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ABSTRACT

We undertake a systematic study of cyclic phenomena for com-
position operators. Our work shows that composition operators
exhibit strikingly diverse types of cyclic behavior, and it con-
nects this behavior with classical problems involving complex
polynomial approximation and analytic functional equations.
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Introduction

In this monograph we explore some links between function theory and op-
erator theory that are created by Littlewood’s Subordination Principle. Ev-

eryone knows that if ϕ is a holomorphic function that takes the unit disc
U of the complex plane into itself, then for any function f holomorphic on
U , the composition f ◦ ϕ is also holomorphic on U . But not so well known,
and not at all obvious, is the following consequence of Littlewood’s Principle
([36], [48, Chap. 1]):

Whenever the Taylor coefficients of f in its expansion about the
origin form a square-summable sequence, then so do those of
f ◦ ϕ.

Thus the composition operator Cϕ, defined by

Cϕf = f ◦ ϕ (f holomorphic on U),

takes the Hardy space H2 into itself. Littlewood’s Principle also supplies a

uniform estimate which shows that Cϕ is a bounded operator on H2 (see
[48, Chapter 1] or [19, Corollary 2.24] for example).

In the 1960s, John Ryff [44], Eric Nordgren [40], and Howard Schwartz
[46] took up the problem of relating the properties of composition operators
with the function theory of their inducing maps, and their efforts have in-

spired a continuing program of research on composition operators which in-
cludes investigations of spectra ([11, 12, 33, 15]), compactness ([50, 37, 47]),
semigroups ([3, 4, 16, 52]), and subnormality ([16, 17, 18, 20]). Each paper
in this necessarily incomplete list illustrates the subject’s rich potential for
connecting complex analysis with operator theory. For example, the study

of compactness leads to geometric function theory and value distribution
theory ([50, 37, 47]), while that of subnormality uncovers surprising rela-
tionships between function theory, semigroups, and classical Hilbert space
operators (e.g., the Cesàro operator; see [20, 16, 52]).

Here we introduce a new direction into the composition-operator pro-

gram: the study of cyclicity.

1



2 P.S. BOURDON AND J.H. SHAPIRO

Cyclicity

Recall that an operator T on a linear topological space is said to be cyclic

if there is a vector x in the space (called a cyclic vector for T ) whose orbit

Orb (T, x) = {T nx : n = 0, 1, 2, . . .}

has dense linear span. It may happen that the orbit itself is dense, without
additional help from the linear span; in this case T is called hypercyclic, and
x is a hypercyclic vector.

Because the closed linear span of Orb (T, x) is the smallest closed T -
invariant subspace that contains the vector x, the concept of cyclicity is
intimately connected with the study of invariant subspaces. Hypercyclicity
has the same connection with invariant subsets, and, because of its indepen-
dence of the notion of linearity, it also makes contact with dynamics (when

formulated for mappings of arbitrary topological spaces, the concept is usu-
ally called topological transitivity, see for example [22, page 50]). Here we
regard hypercyclicity as an extremely strong form of cyclicity.

No linear operator on a finite-dimensional space is hypercyclic (see [34],
for example), but the property shows up surprisingly often in spaces of

infinite dimension. Infinite-dimensional hypercyclicity was first observed by
G.D. Birkhoff, who showed in 1929 that the translation operator f(z) →
f(z + 1) is hypercyclic on the Fréchet space of all entire functions [7]. More
recently, hypercyclicity has been discovered lurking within important classes
of Hilbert space operators (see [42, 34, 25, 26, 31, 5, 13], and for more detailed

accounts [6, 48]).
Here we study the notions of cyclicity and hypercyclicity for composi-

tion operators on H2. We proceed in two stages, first characterizing the
cyclic and hypercyclic composition operators induced by linear-fractional
self-maps of U , and then transferring these results to a wider setting by

using linear-fractional self-maps to represent more general ones. It is this
transference procedure that confronts us with the issues of iteration, poly-
nomial approximation, and geometric function theory that form the heart
of our work.

Cyclicity and Iteration

The study of cyclicity is especially natural for composition operators because
the n-th power of Cϕ is the composition operator induced by the n-th iterate
of ϕ. That is, Cn

ϕ = Cϕn, where

ϕn = ϕ ◦ ϕ ◦ . . . ◦ ϕ (n times).
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This suggests that the cyclic behavior of a composition operator should be
strongly influenced by the dynamical properties of its inducing map. Here
is a simple illustration of how such properties, as determined in this case

by fixed-point location, can influence the cyclic behavior of the induced
composition operator.

Proposition 0.1 Suppose that ϕ is a self-map of U that fixes a point z0

in U . Then Cϕ is not hypercyclic. Moreover, if ϕ is not an elliptic auto-
morphism, then for each f ∈ H2, the only limit point of Orb (Cϕ, f) is the
constant function f(z0).

