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Abstract. This paper establishes decomposability for composi-
tion operators induced on the Hardy spaces Hp (1 ≤ p < ∞) by
parabolic linear fractional self-maps of the unit disc that are not
automorphisms. This result, along with a recent theorem of Miller
and Miller [15], shows that no such composition operator is super-
cyclic. The work here completes part of a previous investigation
[1] where the author and Paul Bourdon showed that among linear
fractional maps of the disc with no interior fixed point, only the
parabolic non-automorphisms induce non-hypercyclic composition
operators. Additionally it complements results of Robert Smith
[19], who proved decomposability in the case of parabolic auto-
morphisms and it extends recent work of Gallardo and Montes [6]
who, using different methods, established non-supercyclicity for
non-automorphisms in the case p = 2.

Introduction

This paper deals with parabolic linear fractional mappings ϕ that take
the open unit disc U into itself, and the composition operators Cϕ that
they induce on the Hardy spaces Hp (1 ≤ p < ∞) by means of the
formula Cϕf = f ◦ϕ (f ∈ Hp). The goal is to show that if ϕ is not an
automorphism of U (i.e., if ϕ(U) �= U) then Cϕ is: (a) decomposable,
and (b) not supercyclic.

To say that an operator T on a Banach space X is decomposable
means that for every covering of the complex plane C by a pair {V, W}
of open sets there is a corresponding pair {Y, Z} of closed, T -invariant
subspaces such that X = Y + Z, the spectrum of T |Y lies in V , and
that of T |Z lies in W . Decomposability was originally introduced into
operator theory in 1963 by Foiaş, but it was not until much later that
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his definition was shown, by several authors independently, to be equiv-
alent the one given here (see [14, Defn. 1.1.1] and the paragraph that
precedes it for the appropriate references).

To say that T is supercyclic means that there is a vector x ∈ X such
that the projective orbit {cT nx : n = 0, 1, 2, . . . and c ∈ C} is dense in
X. Supercyclicity stands midway between the weaker concept of cyclic-
ity (some orbit has dense linear span) and hypercyclicity (some orbit is
dense). The concept was originally introduced by Hilden and Wallen
in [10], who showed that it is possessed by every weighted backward
shift on �2 (in particular, even by some quasinilpotent operators!).

The connection between decomposability and supercyclicity was re-
cently established by Miller and Miller, who proved in [15, Theorem 2]
(see also [5, Cor. 6.5] and [14, Prop. 3.3.18]) a result that implies:

Theorem M. Each supercyclic decomposable operator has its spectrum
on some (possibly degenerate) circle centered at the origin.

Now the composition operators treated in this paper have as spec-
trum either the interval [0, 1] or a spiral that starts at the point 1 and
converges to the origin by winding infinitely often around it (see [2,
Theorem 6.1, page 102] or §3.10 below). In any case, their spectra do
not lie on any circle, hence once these operators are be shown to be
decomposable, their non-supercyclicity will follow from Theorem M.

This paper arises from [1], where Paul Bourdon and I classified the
cyclic behavior of linear-fractionally induced composition operators on
H2. We showed that among the linear fractional selfmaps of U fix-
ing no point of U (no others have any chance of being hypercyclic [1,
Prop. 0.1, page 3]), the only ones failing to induce hypercyclic compo-
sition operators are the parabolic maps that are not automorphisms.
We showed that, nonetheless, such maps induce cyclic operators, and
wondered if this cyclicity could be improved to supercyclicity . In this
regard I was able to prove [18] that for such maps ϕ, the operator Cϕ

on H2 had no hypercyclic scalar multiples (clearly any operator with a
hypercyclic scalar multiple is supercyclic, but such operators do not ex-
haust the supercyclic class [12, page 3.4]). Just recently Gallardo and
Montes [6] significantly refined the method of [18] to obtain a proof
that Cϕ is, indeed, not supercyclic on H2.

The results from [1] discussed above, while phrased only for H2,
hold as well—with almost the same proofs—for any space Hp with
1 ≤ p < ∞, so it makes sense to raise in this more general context the
supercyclicity question for composition operators induced by parabolic
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non-automorphisms. The method of [18], although strongly oriented
toward Hilbert space, relied in part on Fourier analysis on the real line,
and hinted strongly that decomposability might lie at the heart of the
supercyclicity issue for the operators in question—a suspicion strongly
supported by Theorem M.

Here is an outline of what follows. After a brief survey of pre-
requisites (Section 1) the study of parabolically induced composition
operators will evolve, in Section 2, into a study of translation operators
acting on Hardy spaces of the upper half-plane. This will make it possi-
ble, in Section 3, to embed each of our parabolic, non-automorphically
induced composition operators into a C2 functional calculus of Fourier
integral operators, and from this will follow the desired decomposability
and non-supercyclicity.

Even with the appearance of Laursen and Neumann’s long-awaited
monograph [14], the subject of decomposable operators is still techni-
cally formidable. Thus, in the interests of broadening the reach of this
paper, I conclude with a couple of purely expository final sections: one
devoted to proving that decomposability follows from the existence of
a C∞ functional calculus, and the other to a direct proof that the de-
composability and spectral properties of the operators considered here
render them non-supercyclic.

Acknowledgments. I wish to express my gratitude to Eva Gallardo and
Alfonso Montes for making their preprint [6] available to me, and to
thank Paul Bourdon, Nathan Feldman, and Luis Saldivia for pointing
out some errors and inconsistencies in an earlier version of this paper.

