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The essential norm of a
composition operator

By JoEL H. SmaPirO*

Abstract

We express the essential norm of a composition operator on the Hardy
space H? as the asymptotic upper bound of a quantity involving the Nevanlinna
counting function of the inducing map. There results a complete function
theoretic characterization of the compact composition operators on H2. Similar
results hold for the weighted Bergman spaces of the unit disc. As consequences
we obtain:

(i) estimates of the essential norm of a composition operator in terms of the
angular derivative of its inducing map;

(i) a new proof of a recently obtained characterization of the compact
composition operators on the weighted Bergman spaces; and

(iii) a new proof of a peak set theorem for holomorphic Lipschitz functions.

1. Introduction

Let U denote the unit disc of the complex plane and let ¢ be a holomorphic
function on U with ¢(U) C U. Then the equation C_f = f ¢ defines a com-
position operator C, on the space of holomorphic functions in U, and Littlewood’s
subordination principle ([5], [10]) assures that C_ acts boundedly on the Hardy
space H2 The goal of this paper is to give a function theoretic characterization
of those @ for which C, is compact. More generally, we are able to express the
essential norm of C, (its distance, in the operator norm, from the space of
compact operators on H?) in terms of an asymptotic bound involving the
Nevanlinna counting function of ¢: it is the corresponding “little oh™ condition
which characterizes the compacts (Theorem 2.3).

*Research supported in part by the National Science Foundation.
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This result completes a line of investigation begun in 1969 by H. ]J.
Schwartz [16], and continued by the author in collaboration with P. D. Taylor
[18], and B. D. MacCluer [12]. Throughout, the goal has been to make quantita-
tive sense out of a single intuitive principle: C, is compact on H 2 if and only if
the values of @ are not too often too close to the boundary of U.

This principle is best understood by starting at its extremes. Consider first
the map @(z) = z, whose values are, by the Schwarz lemma, as close as possible
to the boundary. In this case C,, being the identity map on H 2, is clearly not
compact. At the other extreme lie the maps ¢ whose values never approach the
boundary, that is, the ones for which

el = sup{l<p(z)|; z € U} < 1.

A straightforward argument, based on the fact that the unit ball of H? is a
normal family, shows that the composition operators induced by such maps are
all compact.

It is the intermediate cases that make the problem interesting. For example,
suppose ¢ takes U into a polygon inscribed in the unit circle. Then the operator
C, will be compact on H?, even if |@||, =1 (see [18], Corollary 3.2, and
Section 2.4 of this paper). Additional subtlety arises from the fact that this result
persists even when the corners of the inscribed polygon are rounded a bit ([18],
Sec. 4). But the corners cannot be rounded too much: Schwartz ([16], page 23)
observed that the mapping ¢(z) = (1 + z)/2, which takes the unit disc confor-
mally onto a subdisc touching the unit circle only at the point 1, induces on H? a
noncompact composition operator.

This example of Schwartz was explained from a more general point of view
by the author and Taylor in [18], where, for the first time, the compactness of C,
was connected with a classical function theoretic quantity: the angular deriva-
tive of @. The result is the following necessary condition for compactness.

TueoreM ([18], Theorem 2.1). If C, is compact on H 2, then ¢ cannot have
a finite angular derivative at any point of dU.

Nonexistence of the angular derivative (henceforth called the angular
derivative criterion) is not, however, sufficient for compactness on H2. Indeed, it
is well-known that inner functions induce noncompact composition operators on
H? (see [12], Section 3.7; [13], [16]), even though some of them satisfy the
angular derivative criterion ([7], [12], [21]). However the angular derivative
criterion does characterize the compactness of composition operators on the
Bergman spaces of the unit disc ([12], Theorem 3.5), and it does the same for H?>
if a mild restriction (satisfied, for example, if ¢ is boundedly valent) is placed on
the multiplicity of ¢ ([12], Theorem 3.10).
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In this paper, unless otherwise specified, we make no extra assumptions
about ¢: it need only be a holomorphic self-map of U. We do not, for example,
require it to obey any valency restrictions, or to be continuous at any point of the
boundary of U. The goal is to find a function theoretic quantity that plays for H?
the role enjoyed in the Bergman setting by the angular derivative. Our solution
involves the Nevanlinna counting function for ¢, defined for all w € U\ { ¢(0)}
by:

N, (w) = Y{-loglz|: z€ o {w}},

where ¢ !{w)} denotes the sequence of ¢-preimages of w, each point being
repeated in the sequence according to its multiplicity.
Our main result, officially stated as Theorem 2.3, is:

(1) IC,IIZ = limsup No(w) /(= loglw])  (jw| > 1 ~)

where ||C_||, is the essential norm of C,, viewed as an operator on H?. Since
behavior near the boundary is what concerns us here, the quantity — log|w| is
best imagined to be 1 — |w|, the distance from w to the boundary. In Section 3
we will see that the expression on the right side of equation (1) dominates the
supremum of a sort of “reciprocal angular derivative with multiplicity counted”.
Equation (1) yields the following solution to the compactness problem:

C, is compact on H*> & lim N (w)/(— log|lw|) =0  (jw| - 1 —).

Our preoccupation with H? to the exclusion of other Hardy spaces is
explained by the fact that if C, is compact on H” for some 0 < p < oo, then it
is compact on HP for all such p ([18], Theorem 6.1). So the solution given above
for the H? compactness problem actually works for all H? (0 < p < o0). For
H>, the space of bounded holomorphic functions on U, the situation is much
more elementary: C, is compact on H* if and only if ||¢||,, < 1 ([16], Theorem
2.8). Further results on the compactness problem for such “small” spaces of
holomorphic functions can be found in [17].

This paper is organized as follows. In the next section we explain the
motivation for our main result. Fittingly enough, this is provided by an in-
equality due to Littlewood ([9], [10]):

If (0) = 0, then N (w) < — log|w| forallw € U\ {0}.

Littlewood’s inequality, which actually sharpens the Schwarz lemma, leads
to a proof of the boundedness of C, that is the “right one”, in that it provides
the intuition behind our derivation of formula (1). We defer the proof of this
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formula to Sections 4 and 5, preferring to devote the remainder of Section 2, and
all of Section 3 to its applications.

These applications commence with Section 2.4, where formula (1), along
with Lehto’s generalization [9] of Littlewood’s inequality, provides an upper
bound for the essential norm, expressed in terms of asymptotic behavior of the
Green function of @(U). Then we use formula (1), along with the case of
equality in Littlewood’s inequality, to calculate the essential norm of a composi-
tion operator induced by an inner function. It turns out (perhaps not surpris-
ingly) that such an operator is as far from compact as possible: Its essential norm
coincides with its norm.

Section 3 develops the connection between counting functions and angular
derivatives. The key here, as in all discussions of the angular derivative, is the
Julia-Carathéodory theorem. The main result of this section is Theorem 3.3,
which gives a lower bound for the essential norm of a composition operator in
terms of the angular derivative of the inducing function. This result implies the
necessity of the angular derivative criterion for compactness, and extends to
arbitrary ¢ an inequality previously obtained by Carl Cowen ([3], Theorem 2.4)
for functions regular at the boundary. It also yields a new proof of Oberlin and
Novinger’s result [14]: Holomorphic Lipschitz functions have finite peak sets.

