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1. Introduction. An F-space is a complete, metrizable linear topological space.

This article is intended as a case study showing how F-spaces which are not locally
conveX generate interesting questions which do not ceccur in the locally'convex
theory. When these questions are related to concrete spaces of analytic functions
they lead to new problems in function theory, and conversely the spaces of analytic
functions provide examples that are interesting for the general theory.

The non locally convex phenomenon of interest here is the existence of proper,

closed subspaces that are dense in the weak topology. According to the Hahn-Banach

theorem such objects never occur in the locally convex theory. In section 2 of
this paper we will see that they capn occur in F-spaces which are not locally convex:
whether they always occur is an open problem. Sections 3 and 4 discuss how these

subspaces show up among the shift-invariant subspaces of the Hardy spaces H for

0 <p <1, and how they can be used to construct interesting examples of F-spaces
with trivial dual. The fifth section contains a more detailed examination of some
of these matters., In particular there is a fairly complete proof that E% contains a
proper, closed, weakly dense invariant subspace, and there i{s a discussion of the
"Banach envelope' of HP(O < p <1). The final section deals with the Hardy Algebra
N+, a classical space of analytic functions closely related to the Hardy spaces,

whose weakly dense invariant subspaces can be completely characterized.

2. Separation properties. We are going to focus on the way in which continuocus

linear functionals on an F-space separate points from each other and from closed
subspaces. Suppose E is a linear topological space with (topological) dual E'.

We say E has the;

a) Point separation property if E' separates points of E, or equivalently

if for every 0 # x in E there is a non-trivial continuous linear
functional X on E with A{x) # 0;

*
T want to thank the Department of Mathematics, University of Wisconsin-Madison for
its hospitality during the preparation of this paper.
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) Hahn-Banach separation property if E' separates points of E from closed

subspaces not containing them, or equivalently if every closed subspace

of E is weakly closed;

c) Hahn-Banach approximation property if each proper, closed subspace of

E is annihilated by sowe non-trivial continuous linear functionmal, or
equivalently if every weakly dense subspace is dense.
It is easy to see that the last two properties can be characterized in terms of
quotient spaces; E has the Hahn~Banach separation property iff every quotient of
E (by a closed subspace) has the point separation property; and the Hahn-Banach
approximation property iff mo nontrivial quotient has trivial dual.

Clearly the Hahn-Banach separation property implies the other twe. For
locally convex (Hausdorff) spaces the Hahn-Banach theorem guarantees all of them,
but a space that is not locally convex may have pone of them. Perhaps the most
famous example of such pathology is the F-space P = LP([O,IJ) for 0 < p <1, taken

in its natural metric d{(f,g) = ||£ - g||, where

1
@.1) el = | ley[Pac (f in LF),
0

In 1940 M.M. Day [27] showed that 1P has no non-trivial continuous linear functionals,

i.e. (Lp)’ = {0} for 0 < p < 1. 1In particular, 1P has none of the above separation

properties.
Before we continue, note that the functional “-” defined by (2.1} is sub-

additive on Lp, but not homogeneous. Instead it is p-homogeneous:

lag = |]?) 4

for each f in 1P and each scalar a. Such functionals (subadditive, p-homogeneous,

vanishing only at the origin) are called p-norms.
An example more subtle than tP is the sequence space zP(O <p <1) with the

natural topology induced by the p-norm
= [-+3
el < Z e l® = g@)] in D).
1
For each positive integer n the evaluation functional
Kﬂ{f) = £(n) (£ in £9)

is continuous, and the family (Kn)§ separates points of £?, 50 zp has the point

separation property. However, AP does not have the Hahn-Banach approximation

property (so it does mot have the Hahn-Banach separation property either) when

0<p<11[27], [30]. This is not difficult to see. First recall the result of
Mazur and Orlicz which states that every separable Banach space is isomorphic to

a guotient of 21. Essentially the same proof (let (en) be the standard unit vector
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basis of 51, choose a countable denss subset (xn) of the unit ball of the Banach
space, extend the bijection e =X by linearity and continuity to all of Ll,
prove that the extended map is onto) shows that for 0 < p < 1 every separable
p-normed F-space is isomorphic to a quotient of gp. In particular Lp, which has
trivial dual, is isomorphic to a quotient of £p, so £¥ fails to have the Hahn-Banach
approximation property by the quotient space characterization.

The closed subspace-call it K- by which 2P was divided to get i? is an example
of a proper, closed, weakly dense subspace in Lp. Unfortunately K is not an easy

object to lay hands on: all we get from the proof of its existence is that

K={fin £F : & f(m)x_ = 0}
1 n

for (xﬁ) 2 fixed dense subset of the LF unit ball (e.g. (Xn) = all trigonometric
polynomials with rational coefficients). So other than the fact that K exists, it
does not seem to lead to any interesting analysis in zp.
The situation is different for the Hardy spaces #P. In 1969 Duren, Romberg,
and Shields studied these spaces for 0 < p < 1 and found proper, cliosed, weakly

dense subspaces invariant under multiplication by the independent variable z.