1. Prerequisites

1.1. Notation. Throughout this paper p denotes an index which, un-
less otherwise noted, lies in the interval [1,∞), and:

- U denotes the open unit disc of the complex plane C,
- ∂U is the unit circle,
- m is Lebesgue arc length measure on ∂U , normalized to have unit

mass,
- Lp(∂U) is the Lp space associated with the measure m, and
- Π+ denotes the open upper half-plane {z ∈ C : Im z > 0}.

1.2. Hardy spaces. The Hardy space Hp = Hp(U) is the collection
of functions f holomorphic on U with

‖f‖p
p := sup

0≤r<1

∫
∂U

|f(rζ)|p dm(ζ) < ∞.
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The functional ‖ · ‖p so defined makes Hp into a Banach space. H∞

is the space of bounded holomorphic functions on U—a Banach space
in the norm ‖f‖∞ := sup{|f(z)| : z ∈ U}. Each f ∈ Hp has, for
[m] almost every ζ ∈ ∂U , a finite radial limit f ∗(ζ) := limr→1− f(rζ),
and the map that associates f ∈ Hp with its boundary function f ∗

is an isometry taking Hp onto the subspace of Lp(∂U) consisting of
functions whose Fourier coefficients of negative index are all zero. The
holomorphic function f can be recovered from f ∗ by either a Cauchy
or a Poisson integral.

1.3. Composition operators. A holomorphic selfmap of U is just a
function that is holomorphic on U and has all its values in U . Each
such map ϕ induces a linear composition operator Cϕ on the space of
all functions holomorphic on U :

Cϕf := f ◦ ϕ (f holomorphic on U).

A classical (and by no means obvious) theorem of Littlewood guaran-
tees that Cϕ restricts to a bounded operator on each Hp space, and
the study of how the properties of these operators reflect the function
theory of their inducing maps has evolved during the past few decades
into a lively enterprise; see the monographs [3] and [17] for introduc-
tions to the subject, and the conference proceedings [11] for some more
recent developments.

1.4. Parabolic maps. For linear fractional selfmaps of U the bound-
edness of Cϕ on Hp is elementary; in this paper I consider only a
subclass of these maps, the parabolic ones. These are linear fractional
transformations that map U into itself and fix exactly one point of the
Riemann sphere, a point which must necessarily lie on the unit circle.
Each such map is conformally conjugate, via rotation of the unit disc,
to one that fixes the point 1 ∈ ∂U . Because the composition operators
induced by rotations of the disc are isometric isomorphisms of Hp, this
rotational conjugation from an arbitrary fixed point on ∂U to fixed
point at 1 translates, at the operator level, to an isometric similarity
between composition operators. Because all of the operator-theoretic
phenomena to be considered in this paper are similarity-invariant, noth-
ing will therefore be lost by always placing the fixed point of ϕ at 1.

Suppose, then, that ϕ is a parabolic selfmap of U with ϕ(1) = 1.
The map τ defined by

τ(z) = i
1 + z

1 − z
z ∈ C\{1}(1)
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maps the unit disc conformally onto the upper half-plane Π+ = {z ∈
C : Im z > 0}, takes ∂U\{1} homeomorphically onto the real line, and
sends the point 1 to ∞. The map Φ := τ ◦ ϕ ◦ τ−1 is therefore a linear
fractional map that takes Π+ into itself and fixes ∞, hence it must be
translation by some a ∈ C with Im a ≥ 0, that is, Φ(w) = w + a for
w ∈ C. Let us call a the translation parameter of both the translation
Φ of Π+ and the original parabolic mapping ϕ of U . Note that ϕ is
an automorphism of U precisely when Φ has the same property on Π+,
and this happens if and only if the translation parameter is real.

This characterization of parabolic composition operators suggests
that they may be studied most effectively by shifting attention from
the unit disc to the upper half-plane; I develop this point of view in
the next section.

2. Migrating to the Upper Half-Plane

2.1. Hardy spaces on the upper half-plane. There are two ways
to define a Hardy space Hp for the upper half-plane:

(a) Hp(Π+) is the space of functions F holomorphic on Π+ with F ◦τ ∈
Hp(U). The norm ‖ · ‖p defined on Hp(Π+) by ‖F‖p := ‖F ◦ τ‖p

(where the norm on the right is the one for Hp(U)) makes Hp(Π+)
into a Banach space, and insures that the map Cτ : Hp(Π+) → Hp(U)
is an isometry taking Hp(Π+) onto Hp(U). In particular, for each
F ∈ Hp(Π+) the “radial limit” F ∗(x) = limy→0 F (x+ iy) exists for a.e.
x ∈ R, and a change of variable involving the map τ shows that the
norm of F can be computed by integrating over R:

‖F‖p
p =

1

π

∫ ∞

−∞
|F ∗(x)|p dx

1 + x2
.

(b) Hp(Π+) is the space of functions F holomorphic on Π+ for which

‖F‖p
p := sup

y>0

∫ ∞

−∞
|F (x + iy)|p dx < ∞.

Once again the norm defined on the space (which, although denoted by
the same symbol as the previous norms, is different from them) makes
it into a Banach space.