Since the angular derivative criterion does not characterize compactness,
there can be no upper bound on the essential norm similar to the lower one of
Theorem 3.3. However, in Theorem 3.5 we obtain an interesting upper bound by
restricting the multiplicity of ¢ for values near the boundary. This yields the
fact, also noted in [12], that the angular derivative criterion characterizes
compactness on H? for composition operators induced by boundedly valent
functions.

The technical results needed to apply the Nevanlinna counting function to
the study of composition operators are collected in Section 4. In particular, there
is a proof of Littlewood’s inequality, as well as a discussion of the case of
equality. Most of these results, although known to specialists, tend to be
scattered about in the literature. The idea here is to present them, along with
their proofs, in one place.

The proof of formula (1) occupies Section 5.

In the sixth section we apply our techniques to weighted Bergman spaces.
In this context it is still true that every composition operator is bounded. We
show that each weighted Bergman space has its own version of the counting
function which, as in the case of H?, provides a tight estimate of the essential
norm (we can no longer prove equality). There is again a lower estimate of the
essential norm of C, in terms of the angular derivative of ¢; but in contrast with
the H? situation, the Bergman setting also provides an effective upper estimate
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for arbitrary @. Together these estimates yield the previously mentioned equiv-
alence, proved in [12], between Bergman compactness of C, and the angular
derivative criterion for ¢. This final section concludes with some remarks about
the application of our methods to weighted Dirichlet spaces.

Throughout this paper, displayed formulas are numbered consecutively
within each subsection, starting each time with (1). For example, “formula
2.4(3)” refers to formula (3) of Section 2.4. The end of a proof is marked by the
symbol ///.

Before proceeding further, I would like to acknowledge the debt this work
owes to Charles S. Stanton, from whose remarkable formula for integral means of
holomorphic functions ([6], [19], [20]) comes the connection between composi-
tion operators and counting functions. I would also like to thank Sheldon Axler
for convincing me that Carleson measures are best approached via pseudo-hyper-
bolic discs. Although neither Carleson measures nor pseudo-hyperbolic discs
appear explicitly in this paper, they in fact lurk everywhere behind the scenes.
Finally, I thank Paul Bourdon and Lech Drewnowski, for their keen criticism of
a preliminary version of this manuscript.

2. The essential norm of C, on H 2

The Hardy space H? is the Hilbert space of functions f holomorphic in U
for which

Il = sup -1—'[2‘”|f(re"“')|2 dd < oo.
0<r<1 27 Jo

In this paper ¢ will always denote a holomorphic function taking U into
itself. Once more we emphasize that unless it is otherwise stated, no extra
assumptions will be placed on ¢.

In this section we develop in some detail the background which makes
plausible our main result, Theorem 2.3. After stating this result, we devote
the remainder of the section to its applications, deferring the proof to Sections 4
and 5.

A word about notation: In this paper an unadorned integral sign always
denotes integration extended over the entire unit disc: [ = [.

2.1. The change of variable formula. The connection between composition
operators and counting functions arises directly from the following formula, a
more general version of which will be proved in Section 4;

(1) Ifeolls =2 [If 1PN, dA + | Al@(O) [ (f€H?).
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This result is also a special case of C. S. Stanton’s formula for integral means ([6],
[19], [20]). The special case @(z) = z of (1) is the Littlewood-Paley identity:

@ A3 = [IF()log(1/121) dN(z) + | AO)°  (fe H?),

which can (and should: see Section 4.5(a)) be derived more directly from a
calculation with power series. The next inequality relates these two formulas, and
provides the intuition behind the solution of the essential norm problem.

2.2. Littlewood’s inequality. In [10], where he proved the boundedness of
composition operators on Hardy spaces, Littlewood also proved the following
inequality (see also [9]):

1 - (0w
¢(0) — w

This is actually an improvement of the Schwarz lemma, since if ¢(0) = 0, then
(1) asserts that for each w in U\ { ¢(0)},

(2) Ny(w) < — log|w],

(1) Ny(w) < log (w e U\ {9(0)}).

which, after a little rearranging, becomes:

[{|z|: z€ " H{w)}} > |w]|.

By contrast, the Schwarz lemma merely asserts that |z| > |w]| for each individ-
ual z € o~ {w).

To see how these results yield the boundedness of composition operators, let
us temporarily continue to assume that ¢ fixes the origin. Then formulas (1) and
(2) of the last section, along with Littlewood’s inequality in the form (2) above,
show that ||f o @]l < ||f]l, for each f € H?, so that C, is a bounded operator on
H? with norm <1 (in fact, since composition operators fix the constant
functions, the norm is exactly 1). If ¢ does not fix the origin, then this argument
can be applied to the composition of ¢ with an appropriate conformal automor-
phism of U. Since conformal automorphisms induce composition operators on
H? that are surjective isomorphisms (a direct calculation), it follows easily that
C, is still bounded, with norm depending on ¢(0).

In summary: The change of variable formula 2.1(1) shows that the bounded-
ness of C, on H 2 arises from Littlewood’s inequality. Since this inequality can be
stated informally (at least when ¢(0) = 0), as:

N,(w) = O(~ loglwl) as fw] > 1 -,

it is therefore natural to conjecture that C, should be compact on H 2 if and only
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if N, satisfies the corresponding “little oh™ condition, and that, more generally,
the essential norm of C,, should be connected with the asymptotic upper bound
of N,(w)/(~ log|uwl).

The next result, which is the main goal of this paper, asserts that this
intuition is correct, and precise.

2.3. MaIN TueEoREM. Let ||C,||, denote the essential norm of C,, regarded
as an operator on H?. Then

1C,lI7 = limsup N, (w) /(= log|w])  (w| - 1-).
In particular, C, is compact on H 2 if and only if
lim N(w)/(— log|w]) =0 (jw| = 1-).

This result will be proved in Section 5, after the work of Section 4 has
developed the necessary properties of counting functions. We devote the rest of
the present section to immediate applications of Theorem 2.3, the first of which
connects composition operators with potential theory.

2.4. Essential norms and Green functions. Suppose ) is a domain con-
tained in the unit disc, and w, € €. Let go(w, w,) denote the Green function
of @ with singularity at w,. Lehto’s Majorization Principle ([9], [20]) asserts:

If p(U) € Q, then N(w) < go(w, ¢(0)) for every w € L.

Littlewood’s Inequality 2.2(1) is the special case € = U of this result. Lehto’s
Principle and Theorem 2.3 yield:

CoroLLARY. Suppose o(U) C @ C U. Then:
IC, 12 < limsup go(w, 9(0))/(— log|w|)  (jw| - 1 -).
In particular, if
go(w, (0)) = o(— log|w]) as|w| >1—,
then C,, is compact on H>.

Let us apply this last result to one of the situations mentioned in the

Introduction. Suppose € is the interior of a polygon inscribed in the unit circle.
Then

go(w, 9(0)) = O(—log|w|)"  (w| - 1-)
for some y > 1, so that ([18], Corollary 3.2):

CoroLrary. C, is compact whenever ¢ takes U into a polygon inscribed in
the unit circle.
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We close this section by using Theorem 2.3 to compute the essential norm
of a composition operator induced by an inner function. The key here is that if ¢
is inner, then equality is attained in Littlewood’s inequality at most points of the
unit disc (see Section 4.2).