Proof. Suppose that ϕ fixes a point z0 ∈ U . If ϕ is not an elliptic au-

tomorphism of U , then a little work with the Schwarz Lemma shows that
ϕn → ϕ(z0) pointwise on U . Hence, if a function g is a limit point of the
orbit of f , say g = limj f ◦ ϕnj , then by the continuity of point evaluation
functionals on H2, we see that for each z ∈ U :

g(z) = lim
j

f(ϕnj (z)) = f(z0),

as desired. If ϕ is an elliptic automorphism, then its iterates no longer

converge to a constant, but we still have g(z0) = f(z0). Thus every function
in orbit-closure of f has value f(z0) at z0, hence Orb (Cϕ, f) cannot be
dense. 2

In the other direction, we have a non-Euclidean version of Birkhoff’s
original hypercyclicity theorem on entire functions (see Theorem 2.3):

Every composition operator induced by a non-elliptic disk auto-
morphism is hypercyclic.

Remark. Elliptic linear-fractional transformations are not really an issue

for us. Since each such transformation is conjugate to a rotation, the corre-
sponding composition operator is similar to one induced by a rotation, and it
is an elementary exercise to analyze the cyclic properties of rotation-induced
operators. For the convenience of the reader we present the argument in sec-
tion 2 (Proposition 2.1; cf. also [48, §7.4, Prob. 11]).

Our complete result on the cyclic behavior of linear-fractional composi-
tion operators is Theorem 2.2, whose “non-automorphic” content we sum-
marize in Table I. The comments appearing in the right-hand column of this
table indicate the workings of an intriguing “zero-one law” wherein a linear-
fractional composition operator either possesses a particular cyclic property
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strongly, or fails that property spectacularly. For example, noncyclic linear-
fractional composition operators all have “infinite multiplicity,” while cyclic
ones have a dense set of cyclic vectors. In every nonhypercyclic case, only

constant functions can adhere to orbits.

Table I
Theorem 2.2: Cyclic behavior of Cϕ,

ϕ linear fractional, not an automorphism

Fixed points
of ϕ

(relative to U)

Cyclicity of Cϕ Examples Comments

Interior &
boundary

Not Cyclic ϕ(z) =
z

2− z

Every finitely gen-
erated invariant
subspace has infinite
codimension.

Interior &

exterior

Cyclic,

Not Hypercyclic
ϕ(z) =

−z

2 + z

Only constant func-
tions can adhere to an
orbit. Cϕ has a dense
collection of cyclic vec-
tors.

Exterior &
boundary
(hyperbolic)

Hypercyclic ϕ(z) =
1 + z

2
Hypercyclic ⇒ Cyclic

Boundary only
(parabolic)

Cyclic,

Not Hypercyclic
ϕ(z) =

1

2− z

Here, only constant
functions can adhere
to a Cϕ-orbit.

In the sequel we will show that for more general composition operators,
fixed point behavior still plays a decisive role in determining hypercyclic-

ity, but when the issue is ordinary cyclicity, this importance is somewhat
diminished. We show, for example, that in contrast to what happens in the
first row of Table I, there exists a holomorphic (but not linear-fractional)
self-map ϕ of U with interior and boundary fixed points, such that Cϕ is
cyclic (see the example following Corollary 3.7).
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“Linear-Fractional” Classification of Arbitrary Maps

The Denjoy-Wolff Theorem. In a certain sense, every holomorphic self-

map of U has an attractive fixed point: if there is not one in U , then there is
a unique boundary point that serves the purpose. This is the content of the
famous Denjoy-Wolff Theorem, which figures importantly in almost every
aspect of the study of composition operators. To simplify its statement we
adopt some terminology.

• We call a point p ∈ ∂U a boundary fixed point of ϕ if ϕ has non-
tangential limit p at p.

• We use the notation
κ→ to indicate uniform convergence on compact

subsets of U ,

• If the derivative of ϕ has a nontangential limit at a boundary point p
of U , we say ϕ has an angular derivative at p, and denote the limit by
ϕ′(p).

In the definition of angular derivative it is sometimes required that the non-
tangential limit of ϕ at p (whose existence follows easily from that of the
derivative) have modulus one (cf. [48, Chapter 4]). Although not explicitly
required above, this additional condition will occur in our applications of

the angular derivative.

Theorem 0.2 (Denjoy-Wolff) Suppose ϕ is an analytic self-map of U

that is not an elliptic automorphism.

(a) If ϕ has a fixed point p ∈ U , then ϕn
κ→ p and |ϕ′(p)| < 1.

(b) If ϕ has no fixed point in U , then there is a point p ∈ ∂U such that
ϕn

κ→ p. Furthermore:

• p is a boundary fixed point of ϕ; and

• the angular derivative of ϕ exists at p, with 0 < ϕ′(p) ≤ 1.