These two spaces are not the same; the map Cτ takes Hp(Π+) onto
the dense subspace (1−z)2/pHp(U) of Hp(U), hence Hp(Π+) is a dense
subspace of Hp(Π+). Finally, the norm in Hp(Π+) can be computed
on the boundary: ‖F‖p

p =
∫ ∞
−∞ |F ∗(x)|p dx, so that Hp(Π+) can be

regarded as a closed subspace of Lp(R). For p = 1 it is the subspace
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consisting of functions whose Fourier transforms vanish on (−∞, 0],
and a similar interpretation can be made for 1 < p ≤ 2. For a detailed
exposition of these and other basic facts about Hardy spaces in half-
planes I refer the reader to [7, Chapter II], [8, Chapter 8], or [13,
Chapter VI].

2.2. Eigenvalues of Cϕ. Suppose ϕ is a parabolic selfmap of U with
fixed point at 1, and let a ∈ C with Im a ≥ 0 be its translation param-
eter, so that Φ = τ ◦ϕ ◦ τ−1 is just “translation by a” in Π+. For t ≥ 0
let Et(w) = eitw for w ∈ Π+. Et is a bounded holomorphic function on
Π+, hence

et(z) = Et(τ(z)) = exp

{
−t

1 + z

1 − z

}
(z ∈ U),

defines bounded holomorphic function on U (the t-th power of the
unit singular function). Because of this boundedness et ∈ Hp(U),
or equivalently, Et ∈ Hp(Π+) for each 1 ≤ p ≤ ∞. Furthermore
CΦEt = eiatEt hence also Cϕet = eiatet for each t ≥ 0. Thus for each
such t the function et is an eigenvector of Cϕ : Hp(U) → Hp(U) with
corresponding eigenvalue eiat. Thus Γa := {eiat : t ≥ 0} is a subset of
the spectrum of Cϕ. If a is real, so that ϕ is an automorphism, then
Γa covers the unit circle infinitely often, and it turns out that ∂U is
precisely the spectrum of Cϕ, a result proved over thirty years ago by
Nordgren [16]. If Im a > 0 then ϕ is not an automorphism, and Γa is
a curve that starts at 1 when t = 0 and converges to 0 as t → ∞. If a
is pure imaginary then Γa = (0, 1], otherwise Γa spirals infinitely often
around the origin, converging to the origin with strictly decreasing
modulus. Thus in these non-automorphic cases the spectrum of Cϕ

contains Γa ∪ {0}, and it is a (special case of a) result of Cowen [2,
Theorem 6.1] that Γa ∪ {0} is indeed the whole spectrum. I will give
an alternate proof of this fact in Section 3.

2.3. CΦ as a convolution operator. We saw in §1.4 that each par-
abolic selfmap ϕ of U that fixes the point 1 has the representation
ϕ = τ−1 ◦Φ ◦ τ , where τ is the linear fractional mapping of U onto Π+

given by (1), and Φ is the mapping of translation by some fixed vector
a in the closed upper half-plane: Φ(w) = w + a for w ∈ Π+. At the
operator level this conjugacy turns into the similarity Cϕ = CτCΦC−1

τ ,
where Cτ is an isometry mapping Hp(Π+) into Hp(U), and CΦ is a
bounded operator on Hp(Π+).

Since all the operator theoretic phenomena being investigated here
are preserved by similarity, nothing will be lost (in fact much will be
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gained) by shifting attention from Cϕ on Hp(U) to CΦ on Hp(Π+). The
advantage here is that when the original parabolic mapping ϕ of U is
not an automorphism, the operator CΦ on Hp(Π+) can be represented
as a convolution operator. The key is that each F ∈ Hp(Π+) is the
Poisson integral of its boundary function:

F (x + iy) =
1

π

∫ ∞

−∞

y

(x − t)2 + y2
F ∗(t) dt (x + iy ∈ Π+).

Since ϕ is not an automorphism, its translation parameter a = α + iβ
lies in the (open) upper half-plane, and CΦF (w) = F (w+a) for w ∈ Π+.
Thus for each F ∈ Hp(Π+) and x ∈ R:

(CΦF )∗(x) = F (x + α + iβ) =

∫ ∞

−∞
Pa(x − t)F ∗(t) dt(2)

where

Pa(x) =
1

π

β

(x − α)2 + β2
(3)

is the (upper half-plane) Poisson kernel for the point a ∈ Π+.

From now on I will drop the superscript “ ∗ ” that distinguished
holomorphic functions from their radial limit functions, and simply
regard each function F ∈ Hp(Π+) to be either a holomorphic function
on the upper half-plane, or the associated radial limit function—an
element of the space Lp(µ), where µ is the Cauchy measure

dµ(x) :=
1

π

dx

1 + x2
,(4)

a Borel probability measure on R. In each case, either the context
or an explicit statement will make clear which interpretation of F is
intended.

Correspondingly, the operator CΦ can now be given two different
interpretations: either as the original composition operator on holo-
morphic functions, or—by (2) and (3) above—as the restriction to
Hp(Π+)-boundary functions of the convolution operator

CΦF = F ∗ Pa (F ∈ Lp(µ)).(5)

From this convolution representation arises the functional calculus which
lies at the heart of this paper.
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3. A functional calculus

The goal of this section is to prove:

3.1. Theorem. If ϕ is a parabolic linear fractional selfmap of U that
is not an automorphism, then Cϕ : Hp → Hp has a C2 functional
calculus.