THEOREM 2.5. Suppose ¢ is an inner function. Then:

1+[(0)] |2
I1Cll. = [——
1 —[¢(0)]
Proof. Let a = ¢(0), and define the corresponding conformal automor-

phism by:
a—w

Vw) = o (we ).
— aw
Then Littlewood’s inequality 2.2(1) asserts that:
(1) N, < log|y,|

everywhere on U\ {a}. In Section 4.2 we will see that since ¢ is inner, there is
actually equality in (1) on a dense subset of U (in fact on the complement of a
set of capacity zero). Thus the quotient of each side of (1) with — log|w| has

the same lim sup as |w| = 1 — ; so by Theorem 2.3:
— —log|y,(w)]
(1) G2 = lim —————
lw-1-  — log| w|

Now a fundamental identity for conformal automorphisms is ([8], page 3):
(1 - Ja?)(1 = |w|?)

11— aw|?

2) 1—[¢,(w)[* = (w e U).

In (1) we may replace — log|w| by 1 — |w|,and — log|y (w)| by 1 — |¢ (w)].
Then (2) yields:

2
_ 1 - 0
() - o oleOr
lwl=1- |1 — @(0)w|

If ¢(0) = 0 then (3) asserts that the essential norm of C, is 1, as desired. In any
case, the right side of (3) is dominated by

1-[9(0)) _ 1+[(0)
(1-lp@)° 1-le@]

an upper bound that, if ¢(0) # 0, is approached arbitrarily closely as w tends to
dU along the radius through ¢(0). ///
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Nordgren ([13], Theorem 1) calculated the norm of a composition operator
induced by an inner function: it coincides with the value we just found for the
essential norm. This shows that such composition operators are, in some sense, as
non-compact as possible.

3. Essential norms and angular derivatives

We write @*(¢) for the nontangential limit (when it exists) of ¢ at the point
¢ € QU. By Fatou’s theorem this limit exists at almost every point of dU. We say
@ has a finite angular derivative at a point { € U if there is a point w € JU
such that the difference quotient (¢(z) — w)/(z — ¢) has a finite limit as z
tends nontangentially to {. This limit, if it exists, is called the angular derivative
of @ at ¢, and is denoted by ¢’({). Note that in this case ¢*({) = w. It is worth
reiterating this important and convenient peculiarity of the above definition: In
order to have a finite angular derivative at a point of the boundary, ¢ must
necessarily have an angular limit of modulus 1 there.

The following classical result forges the link between composition operators
and angular derivatives.

3.1. THE JuLia-CaraTHEODORY THEOREM ([2], Sec. 298, Theorem 2.1). For
¢ € 9U, the following three conditions are equivalent:

(a) @ has finite angular derivative at .

(b) @ has a nontangential limit of modulus 1 at §, and the complex
derivative ¢’ has a finite nontangential limit at {. In this case the limit of ¢’ is
?'($).

(c) liminf{(1 — |9(2)])/(1 — |z|): z— { unrestrictedly in U} = d < .
In this case, ¢/({) = @*($)¢d.

According to the Schwarz lemma, the quantity d mentioned in part (c) is
never zero. Thus the angular derivative can never be zero. Some geometric
consequences of the Julia-Carathéodory theorem are collected in the next
corollary, where we use the following notation for nontangential approach
regions: For 0 < p < 1, let A ({) be the convex hull of the disc pU and the
point {. For 0 <r <1, let A (z)=A, (z)\rU.

3.2. COROLLARY. Suppose @ has finite angular derivative at { € dU. Write
w = @*({). Then ¢ is conformal at { in the sense that a curve in U terminating
at ¢ at an angle a < 7 /2 with the radius to §, is taken into a curve terminating
at w and making there the same angle with the corresponding radius. Moreover,
for each 0 < 6 < p <1 there exists 0 < r < 1 such that the g-image of A ({)
contains A, ().
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Proof. By part (c) of the Julia-Carathéodory theorem,
arg ¢'({) = arg w — arg{.
The conformality of ¢ follows from this and a standard argument, like the one
used to prove conformality of an analytic function at interior points where the
derivative does not vanish. We leave the details to the reader.
For the second part of the corollary we borrow an argument that occurs in

the work of Pommerenke ([15], page 291). Observe that by part (b) of the
Julia-Carathéodory theorem, there exists 0 < t < 1 such that

l9(z) — @(§)] <l9'(§)[/2 forall z € A, (§).

Thus, whenever z, and z, are points in the closure of A, ({) and L is the line
segment joining them, we have:

I(P(Zz) —¢(z,) — ¢(§)(zy — z1)| =

fL [¢/(z) — ¢/(2)] dz

< 3l9(§) 25 — 211,

whereupon:

|‘P(z2) - (P(zl)l > 39§ llz2 — 21| > 0.
This shows that ¢ is univalent on the U-closure of A = A (), so that ¢(A) is a
simply connected open set in U bounded by the image of the three original
boundary curves. By conformality, ¢ maps the two boundary lines of A that
terminate at { to curves in U terminating at » and making the same angles with
the radius to w. Thus ¢(A) contains a piece of the slightly thinner nontangential
region A (w). ///

In view of this last result, it is not surprising that there should be some
relationship between the angular derivative of ¢ and compactness of C,. For if
@ has an angular derivative at ¢, then conformality requires that ¢(z) cannot be
far from the unit circle when z is near {; so by the “intuitive principle” of the
introduction, we should not expect C, to be compact. This is exactly what was
proved in [18], Theorem 2.1: Our next result gives a quantitative version. To
state it efficiently, we use the following notation. For w € dU we define

E(p,0) = {$ € U, ¢*(§) = v},

with the understanding that this set is empty if w is not a nontangential limiting
value of ¢. Now define for w € dU:

8(w) = L{le'(¥) "+ § € E(o, 0)),

where we say that |¢/({)| = oo if ¢ does not have a finite angular derivative at
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{, and interpret 1/00 to be zero. Note that this definition is consistent with part
(c) of the Julia-Carathéodory theorem.

The quantity §(w) appears in the work of Cowen and Pommerenke ([3],
[4]), about which we will say more in a moment. Since E(¢,w) can be
uncountable, it might appear that 8(w) could frequently be infinite if ¢ is
sufficiently wild. The next result shows that this is not the case.

3.3. THEOREM. ||C,||2 = sup{&(w): w € AU }.

In [3], Cowen obtained this result, along with an upper bound of the same
type, for functions ¢ whose derivative extends continuously to the closed unit
disc. In [4], Cowen and Pommerenke obtained sharp inequalities for §(w) over
the class of all holomorphic self-maps ¢ of the unit disc.

Proof. Fix w € dU a nontangential limiting value of ¢, and suppose
$1, 855+, §, are points in E(@, w) at which ¢ has finite angular derivative. Fix
0 < p <1, and choose 0 <t < 1 so that the angular regions A, = A, ({;) are
disjoint for 1 < k < n. Corollary 3.2 insures that N{p(A,): 1 <k < n} con-
tains an angular region A of the same type, with vertex w.