Unlike the subspace K of the previous paragraph, these invariant subspaces of Hp
are tractable from the point of view of function theory, and the fact that some of
them are weakly dense when 0 < p < 1 raises new questions about the structure of
#¥ functions. This matter will be the subject of the next section.
Motivated by these examples, Duren, Romberg, and Shields posed two general
questions:
(1} Doesg every non locally convex F-space fail to have the Hahn-Banach
separation property?
{2) TDoes every non locally convex F-space fail te have the Hahn-Banach
approximation property?

The first question was recently answered in the affirmative by N, J. Kalton:

KALTON'S THEOREM [12; Cor. 3.31. An F-space is logally convex if and only if it has

the Hahn-Banach separation property.

An equivalent statement in the language of quotient spaces is this: If an F-space

is not locally convex, then some guotlient has a dual which does not separate points.

The second question is still open. An equivalent formulation is: does every

non locally convex F-space have a nontrivial gquotient with trivial dual?

Finally, it should be pointed out that replacing "F-space’ by"Hausdorff linear
topological space' in these two questions changes the situation drastically. In
fact there are many nen locally convex linear topological spaces with the Hahn-Banach

separation property, and hence also the Hahn-Banach approximation property. For
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example any real or complex vector space of uncountable Hamel dimension endowed
with its strongest vector topology has this property (see [15; p. 53, Problem 61
and [5; pp. 59-601). A different class of examples arises from the fact if E is
an infinite dimensional Banach space, then E supports a non locally convex topology
T intermediate between its weak and norm topologies [71. Clearly the non locally
convex space (E, T) has the Hahn-Banach separation property (by the Hahn-Banach

theorem).

3., Weakly dense invariant subspaces in uP (0 < p <1). 7This section introduces the

"nice" examples of proper, closed, weakly dense subspaces that occur in the Hardy
spaces, and indicates some of the function theoretic problems they suggest. We
begin with a brief review of some basic theory: a good reference for this material

is the first three chapters of Duren's book [3].

Definition of i, The Hardy space #P is the collection of functions f analytic in

the open unit disc A such that

™

1 ity

”fﬁp =  sup g J | £ (re 3P dr < =,
P 0£r<12Tr 17

The case usually studied is 1 = p < o, where{bnp ie a norm which makes HF into a

Banach space. However the interest here is in the range 0 < p < 1, where the

functional H- g is a p-norm which makes # into an F-space [3; Page 37, Cor. 2].
That H® fails to be locally convex was first noticed by Livingston [17]*. For

each point z in A, the evaluation functional
A (E) = £(2) (f in #)

is continuous [3; Chapter 7, Page 1187, and the family (kz: £ in A) separates the

points of ¥, Thus H® has the point separation property, even when ¢ <p < 1.

The boundary correspondence. An important link between Hp theory and real analysis

is provided by a theorem of Fatou which states that for each f in H® the radial limit
f*(elt) = lim f(xelt} {r = 1-)

exists for almost every t, and the boundary function ¥ belongs to LP(T) (T = unit

circle) with

1T it
3.1 = £+ Pae = |Ig)P
3.1 =1 EDP e - E

[3; Theorem 2.6, P. 217. 1In other words the “boundary correspondence’ f = £ is a

*
Regarding this, note that any Banach space can masquerade as a p-normed space: if
H-! is the norm, then ﬁ-”P is a p-norm inducing the same topology.
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linear isometry taking Hp onto a closed subspace of LP(T). The boundary function &
even retains a vestige of analyticity in that it cannot be too small teo often.

More precisely, if 0 # £ € HF, then [3; Theorem 2.2, Page 17]

. T .
(3.2) j log]#* (et H|at > - =,
-1

This implies, for example, that f* canmot vanish on a subset of T having positive

measure.

Imner-outer factorization, Along with some classical function theory, the boundary

correspondence yields an important structure theorem for BF functions. We can ease
into this result by noting that for £ fixed in HP, {(3.1) and (3.2) imply that
19g1f*l is integrable on T. Thus the formula

. m it ,
) et |7 S el
'—ﬂ e -

defines a function F analytic on A and without zeroes there. Moreover F belongs to

it [3; gsection 2.47. MNow log[F(z)l is the Poisson integral of loglf*l, so standard
facts about Poisson integrals and subharmonic functions [ 3;Chapter 1] show that log if] =
logIFI on A and logif*l = IogIF*I almost everywhere on T. Thus q = £/F is a function
analytic on 4 (since F never vanishes), bounded in modulus by 1, with lq*(eit)! =1
a.e.. BSuch a function q is called an inner function, and ¥ as given by (3.3) is

called an outer function. Thus we see that every B’ function f can be factored as

(3.4) f=gF

where q 1g inner and F is outer. It turns out that this factorization is unique up

to a multiplicative constant of modulus 1.