For our purposes the conclusion means that there is an algebra
homomorphism γ → γ(Cϕ) from C2(C) into L(Hp), the algebra of
bounded linear operators on Hp, such that if β and γ belong to C2,
then (letting σ(Cϕ) denote the spectrum of Cϕ):

(FC1) If β ≡ γ on σ(Cϕ) then β(Cϕ) = γ(Cϕ),

(FC2) If γ(z) ≡ z on σ(Cϕ) then γ(Cϕ) = Cϕ, and

(FC3) If γ ≡ 1 on σ(Cϕ) then γ(Cϕ) is the identity operator on Hp.

From this functional calculus will follow the decomposability and, there-
fore the non-supercyclicity, of Cϕ. It turns out that for any operator
on a Banach space, properties (FC1)–(FC3) follow from the weaker
assumption that (FC2) and (FC3) hold with the spectrum replaced by
the whole complex plane (see [14, Theorem 1.4.10]). However for the
functional calculus constructed here, the full strength of (FC1)–(FC3)
will be immediately apparent.

Because the existence of a functional calculus is similarity invariant,
it will be enough to carry out the construction in Hp(Π+), with the
translation operator CΦ on that space standing in for Cϕ. The work of
this section takes place exclusively on the boundary, so that Hp(Π+)
will be interpreted as a subspace of Lp(µ), where µ is the Cauchy
probability measure on R given by (4).

We construct our functional calculus by using (5) to view CΦ as a
convolution operator on Lp(µ), and then restricting to the invariant
subspace Hp(Π+). The following well known sufficient condition is the
key to proving boundedness for the operators in question. Even though
it is stated here only for the Cauchy measure µ on the Borel sets of R,
it is valid for any positive measure on any measure space.

3.2. The Schur Test [4, Page 518, Problem 54]. Suppose K is a
non-negative Borel measurable function on R2, and that there exists a
positive, finite constant C such that:

(a)

∫
K(x, y) dµ(y) ≤ C for a.e. x ∈ R,
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(b)

∫
K(x, y) dµ(x) ≤ C for a.e. y ∈ R.

For each non-negative Borel function fon R define

TKf(x) :=

∫
K(x, y)f(y) dµ(y) (x ∈ R).(6)

Then ‖TKf‖p ≤ C‖f‖p for each 1 ≤ p ≤ ∞; in particular TK can
now be defined by (6) on all of Lp(µ), where it acts as a bounded linear
operator.

The Schur Test yields the following criterion for a convolution op-
erator to be bounded on Lp(µ).

3.3. Proposition. Suppose k : R → C is a bounded Borel measurable
function such that

|k(x)| = O(|x|−2) as |x| → ∞.(7)

Then the mapping f → k ∗ f is a bounded linear operator on Lp(µ) for
each 1 ≤ p ≤ ∞.

Proof. The decay condition (7) insures that there is no difficulty in
convolving k with any function in Lp(µ). To apply the Schur test let

K(x, y) = π(1 + y2)k(x − y) (x, y ∈ R),

so that for x ∈ R:

k ∗ f(x) :=

∫
k(x − y)f(y) dy =

∫
K(x, y)f(y) dµ(y)

(unadorned integral signs now refer to integration over the entire real
line). So to prove the boundedness of the convolution operator it suf-
fices to show that |K| satisfies the hypotheses of Schur’s Test. Hypoth-
esis (a) is easy; for each x ∈ R:∫

|K(x, y)| dµ(y) =

∫
|k(x − y)| dy =

∫
|k(y)| dy < ∞

where the integrability of k follows from the decay condition (7).

For hypothesis (b) note that for every y ∈ R:∫
|K(x, y)| dµ(x) = (1 + y2)

∫
|k(x − y)| dx

1 + x2

≤ C(1 + y2)

∫
1

1 + (x − y)2
· 1

1 + x2
dx ,

where the inequality arises from (7), with C independent of y. The last
integral in this display is, by (3) above, a constant multiple of Pi ∗ Pi,
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the convolution of the Poisson kernel for the point i ∈ Π+ with itself.
Now this convolution square is just the Poisson kernel for the point
2i, namely (2/π)(4 + y2)−1 (see the next paragraph for details). This
establishes the boundedness of

∫
|K(x, y)| dµ(y), and with it, that of

the operator of convolution by k on Lp(µ).

3.4. Remark on the Poisson kernel. The identity Pi ∗ Pi = P2i

used in the proof of Proposition 3.3 is a special case of the semigroup
identity

Pa ∗ Pb = Pa+b (a, b ∈ Π+),(8)

which one can prove using either the Fourier transform or the Poisson
integral representation of harmonic functions. Since the Fourier trans-
form of the Poisson kernel will play a crucial role in the sequel, I’d like
to take a moment to show how it leads to (8).

The Fourier transform of Pi is well known; it is

P̂i(λ) :=
1

π

∫
e−iλt

1 + t2
dt = e−|λ| (λ ∈ R).(9)

Now Pa(t) = β−1Pi((t − α)/β) for each a = α + iβ ∈ Π+, so it follows
from (9) and a change of variable that:

P̂a(λ) = e−iαλe−|λ|β =

{
e−iaλ (λ ≥ 0)
e−iaλ (λ ≤ 0)

(10)

from which it follows easily that for a, b ∈ Π+, P̂a ∗ Pb = P̂a P̂b = P̂a+b

at every point of R. This, by the uniqueness of Fourier transforms,
implies the desired semigroup property.