For w € A\ {9(0)} and 1 < k < n, choose a preimage z*)(w) of w that
lies in A,. Then:

(1) N (w) > é:l — log|z®(w)].

For each fixed k, the Schwarz lemma insures that z(*)(w) — ¢, through A, as
w — w through A. Thus, by the Julia-Carathéodory theorem:

(2) lim[(— log[z®(w)|)/(~ loglw|)] =|¢(5)| " (w > @, w e A).

Applying Theorem 2.3 along with (1) and (2) above, we obtain:

1C,12 > imsup ¥ ( logz™(w))/(~ loglw])  (w — w, w € A)

k=1
= ézllim(— log|z(k)(w)|)/(— log|w|) (w—> w, weA)
- kilh,'(gk)rl (by (2) above). ///

A consequence of Theorem 3.3 is: For each w € dU there can be at most
countably many points in E(@, w) at which the angular derivative of ¢ is finite.
This also follows from the work of Cowen and Pommerenke ([4], Theorem 8.1).
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More can be said about E(¢, w) if ¢ obeys a Lipschitz condition of order 1
on U, that is, if there exists a finite constant B such that

(3) lp(2) — ¢(2’)| < Bl]z — z’| forall z, 2" € U.
We are going to show that in this case E(g, w) can contain at most finitely

many points. In fact its cardinality is bounded. For a precise statement, let A(¢)
denote the smallest number B for which (3) is valid.

3.4. THEOREM. Suppose ¢ obeys a Lipschitz condition of order 1 on U.
Then for each w € JU the set E(@, @) has at most A(9)||C,||2 points.

Proof. Since ¢ obeys a Lipschitz condition, it extends continuously to the
closed unit disc: Denote this extension again by ¢. Suppose { € dU is a point
for which ¢({) € dU. Then for 0 < r < 1:

(1 =le(5)[)/(1 = 7) <lo(§) = (r5)|/18 = 181 < Alg).
Thus the Julia-Carathéodory theorem insures that ¢ has a finite angular deriva-
tive at {, of magnitude < A(g).
Now suppose §}, §,, ..., §, are distinct points of E(¢, w). Then by Theorem
3.3 and the bound just obtained on the angular derivative of ¢:

n/A(p) < 8(w) < |IC,I2,
as desired. ///

Using different methods, Cowen ([3], Corollary, page 84) proved this result
for the slightly more restrictive class of functions ¢ whose derivative extends
continuously to the closed unit disc. By contrast, the holomorphic Lipschitz
functions are precisely those for which the derivative is bounded on U ([5],
Theorem 5.1, page 74).

Theorem 3.4, is, in fact, a result on peak sets originally due to Novinger and
Oberlin [14]: The peak set of a holomorphic Lipschitz function has at most
finitely many points. Our contribution has been to provide a new proof.

We close this section by deriving an upper bound for the essential norm in
terms of the angular derivative. As was pointed out in the introduction, some
restriction on the inducing function is required. To state it, let n (w) denote the
number of points in ¢~ !{ w}, with multiplicity counted.

3.5. THEOREM. Suppose that for some 0 < R < 1:
(1) sup{n,(w): R < |w| <1} = M < co.
Then:
IC,I12 < Msup({|¢/(¥)||: § € U}
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Proof. By Theorem 2.3 there exists a sequence (w,) in U such that
R <|w,| »1—,and

(2) IC, I = lim Np(w,) /(- log|w,|)  (n — o).

By (1), the pre-image sequence ¢~ '{w,} has at most M points; so the sum in
the definition of N, (w,) contains at most M terms. Let z(™ denote the point in
¢ '{w,} that has the smallest modulus. Then for all n:

(3) N,(w,) < M(~ log|z™]).

The Schwarz lemma insures that |z(™| > 1 as n — oo; by selecting an ap-
propriate subsequence, if necessary, we may assume that (z(")) converges to
some point { € dU. By (2) and (3) along with the Julia-Carathéodory theorem:

IC,I1? < M lim( - log|z™]) /(= log|w,])  (n — o)
< Mlimsup(1 — |2) /(1 —|9(z)])  (z—%)
=M|¢’(¢)|”"  (Julia-Carathéodory Theorem).
The proof is now complete. ///

3.6. CoroLLARY. If ¢ satisfies both the angular derivative criterion and the
multiplicity restriction (1) of Theorem 3.5, then C, is compact on H?.

A result that implies this last one was proved in [12] (Theorem 3.10). An
interesting problem is to try to find concrete multiplicity restrictions weaker than
the one above under which the angular derivative condition implies H%compact-
ness. One such result will be given at the end of Section 6.

4. The Nevanlinna counting function

In this section we develop those properties of the Nevanlinna counting
function needed for the study of composition operators on HZ2 In order of
appearance, these are: Littlewood’s inequality, the change of variable formula,
and the subharmonic mean value property.

4.1. Partial counting functions. For w € C\ {@(0)}, let {z,(w): j > 1}
denote the points of the preimage ¢ '{w}, arranged in order of increasing
moduli, with each point repeated according to its multiplicity. For 0 < r < 1, let
n(r, w) = n(r, w) denote the number of these points in the disc rU, and define
the partial counting functions for ¢ by:

n(r, w)

N(r,w)= Y log(r/|z,|)-

j=1
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With this notation the original counting function defined in Section 1 can be
regarded as N (1, w):

N (w) = N,(1,w) = Zlog(l/’zj(w)’).

Our understanding will be that for 0 < r < 1, N, (r, w) = 0 whenever w &
¢(rU), so that our counting functions can be regarded as defined on the entire
complex plane. Note that for each fixed complex number w, the partial counting

function N_(r, w) increases with r. It follows easily from monotone convergence
that lim N (r, w) = N (w) (r > 1 —).

4.2. Littlewood’s inequality ([9], [10]). For each w in U\ {¢(0)}:
1 - 9(0)w
?(0) —w |
Regarding the case of equality in (1), the following are equivalent:

(a) There is equality for some w.

(b) There is equality for all w outside a subset of U having logarithmic

capacity zero.
(c) o is an inner function.

(1) N, (w) < log

Proof. Jensen’s formula ([8], page 54) asserts that for each function f
holomorphic on U, with f{0) # 0, and for each 0 < r < 1:

2 .
(2) N,(r,0) = fo log| f(re')| d6,/27 — log| £(0)].
For ¢, as always, taking U into itself, write
w— (2
1 — we(z)

so that @, is holomorphic on U, takes U into itself, and has ¢ "'{ w} as its zero
set (multiplicities included). Upon applying (2) with f= ¢, where w # ¢(0),
we obtain:

1 o |
(3)  N,(r,w) =N, (r,0) = Efoz log|p,(re'?)| d6 — log|p,(0)|.

Since |p,| < 1 on U, the integral on the right side of (3) is negative; so for all w
in U\ {¢(0)},
N,(r,w) < — log|g,(0)].

Littlewood’s inequality (1) follows immediately from this as r tends to 1.
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The case of equality in (1): By (3) equality holds if and only if

(4) limf2ﬂlog|(pw(rei0)|d0 =0 (r->1-).
0

Since |@,| < 1 on U, this condition is equivalent to ([8], Theorem 2.4, page 56):
(47) @,, is a Blaschke product.