A rough interpretation of this ianer-outer factorization might go as follows;:
the outer factor carries the modulus of the boundary function (since |f*| = IF*I
a.e.), and the inner factor carries the zeroes of the "interior" function {since
F never vanishes). But this is not quite the whole story: the inner factor gq itself
has a further decomposition which is probably best understood through some functional

analysis.

Invariant subspaces. Let U denote the operator of "multiplication by z" on HP,

that is:
WE) (2) = 2£(z) (£ in #, z in A).

U is often called the right shift, or unilateral shift because it shifts the Taylor

coefficients of f one unit to the right. U is notewcrthy because it is one of the
few infinite dimensional bounded operators whose invariant subspace structure has

been completely worked out. This was done for p = 2 (i.e. Hilbertspace) by Beurling,
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whose theorem forms the basis for a lot of modern interest in P spaces.

BEURLING'S THEOREM [1], [11; ¢ch. 7, p. 997, [10; Lecture I1]. A closed subspace of

8P is invariant under U (henceforth just "invariant'") if and oaly if it has the form

qHP for some inner function q.

Clearly each subspace qHP is invariant, and since ]q*| =1 a.e. it follows from the
boundary correspondence that qu is closed. So the force of Beurling's theorem lies
in the other direction: every invariant subspace is "generated" by an inner function,
The cases p # 2 follow from the case p = 2: for 1 € p < o the arguments are given
in Helson's monograph [10; Lecture IV}, and the case 0 < p < 1 goes just like
1 =p<2.

Beurling's theorem can also be viewed as a result on approximation. In this

formulation it states that the polynomial multiples of an #F function form a dense

subset of HP if and only if that function is outer [3; Section 7.3]. In 1969

Duren, Romberg, and Shields added a new dimension to Beurling's result by proving

that when 0 < p < 1 some inner functions (not identically 1) give rise to weakly

dense invariant subspaces in Hp. In view of the approximation-theoretic formulation

of Beurling's theorem, Duren, Romberg, and Shields called such inner functions

weakly outer. It is a challenging unsolved problem in function theory to
characterize in a useful way the inner functions that are weakly outer. In
particular it is not known if an inmer function can be weakly outer for some values
of 0 <p <1, but not for others.

In order to get some feeling for how the "weakly outer™ phenomenon can happen,

we need to look at some examples of inner functions and the invariant subspaces they
generate,

Examples of inner functions and invariant subspaces.

(a) Blaschke factors. These are functions of the form

2@ = g

for @ a fixed complex number in A. Se B is just the conformal mapping of 4 onto
itgself which interchanges O and @. Clearly B is an inner functiom, and it is easy
to see that the invariant subspace B’ is precisely the collection of # functions
that vanish at «. More generally, if n is a positive integer, then B is an inner
function and BTH' is just the collection of BF functions with a zero of order

2 n at o.

{b) Blaschke products. If (zn} is a sequence of points in A which satisfies the

Blaschke condition {1 - lznl) < o, then the Blaschke product

z £ - Z
£l Il

B =0T T-32

n
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certainly converges at the origin, and in fact it coanverges uniformly on each
compact subset of A [3; Theorem 2.4]. Since each factor in the product is an inner
function {a Blaschke factor rotated to have positive value at the origin) it seems
reasonable to hope that B itself will be inner, and this is exactly what happens.
The corresponding invariant subspace sef then consists entirely of # functions
vanishing on the sequence (zn), with multiplicity at each point = the number of
times that point oceurs in the sequence (< @ by the Blaschke condition). Moreover,
a factorization theorem we will state shortly shows that 3HF consists of 21l such

functions. It follows that for B a Blaschke product, the invariant subspace g

is weakly closed in Hp, even when 0 < p < ]1. This is most easily seen when each

member of the sequence (zn) occurs exactly once, for then 3P = f}h;l(O), where the
B Tn
evaluation functionals Rz are continuous. For the general case, evaluation of f at
n

z, is replaced by evaluation of an appropriate derivative of £ at z, (still a

continuous linear functional). So no Blaschke product can be weakly outer,

{c)} Singular inner functions. There are also inner functions with no zeroces in A,

Perhaps the most notorious of these is the unit singular function

Z‘+‘1}

S$(z) = exp {z T

which is clearly inner because : f % is a conformal map taking & onto the left
half-plane. While the unit singular function has no zeroes in 4, it has in a
certain sense a very strong "boundary zero," in that it decays very quickly to 0

along the unit interval. More precisely:

(3.5) () = 0”@ -1y

as v = l-. Now the growth of each f in E? is limited by the condition
- -1/p it

(3.6) [£¢z)] = 0((1-1) ) (x =1-, z =re*")

[3; Theorem 5.9] so each function in the invariant subspace suP decays to zero along
the unit interval at essentially the same exponential rate as §, hence has the same
kind of "boundary zero." We might conjecture from this that SHY is weakly closed
in #° when 0 < p < 1; and this is precisely the case {(although the proof, which
will be indicated in Section 5, proceeds along different lines).