(c) Conversely, if ϕ has a boundary fixed point p at which ϕ′(p) ≤ 1 then
ϕ has no fixed points in U , and ϕn

κ→ p.

The fixed point p to which the iterates of ϕ converge is called the Denjoy-
Wolff point of ϕ. Part (a), which has already been employed in the proof

of Proposition 0.1, is not really part of the original theorem; it is included
here only for convenience. For a proof of Theorem 0.2, and for further
connections with the theory of composition operators, see [48, Chapter 5] or
[19, Section 2.4]
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Classification of linear-fractional maps. The Denjoy-Wolff Theorem
suggests a “linear-fractional-like” classification of arbitrary holomorphic self-
maps of U . For motivation, note that the linear-fractional self-maps of U

fall into distinct classes determined by their fixed-point properties (cf. [48]:
Chapter 0). These are:

• Maps with interior fixed point. By the Schwarz Lemma the interior
fixed point is either attractive, or the map is an elliptic automorphism.
In both cases the map is conjugate to a dilation z → λz for some
complex number λ with 0 < |λ| ≤ 1.

• Hyperbolic maps with attractive fixed-point on ∂U . These are the

self-maps having derivative < 1 at a boundary fixed point.

• Parabolic maps. These have exactly one fixed point on the Riemann
Sphere, and in order for the map to take U into itself, this fixed point
must lie on ∂U . These maps are characterized by the fact that they
have derivative = 1 at the fixed point.

The parabolic self-maps of U fall into two subclasses:

• The automorphisms. These are distinguished by the property that

each orbit is separated in the hyperbolic metric (meaning that, for
each z ∈ U , the hyperbolic distance between successive points of the
orbit (ϕn(z)) stays bounded away from zero).

• The nonautomorphisms. For these, the orbits are not hyperbolically
separated, i.e., the distance between successive orbit points tends to
zero.

An elementary argument establishes these last two statements. The first
just reflects the fact that automorphisms are hyperbolic isometries. The
second is best viewed in the context of the right half-plane Π. Suppose ψ is
a parabolic self-map of U with fixed point at 1, and let

T (w) =
w + 1

w − 1
, and Ψ

def
= T ◦ ψ ◦ T−1.

Thus T is a linear-fractional mapping of U onto Π that takes 1 to∞, and one
easily checks that Ψ(w) = w + ψ ′′(1). It follows that ψ ′′(1) has non-negative
real part (otherwise Ψ could not map Π into itself), and since ψ is not an
automorphism of U , ψ ′′(1) cannot be pure imaginary. Now hyperbolic discs

in Π of fixed radius have this property: their Euclidean size is proportional
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to the real part of their hyperbolic center (see section 4, or [48, Chapter 4]
for the details). Our hypothesis on the translation distance ψ ′′(1) insures
that for each w ∈ Π the Ψ-orbit (Ψn(w)) has unbounded real part, but

fixed Euclidean distance |ψ ′′(1)| between successive points. Thus for all
sufficiently large n, the hyperbolic disc of radius ε about Ψn(w) contains
Ψn+1(w), hence the orbit of w is not separated.

Motivated by the classification of linear-fractional self-maps of U , and
encouraged by the restrictions the Denjoy-Wolff Theorem places on the val-

ues the derivative of an arbitrary self-map can take at the Denjoy-Wolff
point, we introduce the following general classification scheme.

Definition 0.3 (Classification of arbitrary self-maps) A holomorphic
self-map ϕ of U is of:

• dilation type if it has a fixed point in U ;

• hyperbolic type if it has no fixed point in U and has derivative < 1 at
its Denjoy-Wolff point;

• parabolic type if it has no fixed point in U and has derivative = 1 at

its Denjoy-Wolff point.

As in the linear-fractional case, the maps of parabolic type fall into two
subclasses:

• Automorphic type: Those having an orbit that is separated in the
hyperbolic metric of U .

• Non-automorphic type: Those for which no orbit is hyperbolically sep-
arated.

Remark. It can be shown that either all orbits are separated or none are

separated (for the maps of interest to us, we will prove this in section 4).
A major objective of this monograph is to determine the extent to which

composition operators in each of the classes above share the same cyclic
behavior as their linear-fractional role models. The possibility of such a
connection is suggested by the following remarkable theorem of classical

function theory.

Theorem 0.4 (The Linear-Fractional Model Theorem) Suppose ϕ is
a univalent self-map of U . Then there exists a univalent map σ : U → C on
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U , and a linear-fractional map ψ such that ψ (U ) ⊂ U , ψ (σ(U )) ⊂ σ(U)),
and

σ ◦ ϕ = ψ ◦ σ.(1)

Furthermore:

(a) ψ , viewed as a self-map of U , has the same type as φ.