Now ¢, is inner if and only if ¢ is; and Frostman’s theorem (see [8], Theorem
6.4, page 79, for example) asserts that if ¢ is inner then ¢, is a Blaschke product
for every w € U, with the possible exception of a set of logarithmic capacity
zero. These remarks yield statements (a), (b), and (c) above. ///

The next result establishes the connection between counting functions and
composition operators. Recall that A is planar Lebesgue measure, normalized so
that the area of the unit disc is 1. In what follows, A, denotes the probability
measure defined on U by: dA ,(w) = log(1/|w|?) dA\(w). Recall that [ = [,.

4.3. Change of variable formula. If g is a positive measurable function on
U, then:

J(g°9)¢1?dA, = 2 [N, dA.

Proof. Since ¢ is a local homeomorphism on the open set U’ formed by
deleting from U the zeros of the derivative ¢, there exists a countable collection
{R;} of pairwise disjoint, semi-closed polar rectangles whose union is U’, and
such that ¢ is one-to-one on each R ;. Let ¢/; denote the inverse of the restriction
of ¢ to R, so that {; is a one-to-one map taking ¢(R ;) back onto R;. By the
usual change of variable formula applied on R;, with z = { (w):

JeeEIg ) drz) = [ elwlog(1/14, () dA(uw)
Thus, if x ; denotes the characteristic function of the set (R ):
J(g=w)io? an, = 2 fgw)| Tx;(wlog(L/|¥,(w) )| dN(w).
i
This is the desired formula, since the term in curly braces on the right side of the

equation above is N (w). ///

As mentioned in the introduction, we require only the following special case
of the change of variable formula, which also follows from C. S. Stanton’s
formula for integral means ([6], [19], [20]).
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4.4. CoroLrARY. For each f holomorphic on U;
If o 9113 = 2 [If /12N, dA +| f((0)) "
Proof. The Littlewood-Paley identity 2.1(2) applied to f o ¢ yields:
If ol = [I(Foo) A, +| o)

2 .
= [if 291?19/ 1 AN, +| f(9(0))[*  (chain rule).
An application of Theorem 4.3, with g = |f’|%, completes the proof. ///

4.5. Remarks. (a) As we pointed out in Section 2, the Littlewood-Paley
identity is the special case @(z) = z of Corollary 4.4. However, since it plays an
essential role in the derivation of Corollary 4.4 from Theorem 4.3, a separate
proof is desirable. This can easily be furnished either by a power series
calculation or by the use of Green’s Theorem (see [8], Lemma 3.1, page 236, for
example).

(b) The special case f(z) = z of Corollary 4.4 yields the formula:

loli3 =2 [N, dA +[o(0)

from which follows an estimate that will be needed later on:

[N, dx < (1-19(0)])/2 < 4.

(¢) A result similar to Theorem 4.3 occurs in [1], where it is used to examine
the boundedness of composition operators on certain Besov spaces. We will use a
variation of Theorem 4.3 in Section 6 when we study composition operators on
Bergman spaces.

(d) With the notation: du(z) = |¢/(z)|>dA(z), the change of variable
formula 4.3 can be restated:

dpe (w) = 2N, (w) d\(w).

The measure pg ! plays a crucial role in [12], as well as in the application to
composition operators of Luecking’s trace ideal criterion [11].

2
>

4.6. The subharmonic mean value property ([6], Section 2). Suppose g is
holomorphic on a plane region Q, and A is an open disc in @\ g~ '{ ¢(0)} with
center a. Then:

1
N,(e(@)) = 5737 [ Nile(w)) dA(w).
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Proof. For 0 < r < 1, write ¢(z) = ¢(rz) for z € U. Set do = db/2m,
and let p be the Borel probability measure defined on C (but supported only on
¢,(dU)) by p = o, *. Then for each fixed complex number w # ¢(0), Jensen’s
formula 4.2(2), with f = ¢ — w, can be rewritten:

(1) N,(r,w) + log|9(0) — w| = [log|¢ — w| da(%).

The left side of (1), being the logarithmic potential of a compactly supported
probability measure, is therefore subharmonic in the plane; hence N (r, w) is a
subharmonic function of w in C\ {@(0)}. Therefore N(r, g(w)) is sub-
harmonic on @\ g !{¢(0)}, and as r increases to 1, these functions increase
pointwise on that set to N (g(w)). Thus the Monotone Convergence Theorem
insures that N (g(w)) inherits from N (r, g(w)) the desired sub-mean value

property. ///

Remark. It follows from Jensen’s formula that each function N, (7, g(w)) is
continuous in w; hence N (g(w)) is lower semicontinuous on 2. However in
order to be subharmonic, it must be upper semicontinuous, hence continuous.
This need not happen at every point of ) (see [6], Section 2).

5. Proof of the Main Theorem

We can now prove Theorem 2.3: the formula for the essential norm of a
composition operator on H2, This involves separate arguments for the upper and
lower estimates. For the upper one we use the following general formula for the
essential norm of a linear operator on Hilbert space.

5.1. ProposiTiON. Suppose T is a bounded linear operator on a Hilbert
space H. Let { K,} be a sequence of compact self-adjoint operators on H, and
write R, = I — K. Suppose |R,|| = 1 for each n, and ||R, x| = O for each
x € H. Then ||T||, = lim || TR, |.

Proof. Suppose K is a compact operator on H, and n is temporarily fixed.
Since ||R,|| = 1,

(1) T —K|| = |IT - K|[IR,]l =|(T - K)R, || = |ITR,|| — [IKR,]|.
Now R, is self-adjoint, so that
(2) IKR,|| =[(KR,)*|| = IR, K*||.

The sequence { R, } tends pointwise to zero, and is uniformly bounded in
the operator norm. It is therefore equicontinuous hence convergent uniformly to
zero on each relatively compact subset of H. In particular, since K* is compact,
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this happens on K *(unit ball of H): that is, ||R,K*|| — 0. Thus by (1) and (2)
above, ||T — K|| > lim||TR,||. Since this is true for every compact operator K
on H, we have: ||T||, > lim || TR,||.
For the inequality in the other direction, we have for each n: R, + K, = I,
with K, compact. Since TK, is compact, this yields:
ITll. = ITR, + TK, ||, = TR ||, < [ITR,||-

Since n is arbitrary, || T||, < lim, || TR ,]|. ///

After the proof of Theorem 2.5 we noted that if ¢ is inner, then the norm of
the induced composition operator coincides with its essential norm. It is an
amusing exercise to use Proposition 5.1 to derive this fact without making any
explicit computations. Theorem 2.5 can then be viewed as a consequence of
Proposition 5.1 and Nordgren’s original norm computation.

We also require the following elementary estimates on H? functions.

