contains
the Hp function g(z) = z. Then, letting f denote a pre-image of g, we have

f(ϕ(z))− ϕ′(0)f(z) = z

for each z. Differentiate both sides of the preceding equation and let z = 0 to
obtain the contradiction 0 = 1. Thus Cϕ−ϕ′(0)I is not onto so that ϕ′(0) is in the
spectrum of Cϕ.

For n > 1, an inductive argument (or one based on power series) shows that the
range of the operator Cϕ−ϕ′(0)nI cannot contain the Hp function g(z) = zn. Thus
ϕ′(0)n is contained in the spectrum of Cϕ for every nonnegative integer n.
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We will obtain information about the point spectrum of Cϕ using the following
well-known fact from Fredholm theory.

Proposition 3.4. Suppose that T is a p-Banach-space operator and λ is a point in
the spectrum of T such that T −λI is Fredholm of index 0. Then λ is an eigenvalue
of T .

Proof. Being Fredholm of index 0, the operator T − λI has closed range of codi-
mension equal to the dimension of ker(T − λ). Thus T − λ is non-invertible if and
only if λ is an eigenvalue.

The preceding two propositions show that ϕ′(0) is an eigenvalue of Cϕ : Hp →
Hp provided (Cϕ − ϕ′(0)I) : Hp → Hp is Fredholm of index zero. By Proposition
2.2, the operator (Cϕ − ϕ′(0)I) : Hp → Hp is Fredholm of index zero whenever
|ϕ′(0)| exceeds the essential spectral radius of Cϕ on Hp, re(Cϕ|Hp); thus, we have

σ belongs to Hp whenever |ϕ′(0)| > re(Cϕ|Hp).

Thus we seek to determine the essential spectral radius of Cϕ acting on Hp.
The essential spectral radius of Cϕ acting on the Hilbert space H2 has been

calculated. In [25], Shapiro proves that the essential norm Eϕ of the composition
operator Cϕ on H2 is given by

Eϕ = lim sup
|w|→1−

(
Nϕ(w)

1− |w|
)1/2

,

where Nϕ is the Nevanlinna counting function of ϕ. For a holomorphic map ϕ
taking U into itself Nϕ is defined on U\{ϕ(0)} by

Nϕ(w) =
∑

ϕ(z)=w

log(1/|z|),(3.1)

where multiplicities are counted and Nϕ(w) is taken to be zero if w is not in the
range of ϕ. Via the (essential) spectral radius formula, Shapiro’s result identifies
the essential spectral radius for a composition operator on H2.

We will show that

re(Cϕ|Hp) = (re(Cϕ|H2))
2/p

.

Because only the inequality

(re(Cϕ|H2))2/p ≥ re(Cϕ|Hp)(3.2)

is needed to obtain our Main Theorem, we postpone the proof of the reverse inequal-
ity until Section 5 (see Theorem 5.4). Our proof of (3.2) requires three lemmas.
We will continue to assume that ϕ(0) = 0, but the proof of inequality (3.2) will not
require the additional assumption that 0 < |ϕ′(0)| < 1.

Lemma 3.5. Suppose that T : X → X is a continuous linear operator on the p-
Banach space X and that Y is a closed, finite codimensional subspace X that is
invariant under T . If T : Y → Y is invertible, then T is Fredholm on X.

Proof. Suppose that T : Y → Y is invertible. Because Y is closed and has finite
codimension in X ,

X = Y ⊕M
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for some finite-dimensional subspace M ⊂ X . Define S : X → X by S = T−1 on
Y and S ≡ 0 on M . Letting PM denote the projection of X onto M , we have

I − TS = PM and I − ST = (I − ST )PM .

Thus both I − TS and I − ST are finite rank operators and thus by Atkinson’s
Theorem T is Fredholm.

Our next two lemmas involve the operator norm of Cϕ acting on Hp. Because
the notions of norm differ for the 0 < p < 1 and the p ≥ 1 cases, we introduce
below the “norm” ‖ · ‖∗, which will allow us to treat simultaneously the 0 < p < 1
and p ≥ 1 cases. Let (X)1 represent the open unit ball of the space X so that, for
example,

(Hp)1 = {f ∈ Hp :

∫
∂U

|f |pdm < 1}.

For each closed subspace M of Hp that is invariant under the operator T : Hp →
Hp, we define

‖T |M‖∗ = sup{
(∫

∂U

|Tf |pdm
)1/p

: f ∈ (M)1}.

Thus for 1 ≤ p < ∞, ‖Cϕ|M‖∗ is simply the operator norm of Cϕ on the Banach
space M , while for 0 < p < 1, ‖Cϕ|M‖p∗ is the norm of Cϕ on the p-Banach space
M .

Observe that for any nonnegative integer m the subspace zmHp is closed in Hp

and (by our standing assumption that ϕ(0) = 0) invariant under Cϕ .