Proposition 3.3 provides the foundation for the next result, which is
the major building block in the construction of our functional calculus.
For all that follows we fix a = α + iβ ∈ Π+.

3.5. Proposition. Suppose γ ∈ C2(C) with γ(0) = γ(1) = 0. Let

kγ be the inverse Fourier transform of γ ◦ P̂a. Then the convolution
operator f → kγ ∗ f is bounded on Lp(µ) and maps Hp(Π+) into itself.

Proof. It follows from (10) that |P̂a(λ)| = e−β|λ| for each λ ∈ R. Be-

cause γ is differentiable and vanishes at 0, the composition γ ◦ P̂a in-

herits the exponential decay of P̂a at ±∞, and is therefore integrable,
hence there is no problem in defining kγ, its inverse Fourier transform.

In fact the first and second derivatives of γ ◦ P̂a on both half-intervals
(0,∞) and (−∞, 0) have the same exponential decay, and thus kγ can
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be estimated by splitting its defining Fourier integral into two pieces—
one over each half-interval—and integrating the results twice by parts,
using the condition γ(0) = γ(1) = 0 to get rid of the boundary terms at
the first stage. The result is that the asymptotic estimate (7) is valid
for kγ, hence by Proposition 3.3 the associated convolution operator is
bounded.

As for Hp-preservation, observe first that Hp(Π+) is a dense sub-
space of Hp(Π+). One way to see this is to note that Cτ takes Hp(Π+)
to (1 − z)2/pHp(U) (see [7, Lemma 1.2, page 51] or [8, page 130]), and
(by definition) Hp(Π+) to Hp(U). An application of Beurling’s the-
orem then seals the argument. Now the functions in L1(R) ∩ Lp(R)
whose Fourier transforms vanish on the negative real axis form a dense
subspace of Hp(Π+), and therefore of Hp(Π+), so it is enough to
prove that kγ ∗ f ∈ Hp(Π+) for each such function f . Clearly this
convolution lies in Lp(R) ∩ L1(R), and its Fourier transform, which

is k̂γ · f̂ , vanishes where f̂ does—on the negative real axis. Thus
kγ ∗ f ∈ Hp(Π+) ⊂ Hp(Π+) and the proof is complete.

3.6. The functional calculus for CΦ on Lp(µ). As usual, we denote
by Φ the mapping of “translation by a ∈ Π+” on C.

Let G denote the class of functions γ that satisfy the hypotheses of
Proposition 3.5—twice continuously differentiable on C and vanishing
at both 0 and 1. For γ ∈ G define γ(CΦ) to be the operator of convolu-
tion with kγ, acting on Lp(µ). According to the work just completed,
γ(CΦ) is a bounded operator on Lp(µ) that leaves invariant the closed
subspace Hp(Π+) (still being viewed as a space of functions on the real
line).

If γ1 and γ2 belong to G and coincide on P̂a(R), then so do their left

compositions with P̂a, and hence so do the inverse Fourier transforms
of these compositions. Since these inverse Fourier transforms are just
the convolution kernels kγ1 and kγ2 , it follows that γ1(CΦ) = γ2(CΦ).

The map γ → γ(CΦ) is clearly additive and homogeneous with
respect to scalar multiplication. To see that it is also multiplicative,
let γ1 and γ2 belong to G and observe that

k̂γ1·γ2 = (γ1 · γ2) ◦ P̂a = (γ1 ◦ P̂a) · (γ2 ◦ P̂a) = k̂γ1 · k̂γ2 ,

hence kγ1·γ2 = kγ1 ∗ kγ2 . It follows that for each f ∈ Lp(µ) ∩ L1(R) (a
dense subspace of Lp(µ)):

(γ1 · γ2)(CΦ)f := kγ1·γ2 ∗ f = kγ1 ∗ (kγ2 ∗ f) = γ1(CΦ)[γ2(CΦ)f ],

which establishes the desired multiplicative property.



12 JOEL H. SHAPIRO

The arguments so far have shown that the map γ → γ(CΦ) is an
algebra homomorphism of G into L(Lp(µ)). It remains to extend this
map appropriately to all of C2(C). For this it suffices to note that each
γ ∈ C2(C) can be written uniquely as

γ(z) = a + bz + γ0(z) (z ∈ C),

where a = γ(0), b = γ(1) − γ(0), and γ0 ∈ G. Thus

γ(CΦ) := aI + bCΦ + γ0(CΦ)

defines a bounded linear operator on Lp(µ) that takes Hp(Π+) into
itself. One checks easily that the homomorphic property previously
noted on G for the mapping γ → γ(CΦ) carries over to the extension
just defined on C2(C), and that this extension has all the properties
needed to be a functional calculus for CΦ on Lp(µ), except that the
uniqueness conditions (FC1)–(FC3), which are supposed to hold for

σ(CΦ), have been proven instead for P̂a(R). The next result shows
that (FC1)–(FC3) hold just as advertised.