5.2. LEMMA. Suppose f € H? has a zero of order at least n at the origin.
Then for each z € U:

(@) f(z)] < [2]"(L = |21®)"2IIf Ilg, and

(b)  1f(2)] < V2nla" A = [2) 2SIl

Proof. We are assuming the series representation
0
= k
flz) = X a2k,
k=n

where Y|a,|?> = ||f||5 < c. Inequality (a) follows immediately from the
Cauchy-Schwarz inequality. The same reasoning, applied to the series represen-
tation of the derivative yields:

1/2

1£1(2)] < {éﬂkﬂznw—“} 1£1ls

1/2

= IZI"_I{ 2 (n+ k)zlzlzk} Il
k=0
from which the desired inequality follows after some simple estimates. ///

5.3. The upper estimate. The goal of this section is to show that
(1) IC,I1? < ImNy(w)/(= logw|)  (w] -1 -).
This will be accomplished by applying Proposition 5.1 with K, the operator that
takes f to the nth partial sum of its Taylor series:

K f(z) = Y a;z*, where f(z)= Y a,z"e H2
k=0 k=0
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Since K, is the orthogonal projection of H> onto the closed subspace spanned
by the monomials 1, z,. .., z", it is self-adjoint and compact. Since R, = I — K,
is the complementary projection, its norm is 1. Thus the hypotheses of Proposi-
tion 5.1 are fulfilled, so that

(2) I1C,ll, = Eim||C,R, | (n — oo).

To estimate the right side of (2), fix for the moment a function f in the unit ball
of H?, and a positive integer n. Then by Corollary 4.4:

2
’

(3) IC,RfI3 = 2 [[(R.f) N, dA +| R, f(9(0))

Since ||f]|, < 1, the same is true of R, f. Since R, f has a zero of order n at the
origin, it can play the role of f in Lemma 5.2. The results are:

(4) IR, A9(0)[" <|90) " /(1 ~|(0) ), and

(5) (R,.f)(2)[" < 2n?z2"V/(1 - |21?)°  (z€U).

Now fix 0 < r < 1, and split the integral on the right side of (3) into two parts:
one extended over the disc rU, and the other over its complement. Use estimate
(4) on the last term of (3), and (5) on the integral over rU. Then take the
supremum of both sides of the resulting inequality over all functions f in the
unit ball of H2. Denoting this supremum for the moment by “sup”, we obtain:

(6) IC,R,I% < 2sup [ |(R,f)1*N, d\
U\rU
4n2r2n=D 0) %"
T — N¢dk+—|(p( A
(1-r2)° o 1—[9(0)]

As f traverses the unit ball of H?, its truncation R, f runs through a subset
of that ball; hence the right side of (6) can only be made larger by replacing R, f
by f in the term involving the supremum. This observation, along with the fact,
noted in Section 4.5(b), that [N, d\ < 3, yields:

On2p2(n=1 |(p(0)|2"
(1-2"  1-|gO)

Now let n tend to infinity (the radius r is still held fixed: 0 < r < 1). Upon
recalling (2), introducing the notation B for the unit ball of H2, and writing

h(w) = Ny(w)/(~ log|w]),

C.R,||*> < 2su ‘I2N_ d\ +
IC,R, | of I,
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we have:

Iz < 25ups [ If1°N, dA
= SUPB_[ |f’|2hd}‘1
U\rU

<sup{h(w): r < |w| < l}supB/ If"12d\,
U

< sup{h(w): r < |w| < 1},
where the last line follows from the Littlewood-Paley identity. Inequality (1)
follows when r tends to 1. ///

5.4. The lower estimate. We finish the proof of Theorem 2.3 by showing
that:

(1) IC,|I% > im N, (w) /(= log|w]) (jw| =1 -).

To accomplish this we apply the operator C, to the “normalized reproducing
kernels”, defined for a € U by

(1 ja®)”
fulz) = — =
- az
A straightforward calculation with power series shows that ||f,||, = 1 for each
aeU.

For the moment fix a compact operator K on H?Z Since the family
{f,: a € U} is bounded in H?, and since f, — 0 uniformly on compact subsets
of Uas |a] = 1 —, we also have ||Kf,||, = 0. Thus, letting “lim” denote the
upper limit as |a] = 1 —:

IC, — K|| >1lim||(C, - K)f,

(z€ U).

2
> lim(||C, £, = KL l2)
= h—m ||Cq>f;1|l2

Upon taking the infimum of both sides of this inequality over all compact
operators K on HZ, we obtain the lower estimate:

(2) IC, 12 > lim ||C, £, |3
_ 2E/|fa’|2Nq)d}\,

where the last line follows from Corollary 4.4 and the fact that f(¢(0)) — O as
la]| = 1—.
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The integral on the right side of (2) is calculated for fixed a € U by use of
the change of variable w = y (z), where {, is the conformal automorphism
defined in the proof of Theorem 2.5. Here are the properties required of this
automorphism.

(3) ¥,(0) = a,

(4) yo(z) = (1 - |a?)/|1 — az|?,

(5) Hba(\l/a(z)) = Z, le w = ¢a(z) e z= \Pa(w)'
The last line yields the change of variable formula:

(6) dN(z) =|¥,(w)[ dN(w) if w = y,(z).

The calculation of the integral can now proceed. It will be convenient to use the
notation c(a) = |a|?2/(1 — |a|?):

JIF1PN AN = 1a(1 = Jal?) [11 - @w] “N,(w) dN(w)

c(a) [1¥u(w) "Ny(w) dA(w) (by (4))

c(a) [N,(¥,(z)) dN(z) (by (6)).

By Section 4.6, the composition N, oy, obeys the sub-mean value in-
equality on any disc that does not contain ¥, '(¢(0)) = ¥ (¢(0)). Fix 0 < r < L.
Since ¥ ,(@(0)) tends to the boundary of U with a, it will lie outside the disc rU
for all points a of modulus sufficiently close to 1. Thus for all such a, the last
calculation yields:

JIE PN, AN 2 e(a) [ N,(4,(2)) dA(z)
2 c(a)N,(¥,(0)A(rU),

where the last line follows from the sub-mean value inequality of Theorem 4.6.
Since ¢ ,(0) = a and A(rU) = r2, the last estimate, along with (2) yields

(3) IC,£112 = 2¢(a)r®N,(a) +| £((0)) |’

for all points a with modulus sufficiently close to 1. Now let |a| = 1 — in (3),
and use (1); recalling all the while that r is fixed. The result is:

(4) IC, 112 = 2r*limc(a)N,(a) = r*lim2N,(a)/(1 - |a]?).
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Since (4) holds for all 0 < r < 1, it also holds for r = 1. The lower estimate
(1) now follows from (4) (with r = 1) and the fact that the ratio of 2(— log|a|)
tol — |a|®tendstolas |a| > 1 — . ///
The proof of our main result, Theorem 2.3, is now complete.

6. Weighted Bergman spaces

For a > — 1 let A, denote the probability measure defined on U by:
dA,(z) = (- 2log|z|)" d\(z)/T(a + 1),

where I' denotes the gamma function. We have already encountered the
measure A . In this section we develop results analogous to those of Section 2 for
the weighted Bergman spaces A% consisting of all functions f holomorphic on U
for which

(1) 112 = fIA%dX, < w.

In the norm defined above, A2 is a Hilbert space. Since
JizPrdn, = (n+ )77,

this norm can be computed from the power series coefficients of f:

(2) 1A% = iolf‘(n)l"‘/(n +1)°

where f(z) = Lf(n)z" can be taken to be any function holomorphic on U,
provided we understand that the integral in (1) is finite if and only if the same is
true of the sum in (2).