Lemma 3.6. Let 0 < p <∞ and let ϕ be an analytic self-map of U fixing 0. Then

re(Cϕ|Hp) ≤ lim
m→∞ ‖Cϕ|zmHp‖∗ .(3.3)

Proof. Because the sequence of norms on the right-hand side of (3.3) is decreasing,
the limit in (3.3) exists. Let m be a nonnegative integer and suppose

|λ| > ‖Cϕ|zmHp‖∗ .(3.4)

For p ≥ 1, the right-hand side of (3.4) is simply the operator norm of Cϕ restricted
to zmHp, so Cϕ−λI is invertible on zmHp. For 0 < p < 1, (3.4) implies λp exceeds
the norm of Cϕ on the p-Banach space zmHp and thus, once again, Cϕ − λI is
invertible on zmHp (see Proposition 2.1). Because zmHp has finite codimension in
Hp, Lemma 3.5 yields Cϕ − λI is Fredholm, completing the proof.

Lemma 3.7. Suppose that ϕ is an analytic self-map of U fixing 0 and that 0 <
p <∞. Then

lim
m→∞ ‖Cϕ|zmHp‖∗ =

(
lim
j→∞

‖Cϕ|zjH2‖∗
)2/p

.(3.5)

Proof. Recall that (X)1 represents the unit ball of the space X . Choose the positive
integer N large enough so that Np ≥ 2; let k be an arbitrary positive integer.
Suppose f ∈ (zNkHp)1 so that f = zNkg for some g ∈ (Hp)1. Let B be the
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Blaschke factor of g. We have

‖Cϕf‖Hp = (

∫
∂U

|ϕNk|p|g ◦ ϕ|pdm)1/p

= (

∫
∂U

|ϕNk|p|B ◦ ϕ|p|(g/B) ◦ ϕ|pdm)1/p

≤ (

∫
∂U

|ϕk|2|(g/B)p/2 ◦ ϕ|2dm)1/p

=
(
‖Cϕzk(g/B)p/2‖H2

)2/p

≤ (‖Cϕ|zkH2‖∗)2/p ,
where we have used Np ≥ 2 and |ϕ| ≤ 1 as well as |B ◦ ϕ| ≤ 1 to obtain the
first inequality appearing in the display above. The last inequality follows because
zk(g/B)p/2 belongs to (H2)1. Because f ∈ (zNkHp)1 is arbitrary, we may conclude
that

‖Cϕ|zNkHp‖∗ ≤ (‖Cϕ|zkH2‖∗)2/p .(3.6)

Let k → ∞ and use the fact that the norm sequences on both sides of (3.5) are
decreasing to obtain

lim
m→∞ ‖Cϕ|zmHp‖∗ ≤

(
lim
j→∞

‖Cϕ|zjH2‖∗
)2/p

.

Now let N be a fixed integer larger than p. Let k be an arbitrary positive integer.
Suppose that f ∈ (zNkH2)1 so that f = zNkg for some g ∈ (H2)1. Let B be the
Blaschke factor of g. We have

‖Cϕf‖H2 = (

∫
∂U

|ϕNk|2|g ◦ ϕ|2dm)1/2

= (

∫
∂U

|ϕ2k|N |B ◦ ϕ|2|(g/B) ◦ ϕ|2dm)1/2

≤ (

∫
∂U

|ϕ2k|p|(g/B)2/p ◦ ϕ|pdm)1/2

≤
(
‖Cϕz2k(g/B)2/p‖Hp

)p/2
≤ (‖Cϕ|z2kHp‖∗)p/2 .

Because f ∈ (zNkH2)1 is arbitrary, we have

‖Cϕ|zNkH2‖∗ ≤ (‖Cϕ|z2kHp‖∗)p/2 .
Since k is arbitrary, we have

lim
m→∞ ‖Cϕ|zmHp‖∗ ≥

(
lim
k→∞

‖Cϕ|zkH2‖∗
)2/p

which completes the proof of the lemma.

In [25], Shapiro proves that

‖Cϕ|H2‖e = lim
m→∞ ‖Cϕ|zmH2‖∗.(3.7)

(see [25, Section 5.3, equation (2)]), where ‖·‖e represents essential norm. Shapiro’s
result and the lemmas above yield the following.
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Theorem 3.8. Suppose ϕ is an analytic self-map of U fixing 0. Then

re(Cϕ|Hp) ≤ (re(Cϕ|H2))
2/p

.

Proof. Using Lemmas 3.6 and 3.7, and equation (3.7), we have

re(Cϕ|Hp) ≤ lim
m→∞ ‖Cϕ|zmHp‖∗

= (‖Cϕ|H2‖e)2/p .
Replacing ϕ with ϕn and taking n-th roots yields

[re(Cϕn |Hp)]1/n ≤
(
‖Cϕn |H2‖1/n

e

)2/p

.

Now, to obtain the theorem, let n → ∞, and use the (essential) spectral-radius
formula along with the equality re(T

n) = re(T )n (which is valid—with the usual
proof—for any p-Banach space operator T ).