(b) If φ is of hyperbolic type then ψ may be taken to be a conformal auto-
morphism of U .

(c) If φ is of either hyperbolic or parabolic-automorphic type, then σ may
be taken to be a self-map of U .

The fact that ψ maps the simply-connected domain G = σ(U ) into
itself follows immediately from the functional equation (1). This equation
establishes a conjugacy between the original map φ acting on the unit disc
and the linear-fractional map ψ acting on G. Since the action of ψ is known,
the subtleties of φ lie encoded in the geometry of G. All our investigations

will be driven by the need to understand this geometry.

Definition 0.5 We call the pair ( ψ, G ) (or, equivalently, (ψ, σ )) a linear-
fractional model for φ).

Remarks. (a) Some history. The Linear-Fractional Model Theorem is the
work of a number of authors, whose efforts stretch over nearly a century.
The dilation case is due to Koenigs ([35]: 1884). In this case equation (1)
is Schröder’s equation: σ ◦ ϕ = λσ, where (necessarily) λ = ϕ′(0) (see [48,

Chapter 6] for more details). The hyperbolic case is due to Valiron. If one
replaces the unit disc by the right half-plane, sending the Denjoy-Wolff point
to ∞, then the resulting functional equation is again Schröder’s equation,
but this time λ is the reciprocal of the angular derivative of the original disc
map at the Denjoy-Wolff point ([53]: 1931). Finally the parabolic cases were

established by Baker and Pommerenke ([41, 2]: 1979), and independently
by Carl Cowen ([14]: 1981). Once again the situation is best viewed in
the right half-plane, rather than the unit disc, with the Denjoy-Wolff point
placed at ∞. Then equation (1) is just σ ◦ ϕ = σ + i in the automorphic
case [41], and σ ◦ ϕ = σ + 1 in the nonautomorphic case [2]. In [14] Cowen

unified the proof of the Linear-Fractional Model Theorem by means of a
Riemann-surface construction that disposes of all the cases in one stroke
(see also [19, Theorem 2.53]). He later introduced linear-fractional models
into the study of composition operators, using them to investigate spectra
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Figure 1: A Linear-Fractional Model

[15]. These models have also figured prominently in previously-mentioned
work on subnormality [18] and compactness [49].

(b) Role of the Theorem in this monograph. The Linear-Fractional
Model Theorem serves as a guide to, but not a prerequisite for, our ef-
forts to generalize our results on cyclicity of linear-fractional composition

operators. As the reader will see shortly, we require versions of the theorem
that show how additional smoothness properties of ϕ influence the behavior
of the intertwining map σ. For this we need to develop and analyze our own
version of the model. This we do in section 4.

(c) Distinguishing the parabolic models. The problem of distinguishing

the two parabolic cases of the Linear-Fractional Model Theorem is, in gen-
eral, quite delicate. For our work, however, it poses no problem. We will
establish in section 4 that if ϕ has enough differentiability at the Denjoy-
Wolff point, then cases are distinguished by the second derivative of ϕ at
that point. There is, however, some subtlety here; we will see in section

6 that, for example, C2-differentiability at the Denjoy-Wolff point is not
enough to allow the second derivative to distinguish the cases.

(d) Necessity of Univalence. We have stated the Linear-Fractional Model
Theorem only for univalent maps ϕ. The result is true even if ϕ is not
univalent, provided we are willing to give up the conclusion of univalence

for the intertwining map σ. (In case ϕ is of dilation type, with fixed point
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p ∈ U , we must also assume that ϕ′(p) 6= 0.) However only the univalent
case will concern us here, because:

If Cϕ is cyclic, then ϕ is univalent on U .

The necessity of univalence for hypercyclicity is easy to establish: if ϕ iden-
tifies two distinct points of U , then so does f ◦ ϕn for each f ∈ H2 and

each positive integer n, and therefore so does every limit point of the orbit
(f ◦ ϕn) of f under Cϕ. It follows that no orbit can be dense in H2, so Cϕ

is not hypercyclic.
To prove the necessity of univalence for cyclicity requires more work (it is

amusing to check why this is so). The full story is contained in Theorem 1.7,

where it is shown that a certain “almost everywhere” boundary univalence
is also necessary.

Transference

In order to transfer results on the cyclicity of linear-fractional composi-
tion operators to more general situations, we need to develop a version of
the Linear-Fractional Model Theorem that predicts the boundary regularity

properties of the intertwining map σ from those of ϕ. The sample result
below makes clear the need for such analysis.

Theorem 0.6 (Sample Transference Theorem) If ϕ is a univalent self-
map of U of hyperbolic type, and the polynomials in σ are dense in H2, then
Cϕ is hypercyclic.