In defining the space A%, the measure A, is frequently replaced by
(1 — |z|*)*d\(z) (cf. [12]). Since the densities of these two measures are, up to
multiplicative constants, equivalent as |z| = 1 — , and since the density for d\ ,
has only an integrable singularity at the origin, the same space results, and the
norms are equivalent.

In this section we show that each weighted Bergman space has its own
version of the counting function. As for H? this counting function determines
the essential norm of any composition operator.

The main point of difference between the results of this section and those
for H? is that here the angular derivative furnishes not only a lower bound on
the essential norm of C,, but also an upper bound that is valid for all ¢.
Together these bounds yield, as a special case, one of the main results of [12]: G,
is compact on A%, if and only if ¢ satisfies the angular derivative criterion.
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At the end of this section we comment briefly on applications of our
methods to weighted Dirichlet spaces. This leads to a multiplicity restriction
more general than that of Theorem 3.5 under which the angular derivative
criterion implies compactness on H?2.

6.1. A Littlewood-Paley formula. Formula (2) of the last section shows that
for f holomorphic in U:

A2 =] AO)[* + 1I£7112. 2.

In particular, f <€ A% if and only if f’ € A% ,. This formula is the Bergman
space version of the Littlewood-Paley identity 2.1(2) employed in the previous
sections. It should be noted that in the results above, and all the others to follow,
the H? results show up as the limiting case a — — 1.

6.2. Generalized counting functions. For w € C\ {¢(0)}, 0 < r <1, and
v > 0, we write:

n(r, w)

N, (w) = E:l log(r/lzj(w)|)y, and

Ny o) = Ny (1, w) = X log(1/]2,(w0) )]

where, as before, { z,(w)} denotes the multiplicity sequence of ¢-preimages of
w. To save notation, we write N, for N, .. Observe that Ny(r, w) is the
multiplicity function n(r, w) of ¢, and N, is the classical Nevanlinna counting
function that figured so prominently in our work on H2 We have the following
extension of Littlewood’s inequality (sections 2.2 and 4.2).

6.3. ProposiTION. Forall y > 1,

1 - ¢(0)w
¢(0) — w

y

N(w) < |log (we U\ {90)}).

Proof. The case y = 1 is the original Littlewood inequality. If y > 1, then
for any positive numbers (¢;) we have Zt].Y < (Xt;)". Thus N (w) < Ny(w)" for
every w € U; so the desired inequality follows from the case y = 1. ///

The importance of N, stems from the following two results, which gener-
alize the change of variable formula of section 4.3, and its corollary. We omit the
proofs, which are almost identical with the original ones, the only difference
being that version 6.1 of the Littlewood-Paley identity is used to derive Corollary
6.5 from Theorem 6.4.
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6.4. CHANGE OF VARIABLE FormuLA. If g is a positive measurable function
on U, then:

J(go @)@ 2dN, = oly) [eN, dA,
where c(y) = 27/T(y + 1).
6.5. CoroLLARY. If f € A2, then

If o @ll2 = e(a +2) [IfI°N, oA +| f((0)) .

The last result shows that for « > — 1 it is the counting function N, , that
controls of the behavior of C, on A%,

From sections 6.3 and 6.5 we obtain another proof of the well-known fact
that composition operators are bounded on A%. More precisely, just as for H2: If
@(0) = 0, then C, has norm 1 as an operator on A2. We will be able to obtain
analogues of the other results for H2 once we prove that N,,, has the
subharmonic mean value property. The key to this is the following representa-
tion formula.

6.6. ProposiTioN. For y > 1, if w # ¢(0), then

N,(rw) = Y(y = 1) [ Ny(t, w)(og(r/t)" " dt.

3

Proof. Integrate by parts twice. In each case the “integrated” terms are
zero because the condition w # @(0) guarantees that n(¢, w), and therefore
Ni(t, w), both vanish for all ¢ sufficiently close to zero. The first integration by
parts yields:

N,(r, w) = [ (log(r/1))" dn(t)
=y [ +"n(t, w)(log(r/1))" " dr.
0
For the second one we use the formula above for y = 1:
N(r,w) = f't*‘n(t,w)dt.
0

This yields:

[ n(t, w)(log(r/0))"*de = (v — 1) [ Ny(t, w)(log(r/t))" dt,

0 0
and the result follows. ///
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6.7. CoroLLARY. If y > 1 then the subharmonic mean value property of
section 4.6 continues to hold with N, in place of N;.

Proof. By Proposition 6.6, N(r,w) inherits the continuity and sub-
harmonicity of Ny(r, w) on C\ {¢(0)} for each 0 < r < 1. As in section 4.6, the
result follows from this and the monotone convergence theorem. ///

We can now estimate the essential norm of a composition operator on a
weighted Bergman space. In what follows it will be convenient to denote the
essential norm of C, on A% by ||C,]|, ., and to write:

o(¢) = limsup{N, (w)/(—loglw|)"}  (w| = 1-).

Here is our analogue of Theorem 2.3:

6.8. TueoreM. For each a > — 1 there exists a constant m > 0, which
depends only on a, such that

moa+2((p) < “Cq)llg,a =< 0a+2(q))'

Proof. The argument is modeled after the proof of Theorem 2.3, so we need
only outline the high points. As before, the upper estimate uses Proposition 5.1,
with K again taken to be the nth partial sum operator, and R, = I — K. With
B denoting the unit ball of A2, the result is:

(1) “C(pllg,a = limnsupB“CqJRn.ﬂl
. 712
= hmnsupBC(a + 2)/|(Rnf) | Na-+-2d}\’

where the second line arises from Corollary 6.5, and from an estimate similar to
5.2(a) which shows that as n tends to infinity, R, f(@(0)) converges to zero
uniformly over B. As before, fix 0 < r < 1 and split the integral on the right side
of (1) into two pieces: one over rU, and the other over the complement. By an
estimate similar to 5.2(b), as n — co the integral over rU tends to zero
uniformly over B; so by (1) above:

® UG, = timsupea+2) [ [(Ruf)PNesdhs < B
U\rU

SSup{c(a+2)f If’I2N, ..d\: f€ B},
U\rU

where, as in Section 5, the last line follows from the fact that R, is an operator
of norm 1. The upper estimate now follows as in the proof of Theorem 5.3: by
rewriting the integral on the right side of (2) in terms of A, ,, replacing the
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quotient N, ., o(w)/(— log|w|)**? by its supremum over U\ rU, using the
Littlewood-Paley formula of section 6.1, and finally letting r tend to 1.

The lower estimate proceeds along the lines of section 5.4, except that the
result is not as precise. For a € U, set

F(z) = [£(x)]*"  (z€U),

where f, is the normalized reproducing kernel for H? defined in Section 5.4. A
calculation with power series based on formula (2) at the beginning of this
section shows that the functions F, form a bounded family in A2 (their norms
are not necessarily 1 now, so we already face an inaccuracy that was not present
in the H? situation). By the reasoning employed in section 5.4:

(3) ICelle = mlimsup||CoF,lly o, (la] =1 ),

where 1/m = liminf||F,||, , (|a] = 1 —). Using Corollary 6.5 to calculate the
norms on the right side of (3), we have for each a € U:

(4) NIGENS.. = cla +2) [|E/(w)['N,.o(w) dN(w) +|F,(9(0)) "
= mlal*(1 — [a]*)""* [|1 = @w| 2= *ON, , o(w) dA(w)

+|F,(¢(0)

where here, and for the rest of the proof, the letter m denotes a constant which
may vary from line to line, but which, at each occurrence, depends only on a.