Main Theorem. Let 0 < p <∞ and let ϕ be an analytic self-map of U such that
ϕ(0) = 0 and 0 < |ϕ′(0)| < 1. Suppose that

|ϕ′(0)|p/2 > re(Cϕ|H2 );(3.8)

then the Koenigs function σ for ϕ belongs to Hp.

Proof. By Theorem 3.8, |ϕ′(0)| exceeds the essential spectral radius of Cϕ : Hp →
Hp. Hence, (Cϕ−ϕ′(0)I) : Hp → Hp must be Fredholm of index 0 (see Proposition
2.2). However ϕ′(0) is in the spectrum of Cϕ and thus must be an eigenvalue for
Cϕ : Hp → Hp. Since only constant multiples of σ may serve as corresponding
eigenfunctions, we must have σ ∈ Hp.

Remarks. (1) In the next section we prove that the sufficient condition (3.8) for
σ to belong to Hp is necessary at least when ϕ extends analytically across the
boundary.

(2) Our Main Theorem may be viewed as a generalization of the Proposition
2.4 presented in the preceding section. The point here is that the quantity on the
right-hand side of (3.8) is zero whenever some power of Cϕ is compact. An operator
T whose essential spectral radius is 0 is called a Riesz operator. The existence of
Riesz composition operators that are not power compact is established in [2]. A
characterization of Riesz composition operators with univalent symbol is contained
in [19].

For ϕ having bounded valence, we may combine the Main Theorem with Theorem
3.5 of [25] to obtain the following corollary; in the statement ϕ′(ζ) represents the
angular derivative of ϕ at ζ and should be interpreted as ∞ when this angular
derivative doesn’t exist.

Corollary 3.9. Suppose that ϕ is a self-map having finite valence M . If

|ϕ′(0)| > M sup{|ϕ′(ζ)|−1/p : ζ ∈ ∂U},
then the Koenigs function σ for ϕ belongs to Hp.

Proof. The quantity on the right-hand side of the inequality is greater than or equal

to ‖Cϕ|H2‖2/p
e ([25, Theorem 3.5]), and, because the essential norm is greater than

or equal to the essential spectral radius, the Main Theorem yields the corollary.
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When ϕ is analytic on the closure of U , the essential spectral radius re(Cϕ|H2)
may be calculated by evaluating the derivative of an appropriate iterate of ϕ at
points on ∂U that are fixed for that iterate (see Theorem 4.1). This calculation is
especially simple when the only points in S := ϕ(∂U) ∩ ∂U are fixed by ϕ—in this
case the “appropriate iterate” is the first one, and the Main Theorem (along with
Theorem 4.1) yields the following:

|ϕ′(0)|p/2 > max{ϕ′(ζ)−1/2 : ζ ∈ S} implies σ ∈ Hp.(3.9)

That the quantity max{ϕ′(ζ)−1/2 : ζ ∈ S} in (3.9) is re(Cϕ|H2) also follows from
[6, Corollary 2.5].

Example. Suppose ϕ(z) = z/(2 − z4). Then S = {1, i,−1,−i} contains only
boundary points fixed by ϕ, so that (3.9) applies and shows that σ ∈ Hp for each
p < log(5)/ log(2) ≈ 2.322 (the image of σ is Figure 1 on the first page of this paper).
Moreover, Theorem 4.7 of the following section shows that this result is sharp: σ
does not belong to Hp for any p ≥ log(5)/ log(2). We note that this information
about the Hp classes to which σ belongs determines the point spectrum of Cϕ on
Hp. For example, the point spectrum of Cϕ : H1 → H1 equals {1, ϕ′(0), ϕ′(0)2}.

4. A necessary condition for inclusion in Hp

We continue to assume that ϕ is a holomorphic self-map of U such that ϕ(0) = 0
and 0 < |ϕ′(0)| < 1 and that σ is the Koenigs eigenfunction for ϕ. In this section,
we show that the sufficient condition of the Main Theorem for σ to belong to Hp

is necessary when ϕ is analytic on the closed disk. Our work depends upon the
formula for essential spectral radius contained in part (b) of Theorem 4.1 below.
Part (a) of the theorem is due to Kamowitz ([14, Theorem A (part 3)]), while part
(b) is stated on page 296 of [7].

Theorem 4.1. Suppose that ϕ : U → U is analytic on the closure of U and that ϕ
is not an inner function. Then

(a) there is a positive integer N such that the set

SN := {ϕN (ω) : ω ∈ ∂U, |ϕN (ω)| = 1}
is finite and consists only of fixed points of ϕN ;

(b) re(Cϕ|H2) = max{ϕ′N (ζ)−1/(2N) : ζ ∈ SN}.
Note that if SN is empty, then ‖ϕN‖∞ < 1 so that CϕN is compact, and thus,

re(Cϕ|H2 ) = 0. Hence, max{ϕ′N (ζ)−1/(2N) : ζ ∈ SN} should be interpreted as 0
when SN is empty.