3.7. Proposition. σ(CΦ : Lp(µ) → Lp(µ)) = P̂a(R) ∪ {0}.

Proof. For t ∈ R let Et(x) = eitx (x ∈ R). Since these functions are
continuous and bounded (in fact, unimodular) on R, they all belong
to Lp(µ). For t ≥ 0 these functions turned out to be eigenvectors of
CΦ : Hp(Π+) → Hp(Π+). The first order of business is to show that
the full collection serves as eigenvectors for CΦ on Lp(µ). For this, fix
x and t in R and note that:

CΦ(Et(x)) := Pa ∗ Et(x) =

∫
eit(x−ξ)Pa(ξ) dξ

= eitxP̂a(t) = P̂a(t)Et(x)

so P̂a(t) is an eigenvalue of CΦ : Lp(µ) → Lp(µ) corresponding to the

eigenvector Et. Thus P̂a(R) is contained in the Lp(µ) spectrum of CΦ,

hence so is its closure P̂a(R) ∪ {0}.
To complete the proof it suffices to show that λ /∈ P̂a(R) ∪ {0}

implies λ /∈ σ(CΦ). For each such λ there exists a function γ ∈ C2(C)

with γ(z) = (z − λ)−1 for z ∈ P̂a(R). Now ψ(z) = z − λ is also a C2

function on C, and ψ · γ ≡ 1 on P̂a(R). Thus by the properties derived
so far for our functional calculus:

γ(CΦ)(CΦ − λI) = γ(CΦ)ψ(CΦ) = (γ · ψ)(CΦ) = I,
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where I is the identity map on Lp(µ). This display shows, because all
the operator factors therein commute, that CΦ − λI is invertible on
Lp(µ), hence λ /∈ σ(CΦ).

3.8. Remark. Recall from §2.2 our observation that the set

Γa := P̂a([0,∞)) = {eiat : t ≥ 0},

is a curve that spirals from the point 1 asymptotically into the origin.

By formula (10), P̂a(R) is the union of Γa and its reflection in the
x-axis, a double-spiral joining the point 1 to the origin.

It remains only to check that the functional calculus constructed
above for CΦ on Lp(µ) restricts properly to the subspace Hp(Π+), which
we have already seen is invariant for all the operators involved (Propo-
sition 3.5). This is the content of the next two results.

3.9. Proposition. Suppose γ1, γ2 ∈ C2(C) with γ1 ≡ γ2 on Γa. Then
γ1(CΦ) = γ2(CΦ) on Hp(Π+).

Proof. It is enough to prove that the two operators coincide on the
dense subspace Hp(Π+)∩L1(R) of Hp(Π+). For f in this subspace the

Fourier transform f̂ vanishes on the negative real axis. Our hypothesis

guarantees that γ1 ◦ P̂a = γ2 ◦ P̂a on [0,∞), so at each point of R we
have:

[γ1(CΦ)f ]̂ = [kγ1 ∗ f ]̂ = k̂γ1 · f̂ = (γ1 ◦ P̂a) · f̂
= (γ2 ◦ P̂a) · f̂ = [γ2(CΦ)f ]̂

hence γ1(CΦ)f = γ2(CΦ)f.

3.10. Corollary. σ(CΦ : Hp(Π+) → Hp(Π+)) = Γa ∪ 0.

Proof. We have already seen that each λ ∈ Γa is an eigenvalue of CΦ :
Hp(Π+) → Hp(Π+), so the spectrum of this operator contains Γa∪{0}.
To go the other way it is enough to show that if λ /∈ Γa ∪ {0} then
λ is not in the spectrum, i.e. that CΦ − λI is invertible on Hp(Π+).
Now the hypothesis on λ is that z − λ is bounded away from zero on
Γa, hence there exists γ ∈ C2(C) with γ(z) = (z − λ)−1 on Γa. Since
(z−λ)γ(z) ≡ 1 on Γa it follows from Proposition 3.9 that, just as in the
proof of Proposition 3.7, the operator γ(CΦ) is the inverse, on Hp(Π+),
of CΦ − λI.
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4. Decomposability

As promised in the Introduction, I include these final two sections
entirely for the convenience of the reader. While there may be some
originality in the organization of Section 5, the material in this section
comes right out of [14, Theorem 1.4.10].

In the last section we constructed, for each composition operator
induced on Hp by a parabolic non-automorphism, a C2-functional cal-
culus. The point of this section is that every Banach space operator
with even a C∞ functional calculus is decomposable.

So assume that X is a Banach space and T a bounded linear operator
on X, and that T has a C∞ functional calculus in the sense of the
discussion following Theorem 3.1.

To each compact subset K of C let us attach the subspace E(K)
of X formed by intersecting the null spaces of all the operators η(T )
where η ∈ C∞(C) and K ∩ spt η = ∅. Everything depends on the
following result.

4.1. Lemma. For each compact subset K of C, the subspace E(K) is
closed and T − invariant, with σ(T |E(K)) ⊂ K. Moreover, if λ is an
eigenvalue of T then the following are equivalent:

(a) λ ∈ K.
(b) Every λ-eigenvector of T lies in E(K).
(c) Some λ-eigenvector of T lies in E(K).

Proof. That E(K) is closed and T -invariant is routine, so I omit the
argument. For the spectral inclusion, suppose λ ∈ C\K. We wish to
show that T − λI is invertible on E(K). Choose an open set V that
contains K but whose closure does not contain λ, and observe that
there is a C∞ function η on the plane with η(z) = (z − λ)−1 on V .
Thus γ(z) := (z − λ)η(z) is C∞ on the plane, and ≡ 1 on V , and so
1− γ has support disjoint from K. Therefore if x ∈ E(K) we have (by
the definition of E(K)) (1 − γ)(T )x = 0, hence:

I = γ(T ) = (T − λI)η(T ) = η(T )(T − λI) on E(K),

which establishes the desired invertibility.