The unit singular function can be generalized in the following way. Let il

be a positive measure on T singular with respect to Lebesgue measure. Then the
function

Mz + eit
§,(z) = exp{| =57 &1 ()}
Z - e
it

is an inner function {since log |S(re )| = -Poisson integral of u, hence is =0
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on A, and - 0 a.e. a8 r = 1-) which has nc zerces in A. %; is called the singular
inner function generated by ii. For example the unit singular function is §_, where

ds(t) = unit mass at t = 0.

Singular inner functions are more subtle objects than Blaschke products in that
they generate invariant subspaces not associated with zeroes of functions and

derivatives. On the other hand every inner function can be factored into a Blaschke

product and a singular inner function [3; Theorem 2.87, the factorization being

unique up to multiplication by a complex number of modulus one. This result, and
the previous factorization (3.4) show that every #° function can be factored into an
inner facror which carries the zeroes (namely the Blaschke product), an outer factor
which carries the boundary modulus, and a singular inner factor which has properties
in common with both the outer factor (it never vanishes in A), and the Blaschke
product (it is inner). Of course in order to make these statements correct, we must

allow the function = 1 to be simultaneously the trivial Blaschke product, singular

inner function, and outer function.

The weakly dense invariant subspaces {0 < p < 1}. Here at last is the result we

are aiming for. The preceding discussion shows that if an inner fumction is going
to be weakly outer (i.e. generate a weakly dense invariant subspace) in HP(O'<;)<1),
then it cannot have zeroes So by the factorization theorem just stated, it must be
a singular inner function. But the unit singular function, which generates a weakly
closed invariant subspace, shows that more is needed. Intuitively, the measure
generating the unit singular function is so rough that it induces radial decay in
the invariant subspace that persists even after weak closure. $o the guestion is:
can a measure on T be singular, yet smooth enough that the corresponding singular
inner function generates a weakly dense invariant subspace? Duren, Romberg, and
Shields [57 proved that such measures exist. In order to state their result

properly we need a way of determining the smoothness of a measure.

Definition. The modulus of continuity of a finite positive Borel measure on T is the

function

w“(s) = sup M{(I) >0
11568
where I rums through the intervals of T, and ]I| ig the length of I.
Note that ﬁi(é) = 0{8) impiies that U is absolutely continuous with respect to
lLebesgue measure. However it is well known that there exist positive singular
measures with any preassigned modulus of continuity rougher than G{§); for example

%J(ﬁ} = 0% log %) occurs as such a modulus of continuity {247,[47,[97.

The result of Duren, Romberg, and Shields is the following:
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THEOREM .5; Theorem 13, Page 53). Suppose 4 is a positive singular measure on T,

with modulus of continuity %J(é) = 0(§ log %—. Then the invariant subspace %JH? is

weakly dense in HP, that is, %A is weakly outer for O < p < 1.

The proof of this result will be sketched in the fifth section: for the case
p =% it will be reasonably complete. For the moment it is enough for us to know
that HF contains proper, closed, weakly dense subspaces that are naturally connected
with the analysis of the space, when 0 < p < 1. We have already seen that this leads

to an interesting problem in function theory: characterize those singular measures ¥

il whose associated inner functions %4 are weakly outer. Now we are going to show

that the existence of these "nice” weakly dense subspaces leads to interesting

examples in the theory of F-spaces,

4. Some F-spaces with trivial dual. I want to show how the results of the previous

section can be used to solve a problem in the general theory of F-spaces. The

problem, due to A. Pelczynski, is this: can an F-space with trivial dual have non-

trivial compact endomorphisms? Another way of acking this is: can an F-~space with

no nontrivial finite rank endomorphisms have a nontrivial compact endomorphism?

Recently Pallaschke [18] showed that Lp, which has trivial dual, actually has ne
non-trivial compact endomorphism (0 < p < 1), and Kalton {137 generalized this by
showing that there is no non-trivial compact operator from 1P into any Hausdorff
linear topological space. However, using the existence of proper, closed, weakly
dense invariant subspaces in w? (0 < p < 1), Kalton and I were able to show that
there exisgt F-spaces with trivial dual which nevertheless have non-trivial compact
endomorphisms [14]. Here is the idea of the proof.