We’ve already noted that part (a) of Theorem 4.1 is proved in [14]. The maximum
of part (b) also plays a role in [14], and one may prove part (b) by modifying
arguments and results contained in that work. In particular, the proof of [14,
Theorem 3.8] may be modified to show that re(Cϕ|H2 ) ≤ max{ϕ′N (ζ)−1/(2N) : ζ ∈
SN}. We prefer to present here a self-contained proof of part (b). The heart of our
proof is contained in Lemmas 4.2, 4.3, and 4.4 below. In stating these lemmas we
use the following notation:

• E(ϕ) := {ζ ∈ ∂U : |ϕ(ζ)| = 1};
• δ(ϕ) := maxζ∈E(ϕ) |ϕ′(ζ)|−1;

• ‖Cϕ|H2‖e is the essential norm of Cϕ : H2 → H2.
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If ϕ is analytic on the closure of U and is not inner, then the set E(ϕ) is finite ([14,
Lemma 1.3]), and we denote the number of elements in E(ϕ) by #E(ϕ).

Lemma 4.2. Suppose that ϕ : U → U is analytic on the closure of U and that ϕ
is not an inner function. Then

δ(ϕ) ≤ ‖Cϕ|H2‖2
e ≤ (#E(ϕ))δ(ϕ).

Proof. By Theorem 3.3 of [25], the lower bound holds for any holomorphic self-map
of U , with the boundary derivatives interpreted as angular derivatives.

To obtain the upper bound, we use Theorem 2.3 of [25]:

‖Cϕ|H2‖2
e = lim sup

|w|→1−

Nϕ(w)

1− |w| .

For our special situation here, let E = E(ϕ). Now ϕ is continuous on U , ϕ(U)
contacts ∂U only at the points of ϕ(E), and Nϕ(w) vanishes when w is outside
ϕ(U). Thus in our case the formula above simplifies to:

‖Cϕ|H2‖2
e = lim sup

w→ϕ(E)

Nϕ(w)

1− |w| = max
η∈ϕ(E)

lim sup
w→η

Nϕ(w)

1− |w| .

Fix a point η ∈ ϕ(E) that achieves the maximum on the right-hand side of the last
display (the existence of this maximum is not in question since E, and therefore
ϕ(E), is finite). Let {ζ1, ζ2, . . . , ζn} = ϕ−1({η}). All these pre-image points belong
to E, of course, and since ϕ′ vanishes at no point of E (by the Schwarz Lemma,
|ϕ′| ≥ 1 at each point of E) we know that ϕ is univalent in a neighborhood of each
one. Thus (after a little arranging) we can find an open disk ∆η centered at η
whose inverse-image under ϕ consists of n disjoint open sets Vj , 1 ≤ j ≤ n, where
for each j:

• Vj is a neighborhood of ζj ,
• ϕ is one-to-one on Vj , and
• ϕ(Vj) = ∆η.

For each w ∈ ∆η and 1 ≤ j ≤ n let zj(w) be the unique pre-image of w in Vj . Then
we have, using our choice of η, and the fact that w→ η ⇔ zj(w) → ζj for each j:

‖Cϕ|H2‖2
e = lim sup

w→η

Nϕ(w)

1− |w|

= lim sup
w→η

n∑
j=1

log(1/|zj(w)|)
1− |w|

≤
n∑
j=1

lim sup
w→η

1− |zj(w)|
1− |w|

=

n∑
j=1

lim sup
z→ζj

1− |z|
1− |ϕ(z)|

=

n∑
j=1

1

|ϕ′(ζj)| (by Julia-Carathéodory)

≤ (#E)δ(ϕ) .
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Lemma 4.3. Suppose that ϕ : U → U is analytic on the closure of U and that ϕ
is not an inner function. Then

re(Cϕ|H2)2 = lim
n→∞ δ(ϕn)1/n.

Proof. The point here is that E(ϕn) ⊂ E(ϕ) for every positive integer n, so by the
preceding lemma,

δ(ϕn) ≤ ‖Cϕn |H2‖2
e ≤ (#E)δ(ϕn),

where E = E(ϕ) does not depend on n.
Now take n-th roots in the above string of inequalities and pass to the limit:

lim sup
n→∞

δ(ϕn)1/n ≤ re(Cϕ|H2)2 ≤ lim inf
n→∞ δ(ϕn)1/n,

which shows that δ(ϕn)1/n → re(Cϕ|H2)2 as n→∞.

Lemma 4.4. Suppose that ϕ : U → U is analytic on the closure of U , that ϕ is not
an inner function, and that ϕ(E(ϕ)) consists entirely of fixed points of ϕ. Then

re(Cϕ|H2 )2 = max
η∈ϕ(E)

1

ϕ′(η)
.

Proof. For ζ ∈ E we have from the chain rule and the fact that ϕ(ζ) is a fixed point
of ϕ:

ϕ′n(ζ) = ϕ′n−1(ϕ(ζ))ϕ′(ζ) = ϕ′(ϕ(ζ))n−1ϕ′(ζ).