As for eigenvalues and eigenfunctions, note first that if λ is an eigen-
value and x an eigenvector for λ then it is easy to check that x is a
γ(λ)-eigenvector for γ(T ) for any γ ∈ C∞(C). The equivalence of (a),
(b), and (c) follows easily from this and the fact that λ ∈ K if and only
if γ(λ) = 0 for every γ ∈ C∞(C) with support disjoint from K.
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4.2. Theorem. Suppose X is a Banach space and T ∈ L(X) has a
C∞ functional calculus in the sense of §3.1. Then T is decomposable.

Proof. Suppose V and W are nonvoid open subsets that cover the plane.
Recall from the Introduction that the goal is to find closed T -invariant
subspaces Y and Z whose sum is X such that the restrictions of T to
Y and Z have spectra that lie, respectively, in U and V .

To make the decomposition, let {β, γ} be a C∞ partition of unity
on σ(T ) subordinate to the open covering {U, V }. Because β + γ ≡ 1
on σ(T ), the operator β(T ) + γ(T ) is the identity on X. Thus

β(T )X + γ(T )X = X.

Let Y = E(sptβ) and Z = E(spt γ). Then the spectral inclusions
follow immediately from Lemma 4.1. To see that X = Y + Z just note
that if x is in the range of β(T ), say x = β(T )x′ for some x′ ∈ X, and
if η ∈ C∞(C) has support disjoint from that of β, then η · β ≡ 0, so

0 = (η · β)(T )x′ = η(T )β(T )x′ = η(T )x

hence x ∈ Y . In other words ran β(T ) ⊂ Y , and similarly ran γ(T ) ⊂
Z. Since, as noted above, X is the sum of the smaller subspaces, it is
also the sum of the larger ones.

4.3. Remarks. (a) Operators with a C∞ functional calculus are called
generalized scalar operators. These form a proper subclass of the de-
composable operators (see the discussion following Theorem 1.4.10 of
[14] for references).

(b) If T is a Banach space operator whose spectrum lies in the unit
circle, and for which there is a positive integer N such

‖T k‖ = O(|k|N) (|k| → ∞),(11)

then a C∞ functional calculus can be constructed for T by setting
γ(T ) :=

∑∞
−∞ γ̂(k)T k, where for γ ∈ C∞(C) and γ̂(k) is the k-th

Fourier coefficient of the restriction of γ to the unit circle. If ϕ is a
parabolic automorphism of U then it is well known that T = Cϕ obeys
(11) (see [16], for example), and is therefore—as was first noted by
Smith in [19]—decomposable. In contrast to the operators we have
been considering here, these automorphically-induced composition op-
erators Cϕ are supercyclic; in fact hypercyclic [1, Thm. 2.2, page 25].

5. (Non)Supercyclicity

So far we have seen that for 1 ≤ p < ∞, composition operators induced
on Hp by parabolic non-automorphisms of U are decomposable, and
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that no such map has its spectrum lying on a circle. As previously
mentioned, Theorem M of the Introduction then asserts that no such
operator can be supercyclic.

Because the proof of Theorem M requires considerable background,
I include for the reader’s convenience this final section, which provides
a mostly self-contained proof of non-supercyclicity for the class of com-
position operators we are considering here. The key to the argument
is the following result, which occurs in [5, Theorem 6.1] and [6, Prop.
2.1].

5.1. Lemma. A bounded linear operator T on a Banach space X is
not supercyclic on X whenever its spectrum can be split into a disjoint
union of nonvoid compact sets K1 and K2, where K1 ⊂ {|z| < r} and
K2 ⊂ {|z| > r} for some positive r.

Proof. An operator is supercyclic if and only if every one of its non-zero
scalar multiples is supercyclic, so we may, without loss of generality,
assume that r = 1. The Riesz functional calculus provides a direct
sum decomposition X = X1 ⊕ X2 where Xi is a closed, T -invariant
subspace of X and σ(T |Xi

) ⊂ Ki (i = 1, 2). Because the spectrum of
T |X1 lies in the open unit disc, the spectral radius formula implies that
the positive powers of this operator converge to zero in the operator
norm. Similarly, the spectrum of the restriction of T to X2 lies outside
the closed unit disc, hence by an easy argument, ‖T nx‖ → ∞ for every
0 �= x ∈ X2 (see, e.g., [5, Lemma 6.3] for details).

Now suppose 0 �= x ∈ X. The goal is to show that x is not a
supercyclic vector. In the decomposition x = x1 + x2 with xi ∈ Xi

(i = 1, 2) this will be trivial if either x1 or x2 is the zero vector. So
suppose otherwise, in which case the Hahn-Banach theorem provides a
bounded linear functional Λ on X that vanishes identically on X2, but
has Λ(x1) �= 0. Let y be a non-zero vector that is a limit point of the
projective T -orbit of x, so there exist a sequence {cj} of scalars and
a strictly increasing sequence {nj} of non-negative integers such that
cjT

nj → y. Therefore:

|Λ(y)|
‖y‖ = lim

j

|Λ(cjT
njx)|

‖cjT njx‖ = lim
j

|Λ(T njx1)|
‖T nj(x1 + x2)‖

.