Sketch of Proof. Because ϕ has its Denjoy-Wolff point on ∂U and has
angular derivative < 1 at that point, the Linear-Fractional Model Theorem

provides a univalent self-map σ of U , and a hyperbolic disk automorphism
ψ , so that the functional equation (1) is satisfied. Because ψ is a non-
elliptic automorphism, our non-Euclidean analogue of Birkhoff’s Theorem
(Theorem 2.3) shows that C ψ is hypercyclic. Let f be a hypercyclic vector
for Cψ , and assume that the polynomials in σ are dense in H2. We claim

that f ◦ σ is hypercyclic for Cϕ. Applying (1), we obtain

Cn
ϕ (f ◦ σ) = Cσ (f ◦ ψ n) .

Hence, the orbit of f ◦ σ under Cϕ is the image of Orb (Cψ , f) under Cσ.
Note Cσ has dense range (the image of the composition operator Cσ contains
the set of polynomials in σ, which we’re assuming to be dense). It follows
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that Orb (Cϕ, f ◦ σ), being the image of the dense set Orb (Cψ , f) under an
operator with dense range, is dense in H2. Thus Cϕ is hypercyclic with
hypercyclic vector f ◦ σ. 2

Our results on cyclicity have the same general flavor: If the polynomials
in σ are dense in H2, then Cϕ inherits the same brand of cyclicity possessed
by the linear-fractional composition operator Cψ .

We will see in Section 1 that for Cϕ to be cyclic, it is necessary that
the polynomials in ϕ be dense in H2. On the other hand, the transference

technique introduced above requires the density of the polynomials, not in ϕ,
but in σ. The crux of the cyclicity problem is that the desired polynomial
approximation property need not be passed down from ϕ to σ (see, e.g.,
[48], §8.4, Problem 2, and §8.5). We devote much of the latter part of this
monograph to overcoming this problem. The idea is to show that for maps

ϕ that are sufficiently regular, the solutions σ of the functional equation (1)
behave well enough to have the desired approximation property.

Our results here have interest that goes beyond the immediate study of
cyclicity. We show, for example, that if the closure of ϕ(U ) is contained in
U , then density of the polynomials in ϕ is equivalent to density of the poly-

nomials in σ. As a consequence, we prove that, in this case, the connection
between cyclicity and polynomial approximation is complete (Theorem 3.4):

Suppose ‖ϕ‖∞ < 1. Then Cϕ is cyclic if and only if the polyno-
mials in ϕ are dense in H2.

(This result fails if the assumption ‖ϕ‖∞ < 1 is dropped—see our remark
following Theorem 3.4.)

In this monograph we draw our conclusions about polynomial approxi-
mation from the following fundamental result.

Theorem 0.7 (Walsh’s Theorem) Suppose G is a simply connected do-
main whose boundary is a Jordan curve. Let the holomorphic function F
map U univalently onto G. Then the polynomials in F are dense in H2.

The result usually called Walsh’s Theorem actually asserts that the poly-
nomials in z are uniformly dense in A(G), the subalgebra of C(G) consisting
of functions holomorphic on G (see, for example, [38, Theorem 3.9, page 98]).
A theorem of Carathéodory asserts that F extends continuously and uni-

valently to G, so Walsh’s original result asserts, in our situation, that the
polynomials in F are dense in A(U). Clearly A(U) is dense in H2, and this
yields Theorem 0.7 (see [48, §8.1] for more details).

In particular (Corollary 3.5):
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If ϕ maps the unit disk onto the interior of a Jordan curve lying
in U, then Cϕ is cyclic.

The Intertwining Map σ

To obtain the desired properties of σ we find an asymptotic representation of
this map when ϕ obeys certain hypotheses of smoothness and “regularity.”

More precisely:

Definition 0.8 We call a map ϕ regular provided it is univalent and con-
tinuous on the closure of U , has Denjoy-Wolff point p on ∂U , and maps the
closed disk into U ∪ {p}.

We will require ϕ to have additional smoothness at its Denjoy-Wolff point;
although this will vary from case to case, C4-smoothness will always suffice.
Our asymptotic representations of σ will yield the results on cyclicity listed

in Table II below. The Denjoy-Wolff Theorem insures that 0 < ϕ′(p) ≤ 1,
and we will see in Section 4 (Theorem 4.4, part (a)) that whenever ϕ′(p) = 1,
then Re ϕ′′(p) ≥ 0 (this also follows from the fact that the boundary of ϕ(U)
has curvature ≥ 1 at p). Thus the various cases represented by the rows
of Table II exhaust all possibilities. Sections 3 through 5 are devoted to

proving the assertions made in this table.

Comparison with Table I shows that if ϕ obeys our regularity and smooth-
ness assumptions, then Cϕ inherits the cyclic properties of its linear-fractional
counterpart. When hypercyclicity is the issue, this will follow quickly from
the asymptotic representations we obtain for σ in Section 4. However the

cyclicity result described in the last row of Table II, while still making criti-
cal use of the regularity of σ, requires more effort; its proof occupies section
5.