Upon using this in the definition of δ(ϕn) we obtain:

δ(ϕn)1/n = max
ζ∈E

1

|ϕ′(ϕ(ζ))|1−1/n
· 1

|ϕ′(ζ)|1/n

→ max
ζ∈E

1

|ϕ′(ϕ(ζ))| as n→∞

= max
η∈ϕ(E)

1

|ϕ′(η)| ,

so the desired result follows from Lemma 4.3 (note |ϕ′(η)| = ϕ′(η) because η is a
fixed point of ϕ).

Proof of Theorem 4.1(b). Let N be the positive integer identified in part (a) of
Theorem 4.1. To obtain part (b), apply the preceding lemma to ϕN instead of ϕ
(with E = E(ϕN )), observe that SN = ϕN (E), and use the fact that re(T

N ) =
re(T )N for any bounded p-Banach space operator T .

Remark. Theorem 4.1(b) should be compared with Corollary 2.5 of [6]: the bound-
ary-fixed-point hypothesis of Theorem 4.1(b) is weaker but its smoothness hypoth-
esis on ϕ is stronger.

The following corollary of Theorem 4.1 combined with our Main Theorem shows
that the Koenigs eigenfunction of ϕ must belong to some Hp space whenever ϕ is
analytic on the closure of U and not inner.

Corollary 4.5. Suppose that ϕ : U → U is analytic on the closure of U and that
ϕ is not an inner function. Then

re(Cϕ|H2 ) < 1.

Proof. Apply Theorem 4.1(b) and the Denjoy-Wolff Theorem.
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To obtain our necessary condition for Koenigs-map inclusion in Hp, we will
require the following well-known fact about the growth of Hp functions.

Lemma 4.6. Suppose that f ∈ Hp. Then

|f(z)|(1− |z|)1/p → 0 as |z| → 1−.

Proof. Use the lemma on page 36 of [9], and then use density of the polynomials
in Hp.

We are now in a position to state and prove the promised necessary condition
for Koenigs map inclusion in Hp. Our argument sharpens and generalizes the one
used by Cowen to establish Theorem 3.8 of [6].

Theorem 4.7. Suppose that ϕ is analytic on the closure of U and that for some
p ∈ (0,∞) its Koenigs eigenfunction σ belongs to Hp. Then

|ϕ′(0)|p/2 > re(Cϕ|H2 ).

Proof. Each ϕ satisfying the hypotheses of this theorem satisfies the hypotheses of
Theorem 4.1 (σ ∈ Hp implies ϕ is not inner by Proposition 3.2). Thus there is a
positive integer N such that the set SN := {ϕN (ω) : ω ∈ ∂U, |ϕN(ω)| = 1} is finite
and consists only of fixed points of ϕN .

Assume N = 1 so that ϕ(Ū ) contacts ∂U only at fixed points. Let ζ be one of
those fixed points. The theorem for the N = 1 case follows if we can show

|ϕ′(0)|p/2 > 1√
ϕ′(ζ)

(4.1)

(by Theorem 4.1).
By the Denjoy-Wolff Theorem, ϕ′(ζ) > 1 (recall again our standing assumption

that ϕ(0) = 0). Thus there is a disk D centered at ζ such that ϕ has an inverse on
D and ϕ−1(D) ⊂ D. Define ψ on D by ψ = ϕ−1 and set

λ = ψ′(ζ) = 1/ϕ′(ζ).

Koenigs’ work, as discussed in the Introduction and in Section 2 (but now with D
replacing U), shows that

ψn − ζ

λn

converges uniformly as n → ∞ on compact subsets of D to a univalent function
g : D → C such that

g ◦ ψ = λg.

Thus for any z ∈ D we have ψn(z) = g−1(λng(z)). Because g−1 is conformal (at
0), there are uncountably many points z in D ∩ U such that the sequence (ψn(z))
approaches ζ nontangentially within D ∩ U (that is, (ψn(z)) lies within a triangle
with vertex ζ that is contained in D ∩ U). Choose such a point z0 ∈ D ∩ U such
that σ(z0) is nonzero. Set zk = ψk(z0) and observe that because zk approaches ζ
nontangentially, there is a positive constant M such that

(1− |zk|) ≥M |ζ − zk|.(4.2)

Using σ ◦ ϕ = ϕ′(0)σ, we also have

σ(zk) = [1/ϕ′(0)k]σ(z0).(4.3)
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Finally, observe that

ϕ′(ζ)k(ζ − zk) =
ζ − ψk(z0)

λk

converges to −g(z0) 6= 0 (g is univalent and g(ζ) = 0). Therefore the sequence
ϕ′(ζ)k(ζ − zk) is bounded away from zero:

ϕ′(ζ)k|ζ − zk| ≥ c > 0.(4.4)

Putting (4.2), (4.3), and (4.4) together, we obtain

|σ(zk)|(1− |zk|)1/p ≥ M |σ(zk)||ζ − zk|1/p

= M |σ(z0)| 1

ϕ′(ζ)k/p|ϕ′(0)|k [ϕ′(ζ)k|ζ − zk|]1/p

≥ Mc1/p|σ(z0)|
(

1

ϕ′(ζ)1/p|ϕ′(0)|
)k

.