The last term on the right side of (4) tends to zero as |a]| = 1 — . Recalling
the automorphism ¢, and its properties from section 5.4, we calculate the
important part of the first term on the right:

(1= 1a*)*"® f11 = aw| “***IN, ,5(w) dA(w)

= (1= 1a®)*"* f[l¥a(w)|/(1 = [al?)] "N, o(w) dN(w)  [by 5.4(4)]
(1= 1a1®) " [9alw) " N, o) |9 (w) [* dN (w)

= (1= 1a1®) " [ Neso($u(2)) dN(z) [0 = ¥,(2),5.4(6)]

= (1= 1) 192 N Wa(2) dA(2) [5.4(4) and 5.4(5)]

= (1= 1al®) " “"? fI1 = @|***IN, . 5(¥,(2)) dA(z) [by 5.4(5)].
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Now fix 0 < r < 1, restrict the last integral to the disc rU, and note that on
this disc: |1 — az| > 1 — r. Upon substituting this inequality into the formula
above, and then substituting the result into (4), we obtain:

ICFI3 o = mlal*(1 = Jal®) ™21 = )™ [N, o(4,(2)) dA(z).

Let |a]| = 1 — in this last inequality, use (1), and then the sub-mean value
inequality of Corollary 6.7 (noting, as in section 5.4, that because y ,(¢(0)) tends
to dU as |a| — 1 — , this is valid for all points a of sufficiently large modulus).
The result is:

2(a
G112 = mr*(1 = r)** Vo, o(g).
Since r is fixed (take r = %, for example), this is the desired lower estimate. ///

6.9. Essential norms and angular derivatives. Recall the notation of Section
3: @*({) is the nontangential limit of ¢ at { € dU (if it exists, while |@({)|
denotes the magnitude of the angular derivative of ¢ at {, when it exists, and is
oo when it does not. For w € dU and y > 0 we write:

8,(w) = L{l¢(¥)] " ¢ € E(e, @)},
where
E(g,0) = {§ € 3U, ¢(¢) = w).

It follows from the Schwarz lemma that |¢'(z)| is bounded away from zero on
dU by a constant that depends only on ¢(0). Thus, if 0 < y < S, then by the
Julia-Carathéodory theorem, §; < const. §,, where the constant depends only on
¥, B, and ¢(0). By Theorem 3.3, the quantlty 8, is bounded on the unit circle;
hence the same is true of 8, for all y > 1.

We can now present the Bergman space analogues of Theorem 3.3 and 3.5.

Observe that the Schwarz lemma guarantees that the quantity on the right side
of the inequality below is always finite.

6.10. THEOREM. For a > — 1, let m denote the constant of Theorem 6.8,
and write

(@) = (1 +]9(0)]) /(1 —|9(0)]).
Then:

m sup(8,.5(w): @ € U} < |IG|12 . < e(g)sup{le($)|”“": ¢ € 8.

Proof. We omit the proof of the lower estimate, which follows from
Theorem 6.8 in the same way that Theorem 3.3 followed from Theorem 2.3.
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For the upper estimate we use an argument like the one used to prove
Theorem 3.5. For each w € U\ {0, ¢(0)}, choose z=z(w) € ¢ {w} of
minimum modulus. Then, letting h(w) = N\(w)/(— log|w|), we have

(1) Nyo(w)/(~ loglw])*"* < h(w)[(~ log|z])/(~ log|w])]“"".

Now choose w € dU and a sequence of points {w,} in U such that
w, > « and N, o(w,)/(— log|w,|)**? = o,,,(®). By passing to a further
subsequence, if necessary, we may assume that in addition the sequence of
selected preimages {z(w,)} also converges: By the Schwarz lemma its limit
must be a point { € dU. By part (c) of the Julia-Carathéodory theorem:

Tim(— log|z|)/(— logle(2)[) =|¢' ()] " (2= ).
Hence by (1) above,

0usa(9) < [Imh(w)](I9(6) ) (w| > 1-)

= e(@)(le'(6)1 ),

where the last line follows from the calculation of the upper limit of h(w) done
in the proof of Theorem 2.5. The desired result follows from the above inequality
and Theorem 6.8. ///

6.11. CoroLLARY. For a > — 1 the following three conditions on ¢ are
equivalent:

(a) C, is compact on A®

(b) 0a+2(‘P) = 0.

(¢) |9'($)| = oo for every ¢ € dU.

As we pointed out earlier, the equivalence (a) < (c) is the main result, for
Bergman spaces, of [12]. It also implies the following special case of the
Comparison Theorem of [12] (Theorem 5.2): If C, is compact on H 2, then it is
compact on A2 for every a > — 1.

6.12. Weighted Dirichlet spaces. The methods of this section also furnish
information about the behavior of composition operators on the weighted
Dirichlet spaces of the unit disc. These are the spaces D,, which we consider
here only for a > 0, consisting of functions holomorphic on U with derivative in
A2 . They are Hilbert spaces in their natural norms, and their size increases with
a. D, is the classical Dirichlet space, D, is H?, and for @ > 1, D, = A% _, (see
[12], Sections 3 and 5 for more details). If a < 1, then D, is strictly smaller than
H?2, and not all composition operators are bounded on D,. An obvious necessary
condition for boundedness is that the inducing function should belong to D,, but
even this is not always enough ([12], Proposition 3.12).
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Corollary 6.5 shows that even when a <1, the counting function N, ,
determines the norm-related properties of C, on D,. For example, it shows that
C, is bounded on D, whenever o,(¢) < co, and the argument used to obtain
the upper estimate of Theorem 6.8 shows that when this is the case, then the
essential norm of C, on D, is bounded above by o,(¢)'/% However a similar
lower estimate is not yet available to us, since for a < 1 we lack an appropriate
version of the subharmonic mean value property for N, , (in fact, for @ = 0 it is
not too difficult to see that the desired lower estimate is false).

It was proved in [12] (Theorem 5.3) that if C, is bounded on D,, and if
B > a, then C_ is bounded on Dy, and compact on that larger space whenever ¢
satisfies the angular derivative criterion. The proof of the upper estimate of
Theorem 6.10 can be easily modified to provide the following result, which is
perhaps less general, but certainly more concrete than the one just stated.

6.13. THEOREM. Suppose 0 < a < B < 1, and o () < oco. Then the essen-
tial norm of C, on Dy is bounded above by the square root of

[o.()] “sup{l@($)| """ ¢ € aU ).

In particular, C, is compact on Dy whenever ¢ satisfies the angular derivative
criterion.

The case 8 = 1 of this result is a generalization, of the sort suggested at the
end of Section 3, of Theorem 3.5 and Corollary 3.6.

MicHicaN STATE UNiveERsiTY, EasT LANSING, MICHIGAN
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