Here is a quick outline of the rest of the monograph. Section 1 briefly
summarizes the preliminary material on Hardy spaces, linear-fractional maps,

angular derivatives, and cyclicity that forms the basis for the rest of the
work. Linear-fractional cyclicity occupies section 2, while section 3 contains
a detailed discussion of the linear-fractional model, the transference proce-
dure, and its connection with polynomial approximation. In section 4 we
obtain asymptotic representations of the intertwining map σ when ϕ is of

hyperbolic and parabolic type, and in section 5 we complete the proof of
our cyclicity theorem for regular maps. The work concludes with section
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Table II

Cyclic behavior of Cϕ: Denjoy-Wolff point at 1,
ϕ ∈ C4(1), regular, and ϕ′′(1) 6= 0.

Hypothesis
on ϕ′(p)

Hypothesis
on ϕ′′(p)

Cyclicity
of Cϕ

Type of ϕ
(Model for ϕ)

< 1 None
Hypercyclic
(Theorem 4.7)

Hyperbolic
(Theorem 4.9)

=1 Pure imag. 6= 0
Hypercyclic

(Theorem 4.16)

Parabolic

automorphism
(Theorem 4.12)

=1 Real part > 0

Cyclic,

Not Hypercyclic
(Thms. 4.6 & 5.2)

Parabolic

non-automorphism
(Theorem 4.12)

6, where we set out some open problems suggested by our work, and dis-
cuss further the matter of determining which of the two parabolic models
(automorphic or non-automorphic) applies to a given ϕ.



1 Preliminaries

In this section we set forth additional terminology, and prove some basic

results about the cyclic behavior of composition operators. We refer the
reader to Duren’s book [23] for more details about Hardy spaces, and to [19]
and [48] for more on the basics of composition operators.

The Space H2

Although our results hold for all the spaces Hp with 1 ≤ p < ∞, we prefer to
concentrate exclusively on the Hilbert space H2, for which we can develop
most of the necessary background within the next few paragraphs.

The Hardy space H2 is the natural functional representation of the se-

quence space `2. It is the space of functions holomorphic in U whose Taylor
coefficients in the expansion about the origin form a square summable se-
quence. More precisely,

f(z) =
∞∑

n=0

f̂(n)zn ∈ H2 ⇐⇒ ‖f‖2 =
∞∑

n=0

|f̂(n)|2 < ∞.

The inner product inducing the H2 norm is given by

〈f, g〉 =
∞∑

n=0

f̂(n)ĝ(n) (f, g ∈ H2).

Associated to each point α ∈ U there is a function of particular interest
to us: the reproducing kernel for α, defined by

Kα(z) =
1

1− ᾱz
=

∞∑

n=0

(ᾱz)n,

which clearly belongs to H2, and has norm 1/
√

1− |α|2.
The property that gives Kα its name follows immediately from the defi-

nitions of Kα and inner product :

f(α) = 〈f,Kα〉 (f ∈ H2).(2)

14
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This shows that the linear functional of evaluation at α ∈ U is continuous
on H2, and provides the following growth estimate for functions in H2:

|f(α)| ≤ ‖f‖ ‖Kα‖ =
‖f‖√

1− |α|2
.

This shows, in particular, that convergence in H2 implies uniform conver-
gence on compact subsets of U . We will also need the corresponding esti-
mate for derivatives, which is most easily obtained by applying the Cauchy-

Schwarz inequality to the power series representation of f ′:

|f ′(α)| ≤
‖f‖

(1− |α|)3/2
(α ∈ U, f ∈ H2).(3)

Life on the boundary of the unit disc is an important feature of Hardy
space theory. For each f ∈ H2 the radial limit

f ∗(ω) = lim
r→1−

f(rω)

exists at almost every point ω of the unit circle. The boundary function f∗

is the limit in L2 = L2(∂U, dθ/2π) of the dilated functions fr (0 < r < 1)

defined on the unit circle by fr(ω) = f(rω), so it belongs to L2, and has
Fourier series representation

f∗ ∼
∞∑

n=0

f̂(n)einθ.

Thus the mapping that associates the “interior” function f with the bound-
ary function f∗ is an isometry of H2 onto the subspace of L2 spanned by
the orthonormal set {einθ : n ≥ 0}. From now on we drop the notation f∗

and simply write f(ω) for the radial limit of f at ω. Thus we have for f and
g in H2:

〈f, g〉 =
1

2π

∫ 2π

0
f(eiθ)g(eiθ)dθ.

For more details we refer the reader to [23, Chapter 2].
We will need the following very special case of Beurling’s Theorem on in-

variant subspaces of the shift operator (see [23, Theorem 7.4]). Fortunately,
an elementary proof is available.