Because σ ∈ Hp, the quantity Mc1/p|σ(z0)| is positive, and k is arbitrary, Lemma
4.6 shows that we must have

|ϕ′(0)| > ϕ′(ζ)−(1/p),

which is equivalent to (4.1) so that the proof of the N = 1 case is complete.
Now suppose that N > 1 so that ϕN (Ū) contacts the unit circle only at a finite

number of fixed points of ϕN . Our work for the N = 1 case (replace ϕ with ϕN )
shows that for any fixed point ζ of ϕN ,

|ϕ′N (0)| > [(ϕN )′(ζ)]−(1/p).

Because ϕ(0) = 0, ϕ′N (0) = ϕ′(0)N and thus we have

|ϕ′(0)| > [(ϕN )′(ζ)]−1/(Np)

or

|ϕ′(0)|p/2 > [(ϕN )′(ζ)]−1/(2N).

Choosing ζ to yield the maximum on the right-hand side of (b) of Theorem 4.1, we
have |ϕ′(0)|p/2 > re(Cϕ|H2).

5. The essential spectral radius of a composition operator on Hp

In this section, we show that for an arbitrary analytic ψ : U → U

re(Cψ |Hp) = (re(Cψ |H2 ))
2/p

.(5.1)

We’ve already established that if ψ(0) = 0, then

re(Cψ |Hp) ≤ (re(Cψ |H2))
2/p

(see Theorem 3.8). Our first step in proving (5.1) is to show that the hypothesis
ψ(0) = 0 is not needed to obtain the preceding inequality. We require the following
two lemmas; in their statements, r(Cψ |Hp) denotes the spectral radius of Cψ :
Hp → Hp.

Lemma 5.1. Suppose that ψ is an arbitrary analytic self-map of U . Then

r(Cψ |Hp) = r(Cψ |H2)2/p.



320 PAUL S. BOURDON AND JOEL H. SHAPIRO

Proof. Use the fact that ‖Cψ|Hp‖∗ = ‖Cψ|H2‖2/p
∗ (which follows from a simpler

version of the argument yielding Lemma 3.7) and the spectral radius formula to
obtain the result.

Lemma 5.2. Suppose that ψ is an analytic self-map of U with Denjoy-Wolff point
ω ∈ ∂U . Then

re(Cψ |H2) = ψ′(ω)−1/2 = r(Cψ |H2 ).

Proof. We have

re(Cψ |H2) ≤ r(Cψ |H2) = ψ′(ω)−1/2,

where the equality above is part of Theorem 2.1 of [6]. To argue that

re(Cψ|H2 ) ≥ ψ′(ω)−1/2,

we consider two cases: ψ′(ω) < 1 (the hyperbolic case) and ψ′(ω) = 1 (the parabolic
case).

When ψ′(ω) < 1, Theorem 4.5 of [6] shows that every point in the annulus
A := {z : ψ′(ω)1/2 < |z| < ψ′(ω)−1/2} is an eigenvalue of Cψ of infinite multiplicity
so that the essential spectrum of Cψ contains A. Thus, in the hyperbolic case, we

have re(Cψ |H2) ≥ ψ′(ω)−1/2.
Suppose that ψ′(ω) = 1, but re < 1. Then

Cψ − I

is Fredholm of index zero and thus 1 must be an eigenvalue for C∗ψ (because the

constant function g(z) = 1 is in the kernel of Cψ − I). Let f be a corresponding
eigenfunction. We have for each positive integer n,

f (n)(0)

n!
= 〈(C∗ψ)kf, zn〉
= 〈f, (ψk)n〉
→ 〈f, ωn〉 (k →∞)

= ω̄nf(0).

Thus all of the Taylor coefficients of f at 0 have modulus equal to |f(0)|; since f is
in H2, we must have f ≡ 0, a contradiction. Thus, in the parabolic case we have
re(Cψ |H2) ≥ 1 = ψ′(ω)−1/2.

Theorem 5.3. Suppose that ψ is an arbitrary analytic self-map of U . Then

re(Cψ |Hp) ≤ (re(Cψ |H2 ))
2/p

.(5.2)

Proof. Let ω denote the Denjoy-Wolff point of ψ. If |ω| < 1, then Cψ is similar
to a composition operator whose symbol fixes zero (see the discussion preceding
equation (2.3)). Because similar operators have the same essential spectral radius,
Theorem 3.8 gives us (5.2).