Fix 0 < p <1, and let ® denote the topology of uniform convergence on compact
subsets of A (restricted to Hp). The hero of this section is going to be T, the
strongest topology on BP that agrees on bounded subsets of #° with x. That is, we
declare a set to be T-open if and only if its intersection with every bounded set B
is relatively w-open in B. It is easy to check that these T-open sets really are the
open sets for a topology, and it is not difficult to see that T is Hausdorff and
weaker than the original topology of #P. What is not so easy is to check that T is
a vector topology, but fortunately it is. Two other properties of ¥ which are not
difficult to prove are:

(1) The closed unit ball of #F is T-compact,
and

{(2) the invariant subspace qHP is T-closed for every inner function g. It is
the last property that is most critical: we would not be able to prove it if qu

were not such an explicitly described subspace.

Now choocse ¢ to be 2 singular inner function which generates a weakly dense
{proper) invariant subspace qu. The existence of such inner functions was

discussed in the last section. Then the quotient E = Hp/qHP is an F-space with
Nmmmm

¥ E}éw@' éé :}552

T & & %’mf
£,

il & _
7 fte ke basse g e Cnbpngin a2

£
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trivial dual. On the other hand, since qu is T-closed, the quotient F = H?/qﬁp in
the gquotient T-topology is a Hausdorff linear topological space with a topolegy weaker
than that of E (since T is weaker on Hp than the original topology). In particular,

F has trivial dual, and the identity map E — ¥ is continuous. In fact it is even
compact, since the identity map ¥ - (Hp,T) is compact (due to the T-compactness of
the HP unit ball). Thus the map E+ F - E + F defined by (e,f) — (C,e) is a non-
trivial compact endemerphism of E + ¥, and E+ F is a linear topological space which
has trivial dual, since E and F have trivial dual. .

So the fact that the invariant subspace qu is weakly dense, but T-closed,leads
rather directly to a& linear topological space E + F with trivial dual, which
nonetheless supports non-trivial compact endomorphisms. Unfortunately E + F is not
metrizable (since it turns out that F isn't), but it is not difficult to modify the
construction and replace F by a metrizable space (see [14] for the details), yielding

an F-space with trivial duwal but non-trivial compact endomorphisms. q.e.d,

This gives one instance of how uP theory can furnish examples that are

interesting in the study of P-spaces. Another such example is the quotient space

E = H?/qﬁp; the first factor in the direct sum mentioned above. We have just seen
that E is an F-space with trivial dual, that there is a compact operator taking E
into a Hausdorff linear teopological space (namely the identity map E — F), and that
there is no such operator on tP. So E is mot isomorphic to LP: in fact E is a new
F-space with trivial dual, and should be interesting to study in its own right. For
example, does E itself have a compact endomorphism? Does E have a compact convex
subset with no extreme point? James Roberts [19] has recently shown that there are
linear topolegical spaces with such subsets: in fact he has shown that LP is such a
space for 0 < p <1 [20]. At the moment it is not clear if every linear topological

space with trivial dual must contain such a set.

5. The Banach envelope and weakly outer inner functions. This section explores the

"weakly outer” phenomenen in greater detail. Surprisingly the controlling interest

in the problem belongs to a Banach space of analytic functions that contains .

The Banach envelope. Suppose E is a p-normed F-space (0 < p = 1) with the peoint

separation property. Then a simple exercise shows that the convex hull of the unit
ball of E contains no linear subspaces, so its Minkowski functional [15; Page 15]
is a norm on E which induces a topology weaker than the original one (equal to it iff

E was locally convex to begin with) but having the same continucus linear fupctionals.

The completion of E in this norm is a Banach space  called the Banach envelope of E.

Thus E is contzined in ﬁ, the inclusion map is continuous, and the dual of E is the
Y "~
same as that of E in the sense that the restriction map A - klE takes E' onto E'.
It is instructive to follow through this construction for the case £ = £P

(0 <p<1). Since Rf”l = Hf”p for all f in £P we see that ¢P is continuously
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embedded in zl via the identity map, so El is a candidate for Ep. In fact 4F = £1

in the sense that the identity map zp - zl extends to an isometry of EP onto El.
To see this we need only show that the zl-closure of the convex hull of the Lp-uait
ball is the Ll-unit ball. This is easy. Let (eﬂ) denote the standard unit wvector
basis for Ll. Then for each f in zl the partial sums of the series representation
f= %f(n)en are convex combinations of elements in the LP unit ball, and they converge
in 27 to £.

The fact that E and its Banach envelope have the same dual shows that a subspace

of E is weakly dense if and only if it is dense in E. So when dealing with specific

examples, one way to show that a subspace is weakly demse is to get hold of 2
concrete representation of the Banach envelope and show that the subspace is dense

therein. For HP (0 < p < 1) such 2 representation was obtained by Duren, Romberg,
and Shields:

THEOREM [5; Section 3]. The Banach envelope of H? is the space Bp of functions f

analytic in A such that

U2 g4y < .

el =ﬁA |£@ 1A - 2]
P

0f course the theorem is stated rather loosely: it really means that H is contained
in Bp’ the identity map wP - B? is continuous, and it extends to an isomorphism (not
isometry this time) of #f onto Bp. To be precise we should perhaps say that 51 is

an isometric representation of the Banach envelope of LP, while B? is merely an
isomorphic representation of the Banach envelope of # (0 <p<1). In any case the

important thing for our purposes is that a singular inner function q is weakly outer

if and only if qu {or equivalently the polvnomial multiples of q) is dense in BP.