Proposition 1.1 For ω ∈ ∂U , let Zω denote the collection of functions
holomorphic in a neighborhood of the closed unit disc which vanish at ω.
Then Zω is dense in H2.
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Proof. Suppose f ∈ H2 is orthogonal to Zω. Then for all non-negative
integers n we have 〈f, (ω − z)zn〉 = 0; hence

f̂(n + 1) = 〈f, zn+1〉 = ω̄〈f, zn〉 = ω̄f̂(n).

From this it follows that f̂(n) = w̄nf̂(0) for all n. Since ω is on the unit circle,
and f ∈ H2, this forces f̂(0) = 0, and therefore all the Taylor coefficients of
f must vanish. Thus f ≡ 0, so Zω is dense in H2, as desired. 2

Although our main results are set exclusively in the Hardy space H2

of the unit disk, it is sometimes convenient to interpret some of the inter-
mediate steps in a more general setting. If G is a simply connected plane
domain, and σ is a univalent (holomorphic) mapping of U onto G, then the
Hardy space H2(G), is the set of functions f holomorphic on G for which
f ◦ σ ∈ H2. The inner product of two elements f and g in H2(G) is defined

to be 〈f ◦σ, g ◦σ〉, where 〈·, ·〉 denotes the inner product of the usual Hardy
space H2. In other words, the Hilbert space structure of H2(G) is simply
the one imposed by declaring the composition operator Cσ : H2(G) → H2

to be an isometry. The collection of functions H2(G) is easily seen to be in-
dependent of the particular univalent mapping σ used above, and although

different maps σ give different Hilbert space norms on H2(G), it is also easy
to check that these norms are all equivalent (the proof is simply the obser-
vation that every automorphism of U induces a Hilbert-space isomorphism
of the original Hardy space H2). See [23, Chapter 10] for more information
about these generalized Hardy spaces .

Angular Derivatives

We indicated in the introduction that a boundary Denjoy-Wolff point is

characterized by a condition on angular limits and angular derivatives. Here
we make these notions precise. Given 0 < α < π we define the family sα

of angular approach regions with vertex 1 as follows: sα is the region in U
between two chords symmetric with respect to the real axis that meet at
1 with angle α (see Figure 2). For any ω on the boundary of U , ωsα is a

family of angular approach regions with vertex ω.
We say that a function f defined on U has angular limit L at ω ∈ ∂U ,

and write
6 lim

z→ω
f(z) = L,

provided that given any α with 0 < α < π, the limit of f(z) equals L as
z approaches ω through ωsα. Recall from the Introduction that we say a
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Figure 2: Angular Approach Region sα.

self-map ϕ of U has an angular derivative at a point ω ∈ ∂U if the limit
6 limz→ω ϕ′(z) exists (finitely), and that when this happens, we denote the
limit by ϕ′(ω): the angular derivative of ϕ at ω. The main classical result

here the Julia-Carathéodory theorem, which provides an effective test of
existence of the angular derivative (part (a)), and a geometric interpretation
(part(b)).

Theorem 1.2 (Julia-Carathéodory) Suppose that ϕ is an analytic self-
map of U and that ω ∈ ∂U . Then the following are equivalent.

(a) lim inf
z→ω

1− |ϕ(z)|
1− |z|

= δ < ∞.

(b) 6 lim
z→ω

η − ϕ(z)

ω − z
exists for some η ∈ ∂U .

(c) ϕ has an angular derivative at ω, and 6 lim
z→∞

ϕ(z) = η ∈ ∂U.

Moreover, δ > 0 in (a), the boundary points η in (b) and (c) are the same,

and the limit of the difference quotient in (b) coincides with that of the
derivative in (c), with both equal to ωη̄δ.

For a proof of the Julia-Carathéodory theorem, see [10, §295–§303], [19,
Theorem 2.44], or [48, Chapter 4]. Note that if ϕ fixes the boundary point
ω, then the “derivative-like” limits in parts (a), (b), and (c) are are equal;
in particular they agree when ω is the Denjoy-Wolff point of ϕ.

Recall from the Introduction that whenever the Denjoy-Wolff point p
of ϕ lies on the boundary, the angular derivative ϕ′(p) exists, and lies in
the positive interval (0, 1]. This phenomenon arises from the inequality
below, which provides additional insight concerning the behavior of ϕ near
a boundary Denjoy-Wolff point (see [10, §297], [19, Lemma 2.41], or [48,

Chapter 4]).
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Theorem 1.3 (Julia-Carathéodory Inequality) Suppose that ϕ has
Denjoy-Wolff point p ∈ ∂U , and that ϕ′(p) = µ. Then for any z ∈ U ,

|p− ϕ(z)|2

1− |ϕ(z)|2
≤ µ

|p− z|2

1− |z|2
.