Suppose now that |ω| = 1. We have

re(Cψ |Hp) ≤ r(Cψ |Hp)

= r(Cψ |H2 )2/p (Lemma 5.1)

= re(Cψ |H2)2/p (Lemma 5.2),

completing the proof.
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An alternative proof of the preceding theorem for p ≥ 1 may be derived from
the following essential-norm inequality, which holds for any analytic ψ : U → U :

‖Cψ|Hp‖e ≤ 2|1−2/p| (‖Cψ|H2‖e)2/p .(5.3)

For p ≥ 1, Theorem 5.4 follows from the preceding inequality upon replacing ψ
with ψn, taking n-th roots, letting n→∞, and then applying the essential spectral
radius formula (2.1). We omit the proof of (5.3), except to note that it follows along
the same lines as the proof of the corresponding part of the essential norm formula
of [25], with the Littlewood-Paley formula (the case p = 2 of the formula below)
for the H2 norm replaced with the more general Hardy-Stein-Spencer identity ([13,
Theorem 3.1, p. 67]):

‖f‖pp =
p2

2

∫
U

|f |p−2|f ′|2 log
1

|z|dν(z) + |f(0)|p(5.4)

where dν is normalized area measure on the unit disk, f is any function holomorphic
on U , and 0 < p <∞.

While we omit the proof of inequality (5.3), the Hardy-Stein-Spencer identity is
crucial to our next result, whose proof also uses ideas from [25].

Theorem 5.4. Suppose ψ is an analytic self-map of U . Then

re(Cψ |Hp) = (re(Cψ |H2 ))
2/p

.

Proof. In order to avoid separate treatment of the p ≥ 1 and p < 1 cases, we define

‖Cψ|Hp‖e∗ = inf{‖(Cψ −K)|Hp‖∗ : K is a compact operator on Hp}.
Thus ‖Cψ|Hp‖e∗ is the essential norm of Cψ when p ≥ 1, ‖Cψ|Hp‖pe∗ is the essential
norm of Cψ when 0 < p < 1.

By Theorem 5.3, we need only show that

re(Cψ |Hp) ≥ (re(Cψ |H2 ))
2/p

;

moreover, by the discussion preceding this theorem, to obtain this inequality it
suffices to show that

‖Cψ|Hp‖e∗ ≥ (‖Cψ|H2‖e∗)2/p .(5.5)

Our proof of the inequality (5.5) follows closely the argument presented in Section
5.4 of [25]. Fix a ∈ U and p ∈ (0,∞). Let

υa(z) =
a− z

1− āz

so that υa is a self-inverse automorphism of U taking 0 to a. Define

fa(z) =

(√
1− |a|2
1− āz

)2/p

so that (fa)
p/2 is the normalized reproducing kernel at a for the Hilbert space

H2. Observe that fa is in the unit ball of Hp and that as |a| → 1−, fa converges
uniformly on compact subsets of U to the zero function. Thus ‖Kfa‖Hp → 0 for
any compact operator K on Hp.
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Using (5.4) and a standard multivalent change-of-variables argument (see [25,
section 4.3] or [10, Section 2]), we have

‖Cψfa‖pHp = p2/2

∫
U

|fa|p−2|f ′a|2Nψdν + |fa(ψ(0))|p

= 2|a|2
∫
U

1− |a|2
|1− āw|4Nψ(w)dν(w) + |fa(ψ(0))|p

=
2|a|2

1− |a|2
∫
U

Nψ|υ′a|2dν + |fa(ψ(0))|p

=
2|a|2

1− |a|2
∫
U

Nψ(υa)dν + |fa(ψ(0))|p,

where we remind the reader that Nψ is the Nevanlinna counting function, defined
in (3.1), and dν is normalized area measure on U (dxdy/π). Now fix r ∈ (0, 1) and
choose |a| sufficiently close to 1 so that υa(rU) doesn’t contain ψ(0). Then Nψ ◦υa
has the sub-mean value property on rU (by [10, Section 2]; see also [26, Section
10.6]): (1/r2)

∫
rU
Nψ(υa)dν ≥ Nψ(υa(0)) = Nψ(a). Thus we have

‖Cψfa‖pHp ≥ r2
2|a|2

1− |a|2Nψ(a).

Taking the limit superior as |a| → 1− and using the H2 essential-norm formula [25,
Theorem 2.3], we have

lim sup
|a|→1−

‖Cψfa‖Hp ≥ [r‖Cψ |H2‖e∗ ]2/p.

Now because fa is in the unit ball of Hp and Kfa is norm convergent to 0 as
|a| → 1−, we have for any compact operator K on Hp,

‖(Cψ −K)|Hp‖∗ ≥ lim sup
|a|→1−

‖(Cψ −K)fa‖Hp

= lim sup
|a|→1−

‖Cψfa‖Hp

≥ [r‖Cψ|H2‖e∗ ]2/p.
Since the compact operator K and the number r ∈ (0, 1) are arbitrary, we have
(5.5), as desired.

Theorem 5.4 yields the following generalization of Lemma 5.2.

Corollary 5.5. Suppose that ψ is an analytic self-map of U with Denjoy-Wolff
point ω ∈ ∂U . Then

re(Cψ|Hp) = r(Cψ |Hp) = ψ′(ω)−1/p.