So the weakly cuter phenomenon in # is also an approximation problem in a certain
Banach gspace of analytic funetioms. Such problems have been studied extensively by

H. S. Shapire [23], [25], [26], and his results play an important role in our story.
Before getting on with this, however, I would like to indicate why Bp is an isomorphic

representation of ﬁp, at least for p = %.

a¥ s 1 . , .
BE® = B,., Note that B, is just the subspace of L {A) consisting of analytic functions.
; 3 ki : P @) g 4

Our first task is to show that H® is contained in B% and the identity map is
L
continuous, i.e. that HEHB = C“fﬁ% for some constant ¢ independent of £ € H*. This

is a result of Hardy and Littlewood [8; Theorem 31]: a short proof can be based on

inner-outer factorization and Hardy's ipequality.

G.1) £+ 1B | = g

for each f(z) = Ti(n)z" in Hl [3; Page 487.
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Since l%{n)l = Hfﬂl for £ in Hl, Hardy's inequality yields

{ - a
5.2 L[ je@)? axey = 2+ DY) < o £l|?
s

for £ in B'. Now 1f £ € H® and has no zeroes in &, then £% € ! and ”f%]i1 = Hfﬂz.

%

80 replacing f by £° in (5.2) we obtain

(5.3) HfiiB% = ﬁé |£@) | amey < v 5],

which is the desired inequality. 1In case f has zeroes in & we can still apply this
result by using a trick due to Hardy and Littlewood. Let f = qF be the inner-outer
factorization (3.4) of £, let § = (q-1)F, so £ = G + F where neither G nor F have
zerces in &, and HG”% = Zﬂfﬁ%; vhile as we observed in Section 3, “FH% = ﬂf”%.
Applying (5.3) to F and G respectively yields:

A

e, =lldl, + 7
By By By

A

ﬂ2<IIGE£;5 +llFly  ®y 6.3

IA

s glly»

which completes the proof that H% is contained in B% with the identity map continuous.

To complete the proof that ﬁ% is isomorphically represented by B% we need to

%

show that the closure in B}5 of the H

unit ball contains some ball in B%. The idea
P

is similar to the one used for g°, except that instead of using a basis to represent

elements of B% we use the reproducing kernel

2.8
K(z,0) = (@ + 1) LJel .
a-Tf?

A calculation with power series shows that if B > 0 and £ € B% then
(5.4) (@) = [] x@OE©®E (z in 4)

4
where dA({) is normalized Lebesgue area measure on A. 5o if we write R{{)(2) = K{(z,{),
then each K{{) is an analytic function in 2z on the closed unit disc, and we can
think of (5.4) as representing each f in the B% unit ball as a sort of generalized
absolutely convex combination of these functions. In fact the right side of (5.4)
really is a limit in B% of absvlutely convex combinations of K({)'s, namely the
approximating Riemann sums for the integral (see [28; Section 3] for the details),
while a straightforward calculation with 8 = 2 shows that “K({;)”JE = 3 for all { in
4. This shows that the 3% unit ball lies in the B%—closure of the convex hull of

the H% ball of radius 3 about the origin, and completes the proof that the Banach
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%

envelope of H® is (isomorphically represented by) B%. For other values of p the
details of the last half ¢f the proof are similar, with a few more exponents to keep

geraight [28].

Existence of weakly outer inner functions. We can now outline a proof of the Duren,

Romberg, Shields theorem which states that a singular inney functien %4 is weakly
outer whenever its modulus of continuity is 0(5 log %). For simplicity we give the
proof only for p = %, although it is hardly more difficult for the other values of
0<p<1l. The argument is due to H. $. Shapiro [26; Theorem 1].

The essential point is that the modulus of continuity condition on the singular

measure L is equivalent to the growth condition

(5.5) m(z) = lmin s, o = c-e)F

=r
for some positive constants C and N independent of 0 < r < 1 (see [23, Theorem 27 for
the details). Thus %4 decays to zero rather slowly near the boundary; and given our
remarks about the unit singular function we appear to be on the right track. In fact
if N« 1 we are finished, since taking Py to be the nth arithmetic mean of the Taylor
series of 1/%} we have P, - 1/8 uniformly on compact subsets of 4, and [16; Kap. 1,
Satz 1, p. 22}

max |p (2)] S max |1/5 ()| < /m(jz)) € ¢ ta-leh™

]ziwr n z|=r M
Thus

s, @r @] < cta-l:h™,

where the right side is integrable over A, and %Jpn = 1 pointwise on A. 8o the
Lebesgue Dominated Convergence theorem implies that %Jpn = 1 in B%. Adopting the
notation [E] for the closure in B% of the subset E, we ses from the above that [8 H%}
contains all polynomials. But the polynomials are dense in B% [3, Theorem 3] so

[%JH%] = B%, and the proof is complete for N < 1.