In the last fraction the numerator is bounded above by ‖Λ‖ ‖T njx1‖,
which converges to zero, while the denominator is bounded below by
‖T njx2‖ − ‖T njx1‖, which converges to ∞. Thus the fraction itself
converges to zero, and so Λ(y) = 0.
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This shows that for any 0 �= x ∈ X there is a nontrivial bounded
linear functional Λ on X such that each limit point of the projective
T -orbit of x lies in the null space of Λ. This projective orbit is therefore
not dense in X so, as desired, x is not a supercyclic vector for T .

5.2. Remark. This result lies at the heart of the proof that for any
supercyclic operator T there must exist a (possibly degenerate) circle
centered at the origin that intersects every component of the spectrum
of T (see [9, Proposition 3.1] [5, Theorem 6.1] or [6, Prop. 2.1]). This
“circle theorem” can, in turn, be considered an extension of a result
of Kitai, who proved in [12, Theorem 2.8] that every component of
the spectrum of a hypercyclic operator must intersect the unit circle. I
thank Alfonso Montes for pointing out the reference to Herrero’s paper.

5.3. Restriction and quotient maps. If T is a bounded linear op-
erator on X, then any closed, T -invariant subspace Y of X gives rise
to two further operators: the usual restriction operator T |Y : Y → Y
and the perhaps less familiar quotient operator T/Y : X/Y → X/Y ,
defined by:

(T/Y )(x + Y ) = Tx + Y (x ∈ X).

Let σf (T ) denote the union of σ(T ) with all the bounded components of
its complement, the so-called full spectrum of T . It is well known that
σ(T |Y ) ⊂ σf (T ), but less familiar is the following result for quotient
maps:

5.4. Lemma. If X = Y + Z where Y and Z are closed, T -invariant
subspaces of X, then σ(T/Z) ⊂ σf (T |Y ).

The result follows immediately from the one about restriction op-
erators when X is the direct sum of Y and Z, for then the quotient
map T/Z is similar to the restriction of T to Y . The general case
follows from the restriction theorem and the (easily checked) fact that
the map y + (Y ∩ Z) → y + Z is an isomorphism of Y/(Y ∩ Z) onto
X/Z that establishes a similarity between T/Z and (T |Y )/(Y ∩Z) (see
[14, Proposition 1.2.4] for the details).

With these preliminaries out of the way we can now prove the main
result of this section.

5.5. Theorem. If ϕ is a parabolic linear fractional selfmap of U that is
not an automorphism, then Cϕ is not supercyclic on Hp for 1 ≤ p < ∞.

Proof. Recall that σ(Cϕ) is either the closed interval [0, 1] or a curve
that starts at 1 and converges to the origin by spiralling infinitely often
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around it, with distance to the origin decreasing monotonically. Choose
any numbers 0 < r1 < ρ1 < ρ2 < r2 < 1 and note that, because of this
monotonicity, σ(Cϕ) intersects {|z| > r1} in an arc that contains the
point 1. Let

V = {|z| < ρ1} ∪ {|z| > ρ2} and W = {r1 < |z| < r2},
so that {V, W} is an open covering of the plane. Because Cϕ is decom-
posable on Hp there exist Cϕ-invariant subspaces Y and Z such that
Hp = Y + Z, σ(Cϕ|Y ) ⊂ V , and σ(Cϕ|Z) ⊂ W .

Because supercyclicity (indeed any form of cyclicity) is inherited
by quotient maps, the proof will be finished if we can show that the
quotient map Cϕ/Z is not supercyclic on Hp/Z. To this end observe
that

σ(Cϕ/Z) ⊂ σf (Cϕ|Y ) ⊂ σf (Cϕ) = σ(Cϕ),

where the first containment follows from Lemma 5.4, the second was
pointed out in §5.3, and the final equality is a consequence of the spiral
shape of the Hp-spectrum of Cϕ (Corollary 3.10). Thus the spectrum
of Cϕ/Z lies in V , and therefore decomposes into a disjoint union of
two compact sets, K1 ⊂ {|z| < ρ1} and K2 ⊂ {|z| > ρ2}. Lemma 5.1
will then complete the job once we establish that neither K1 nor K2 is
empty.

For this, recall from §4 that the decomposing subspaces Y and Z
were constructed by choosing a C∞ partition of unity {β, γ} on σ(Cϕ)
with sptβ ⊂ V and spt γ ⊂ W , and then setting Y = E(sptβ) and
Z = E(spt γ). From Lemma 4.1 we know that each point eiat of sptβ
is an eigenvalue of Cϕ for which the corresponding eigenvector et lies
in Y (here a ∈ Π+ is the translation parameter of ϕ). Moreover, if
eiat /∈ spt γ then Lemma 4.1 insures that et /∈ Z, so that the coset et+Z
is not the zero-element of the quotient space Hp/Z. Thus every point
eiat ∈ sptβ\spt γ, is a Cϕ/Z eigenvalue. Since sptβ\spt γ has points
in both components of V , and σ(Cϕ/Z) ⊂ V , we see that σ(Cϕ/Z) is
split by an origin-centered circle. Thus Lemma 5.1 insures that Cϕ/Z
is not supercyclic, and therefore neither is Cϕ.
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