Proof. The second equality follows immediately from Lemmas 5.1 and 5.2. To
obtain the first, note that

re(Cψ |Hp) = (re(Cψ |H2))
2/p

(Theorem 5.4)

= (r(Cψ |H2))
2/p

(Lemma 5.2)

= r(Cψ |Hp) (Lemma 5.1),

as desired.
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For a composition operator induced by a self-map with Denjoy-Wolff point inside
U , the essential spectral radius certainly need not equal the spectral radius. We
have seen that, for example, re(Cψ |Hp) < 1 whenever ψ(0) = 0 and ψ is a non-inner
function that extends analytically across the boundary of U (see Corollary 4.5). On
the other hand since 1 is in the point spectrum of every composition operator, the
spectral radius of Cψ is never less than 1.

6. Questions

Recall that ϕ denotes a holomorphic self-map of the open unit disk U such that
ϕ(0) = 0 and 0 < |ϕ′(0)| < 1, while σ denotes the Koenigs eigenfunction of ϕ. The
principal question raised by our work is whether the sufficient condition (3.8) for
σ to belong to Hp is, in general, necessary. We’ve shown it is necessary when ϕ
is analytic on the closed disk, and as we noted in the Introduction, Pietro Poggi-
Corradini has shown it is necessary for univalent ϕ. In addition, the authors can
prove that if ϕ′ extends continuously to U ∪ {ζ}, where ζ ∈ ∂U is a fixed point of
ϕ, then σ ∈ Hp implies

|ϕ′(0)|p ≥ 1

ϕ′(ζ)
.

Hence, our sufficient condition is at least “almost necessary” for a C1 map ϕ such
that re(Cϕ|H2) is determined by derivatives of ϕ at boundary fixed points.

Cowen and MacCluer [8, Corollary 19] recently showed that if ϕ is univalent then
the essential spectrum of Cϕ : H2 → H2 is a (possibly degenerate) disk about the
origin, with Koenigs eigenvalues filling out the rest of the spectrum. The same re-
sult holds without the hypothesis of univalence if ϕ is assumed to be analytic on the
closed disk (see [7, Theorem 7.36]). Does this “disk + isolated eigenvalues” char-
acterization of the spectrum continue to hold for arbitrary composition operators
whose symbols fix a point of U? We remark that for univalently induced composi-
tion operators the essential spectral “disk” can indeed degenerate to a single point,
even for composition operators that are not power-compact (see [2]).

There are many interesting open problems concerning the geometry of images
of Koenigs eigenfunctions. For example, based on the computer-generated image
displayed as Figure 2 in Section 1, the Koenigs function for ϕ(z) = z5/30+z4/30z4+
14z/15 appears to be star-like with respect to the origin. Is this, in fact, the case?
More generally, what are necessary and sufficient conditions on ϕ that will insure
σ(U) is star-like relative to the origin?

Another question raised by our work is whether

‖Cψ|Hp‖e = (‖Cψ|H2‖e)2/p ,
where ψ : U → U is arbitrary. We’ve shown in the proof of Theorem 5.4 that

‖Cψ|Hp‖e ≥ (‖Cψ|H2‖e)2/p ;

moreover, as we pointed out in the preceding section, we can show that for p ≥ 1,

‖Cψ|Hp‖e ≤ 2|1−2/p| (‖Cψ|H2‖e)2/p .(6.1)

Thus the real issues are (1) whether the inequality (6.1) holds for 0 < p < 1 and
(2) whether the constant 2|1−2/p| in the inequality may be replaced by 1.
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Remarks. (1) The authors recently learned that P. Poggi-Corradini has shown that
the converse of the Main Theorem holds without any extra hypotheses on ϕ [20].

(2) We would like to thank the referee for providing several references and for
offering suggestions that improved the quality of our exposition.
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Abstract. In 1884, G. Koenigs solved Schroeder’s functional equation

f ◦ ϕ = λf

in the following context: ϕ is a given holomorphic function mapping the open
unit disk U into itself and fixing a point a ∈ U , f is holomorphic on U , and λ
is a complex scalar. Koenigs showed that if 0 < |ϕ′(a)| < 1, then Schroeder’s
equation for ϕ has a unique holomorphic solution σ satisfying

σ ◦ ϕ = ϕ′(a)σ and σ′(0) = 1;

moreover, he showed that the only other solutions are the obvious ones given
by constant multiples of powers of σ. We call σ the Koenigs eigenfunction of
ϕ.

Motivated by fundamental issues in operator theory and function theory,
we seek to understand the growth of integral means of Koenigs eigenfunctions.
For 0 < p < ∞, we prove a sufficient condition for the Koenigs eigenfunction
of ϕ to belong to the Hardy space Hp and show that the condition is necessary
when ϕ is analytic on the closed disk. For many mappings ϕ the condition may
be expressed as a relationship between ϕ′(a) and derivatives of ϕ at points on
∂U that are fixed by some iterate of ϕ. Our work depends upon a formula we
establish for the essential spectral radius of any composition operator on the
Hardy space Hp.
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