1728
1

In case N 2 1 note that %& s the singular inner function induced by the

measure H/2N, and it obeys estimate (5.5) with exponent = %. So the last paragraph
shows that [%il/znﬂ%} = B,. Now it is easy to see that if q, and g, are inner
functions with q, weakly outer, then quqzﬁ%j = {QIH%], so taking q; = q, = %i/ZN we
cbtain

{%J1/NH%3 - [g /2 1/2NK%]

1 W
_ [SHUZNH%]
= B%.

Repeating the argument N times yields E%iﬁ%] = B,. QED
2
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The unit singular function is not weakly outer. We close this section by sketching

the proof that the unit singular function S5{z) = exp generates an invariant

2
2 -1
subspace that is not weakly dense.

So we have to find a non-trivial continuous linear functional on K that vanishes
on SHY. A device for writing down continucus linear functionals on ¥P is furnished

by the estimate
(5.6) 1T = c nljp“i!!f“p ,

where C is independent of the function £(z) = E%(n)zn € HP, and 0 <p <1 [3;

Theorem 6.4, Page 98). For example if (an); is a sequence of complex numbers with
_ -1-1/p

5.7) \anl = 0{n h]

then it follows from (5.86) that the formula

(5.8) AME =T a i) (£ in HD)

(=R}

defines a coatinuous linear functional on BP. We will be done if we can find a non-
trivial sequence (an) satisfying (5.7} and such that the linear functional A given
by (5.8) annihilates SHp. The way to do this is to study the function

. . . e @ .
1t) - elt(l - eat)k S(elt) ~ T h(n)elnt

-

hie »

which can be made to have as many continuous derivatives as desired simply by choosing
k sufficiently large (k = 2n + 1 guarantees n continuous derivatives, to be precise).
Choosing k so that h has at least 1 + 1/p continuous derivatives we obtain the
estimate ]ﬁ(n)g e 0((¥n1 + 1)-1'1/p)_ Let a = ﬁ(~n) for n & 0, so (an) cbeys (5.7),
and % as defined by (5.8) is continuous on HP. e claim that ) annihilates sHP. To

see this observe that ) can also be expressed by the integral formula
i . .
A = [ e OHmnetha
-

it

at least for f a polynomial. Recalling that for a.e, t we have 18*(51 )i = 1, the
integral formula for A gives for each polynecmial f:

ke : . -

A (SE) = %;f £t a-5HF e =0 .

Since the polynomials are dense in # [3; Theorem 3.3), the polynomial multiples of
§ are dense in SH?, so0 ) vanishes on all of sHP. So the proof is complete, provided
a = ﬁ(—n) # 0 for some n > 0. If this were not the case then h would be the
boundary function of an H2 function g. Now elt(l-elt}k is the boundary function of

the H2 function f(z) = z(l-z)k, and
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(8g)* = Skgk = S¥h = £ a.e.,

hence the H2 function $G - f has radial limits zezo a.e.. But in Section 3 we
remarked (after inequality (3.2)) that a non-trivial H2 function cannot have O as a
radial limit on a set of positive measure. Thus Sg = f. But this is impossible: for
example (3.53) and (3.6) would then guarantee that £(r} = r(l»r}k tends to zero
exponentially fast as r =~ 1-, which is clearly absurd. Thus a, # 0 for some positive
n, and the proof is complete.

This argument is due to H. S. Shapiro [25; Theorem 2], who actually proved that

S is not weskly outer whenever |l gives positive measure to some thin set. Here a

closed subset K of the unit circle is called thin if ¥ aﬁ 1og(1/ch}<ﬂ5 where @ is the
length of the nth interval in TNK. The case we have just treated is the one where K

is a singleton.

6. Weakly dense closed ideals in the Hardy Algebra, In this section we completely

characterize the weakly outer inner functions in the Hardy Algebra, a space of
analytic functions which is in some sense the "limit" of the i spaces as p - O+

Let N denote the space of funetions f analytic in 4 and having bounded

characteristic:
, .
(6.1) gl = sup g; j 10g(1+|f(relt)]dt < @,
0<rel -1
and let N+ dencte those functions £ in N for which the family {log+|f(reltﬂﬂ351:<1]

is uniformly integrable on the unit circle T. N is called the Nevanlipna Class, while

N+ is the Hardy Algebra f6; Ch. 5, Sec. 2] or Smirnov Class [3; Sec. 2.5 and Page 31].
Both N and N+ are algebras under pointwise multiplication, and N:3N+23Hp for all p> 0.
The metric induced by the subadditive functional ”-” makes N into a complete space im
which N+ is a closed subspace. Surprisingly this metric does not make N into a linear
topological space ~ the scalar muitiplication is discontinuous {297, but fortunately
N+ is spared this ewbarassment. It turns out that N+ is a complete topological
algebra in the metric induced by ”-ﬂ; and that while N+ is not locally comvex, it
does have the point separation property (for example it is not difficult to show that
the point evaluations £~ f{z) are continuous for each z in a).

The Hardy Algebra is often regarded as the limiting case of the g spaces
because it shares many properties with Bp; in particular the boundary correspondence,
the inner-outer factorization, Beurling's theorem, and the density of polynomials
{cf., [31; Theorem 4]). Beurling's theorem becomes particularly attractive in this
setting. Since N+ is a topological algebra in which polynomials are dense, a closed
subspace is invariant under multiplication by z if and only if it is an ideal. Thus

Beurling's theorem for N+ states that the closed ideals are precisely those of the

form qN+ where q is an immer functiom, that is, the closed ideals are the principal

ideals generated by inner functions.
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s + S . ’ R
Since N is not locally convex it is possible that some closed ideals are

weakly dense. Using the methods of Section 5 these can be characterized as follows:

THEOREM. A closed ideal in ﬁ+ is weakly dense if and only if it is generated by a

singular inner function (i.e. an inner function without zeroes.)

This result can be restated in a couple of ways: an ideal is weakly dense iff

. s . . ; . + e
it has no common Zzero in A; or an inner function is weakly ocuter in N 1iff it is

singular. 1In any case the continuity of point evaluations shows that a closed
weakly dense ideal can gnly be generated by a singular inner fumction, so the task
at hand is to show that every singular inner function does generate such an ideal
(recall that the analegous result for dP was false). This has been done by Roberts
and Stoll [21] for the case where the measure associated with the inner function has
no point mass.

To prove the theorem we need an analogue for N+ of the Banach envelope. Since
the function H-H is not p-homogeneous for any 0 < p = 1 this requires some <are, but
the idea is still the same. Let Cn denote the convex hull of the N+ - ball of radius
1/n about the origin. It is easy to check that the family (Cn) of convex sets forms
a local base for a locally convex metrizable topology on N+ that is weaker than the
original one, but has the same continuous linear functionals {15; Page 109)]. The
completion ﬁ+ of N in this topology is a Fréchet space (locally convex F-space)

- + :
containing N and having the same dual: we might call it the Frechet envelope

+ . ; . + ., .
of N . Just as in the previous section, a subspace of N is weakly dense if and

only if it is dense in the Fréchet envelope.

S0 a concrete representation of §+ is needed. This was recently supplied by
N. Yanagihara [31] who identified ﬁ+ with the space F+ of functions f analytic in
4 such that

(6.2) sup ]f(z)! exp {-¢/(1 - lzl} < @ (]zl < 1)

for every ¢ > 0. The precise statement is that F+ - N+, and the identity map
N+ - F+ extends to an isomorphism of F+ onto N+, where F+ has the topology induced
by the seminorms (6.2) as ¢ runs through all positive reals. It is not difficult

to see that the seminorms (6.2) can be replaced by an equivalent family
(6.9) el =[] l£@] exp f-e@ - 2]} axay
A

+
where ¢ runs through the positive reals (in fact Yanagihara actually defined ¥ in

terms of still a third equivalent family of seminorms).

Proof of the Theorem (Cf. [26; Theorem 1]). Let q be a singular inner functionm.

We must show that the ideal qN+ is dense in F+, or equivalently that the polynomial

multiples of q are dense in the normed space (F+, ﬁ-“c) for each ¢ > 0. 8ince
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Iq(z)l = exp {-Poisson integral of i}, where U is the singular measure that induces g,

and since the Poisson integral of U at z is 552”“”/(1 —fz!), it follows that the
minimum modulus of q is limited by

m{r) = min ]q(z}l = exp {-2[jl|/Q1-1)3.
z|=r
Now proceeding as in the last section, let P, be the nth arithmetric mean of the
partial sums of the Taylor series of 1/q, so pa - 1 pointwise on A, and for each

z in 4:
lqz) p, @] = |p_@] £ 1m(lz]) s emp {2dull/a - (2],

so vhen ¢ 2 2m4” the Dominated Convergence Theorem shows that Hpnq~l”C - 0, hence
qN+ is demse in (F+, H-ﬂc). For ¢ < 2ﬂu” the above argument still works on q° for
0<es=s c/ZHuﬁ, and an iteration like the one performed in the last section shows
that qN+ is dense in (F+,

-

c), which completes the proof.
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