Geometrically, the Julia-Carathéodory inequality says that if ϕ has its
Denjoy-Wolff point on the boundary, then it takes each disk in U that is

internally tangent to ∂U at that point into itself (see [48, §5.3] for example).
This inequality will play an important role in our work with linear-fractional
models in Section 4.

Cyclicity and Univalence

In the sequel, unless otherwise indicated, ϕ will denote an arbitrary self-map
of U . We observed in the Introduction that univalence of ϕ is a necessary

condition for Cϕ to be hypercyclic, and we mentioned that univalence is also
necessary for cyclicity. Here is the proof.

Suppose, for the sake of contradiction, that ϕ is not univalent. Then the
open mapping theorem for holomorphic functions provides infinitely many
pairs of distinct points a and b such that ϕ(a) = ϕ(b). A simple computation

shows that C∗
ϕKα = Kϕ(α) for each point α ∈ U , where C∗

ϕ denotes the
Hilbert-space adjoint of Cϕ. Thus for each pair of points a and b as above,

C∗
ϕ(Ka −Kb) = Kϕ(a) −Kϕ(b) = 0.

This shows that if ϕ is not univalent, then the orthogonal complement of
the range of Cϕ is infinite dimensional. Now, the orthogonal complement of

the range of a cyclic operator has dimension at most one (the orthogonal
projection of any cyclic vector onto the complement spans). Thus Cφ is not
cyclic, and we have established the necessity of univalence of ϕ on U for
cyclicity.

In fact there is also a form of “boundary univalence” that is necessary

for cyclicity. To prove it, we need an important special property of cyclic
composition operators.

Theorem 1.4 If Cϕ is cyclic; then its range is dense in H2.

To appreciate this result, observe that not every cyclic Hilbert space

operator has dense range. For example, the range of the “forward shift” on
H2 (i.e. the operator of “multiplication by z”) has codimension 1, and so
is not dense. But the operator is cyclic; in fact our proof of Proposition 1.1
shows that the function ω − z is a cyclic vector for each ω ∈ ∂U .
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Proof. Let M denote the closure of the range of Cϕ and let n denote the
codimension of M in H2. Since Cϕ is cyclic, n = 0 or n = 1. If n = 0, there
is nothing to prove. We suppose that n = 1 and arrive at a contradiction.

Let h be a vector that spans the orthogonal complement of M . For any
g ∈ H2

〈ϕ̄h, g ◦ ϕ〉 = 〈h,ϕg ◦ ϕ〉 = 0,

so ϕ̄h ∈ M⊥. Hence, if P denotes the orthogonal projection from L2 onto
H2, then P (ϕ̄h) = λ̄h for some complex number λ.

Now observe that

〈h, (ϕ − λ)g〉 = 0

for every g ∈ H2. It follows that the closure of (ϕ−λ)H2 must be contained
in M . Recall now that, because Cϕ is cyclic, ϕ must be univalent on U .
Hence ϕ − λ is univalent and factors as follows: ϕ − λ = BF , where B is
a Blaschke product with at most one zero and F is outer ([23], Theorem

3.17). Because FH2 is dense in H2 (in fact the polynomial multiples of F
are dense in H2 by Beurling’s Theorem), we have

BH2 = closure of BFH2 = closure of (ϕ− λ)H2 ⊂ M.

Because B has at most one zero, the codimension of BH2 in H2 at most
one. Since BH2 ⊂ M and M has codimension one in H2, M must equal
BH2 and B must have exactly one zero in U . However, this contradicts the
fact that 1 belongs M . 2

The problem of determining which composition operators have dense

range is non-trivial and, as the next result shows, is in fact, equivalent to
the problem of characterizing those bounded simply connected domains G
for which the polynomials are dense in H2(G).

Proposition 1.5 Suppose that G ⊂ U is simply connected, and that ϕ maps
U univalently onto G. Then the following are equivalent:

(a) The polynomials are dense in H2(G);

(b) The polynomials in ϕ are dense in H2;

(c) The composition operator Cϕ : H2 → H2 has dense range.

We leave the simple proof of Proposition 1.5 to the reader. Combining

Theorem 1.4 and Proposition 1.5 we obtain:
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Corollary 1.6 If Cϕ is cyclic, then the set of polynomials in ϕ is dense in
H2. Equivalently, the set of polynomials in z is dense in H2(ϕ(U )).

We present deeper connections between polynomial approximation and
cyclicity in sections 3 and 4.

We can now prove our final result on the necessity of univalence for
cyclicity. Let us say that a function f ∈ H2 is univalent almost everywhere
on ∂U provided there is a set E ⊂ U having zero Lebesgue measure such
that f is univalent on ∂U\E.

Theorem 1.7 If Cϕ is cyclic, then ϕ must be univalent on U , and univalent
almost everywhere on ∂U .

Proof. We have already noted that if Cϕ is cyclic, then ϕ must be univalent.

Theorem 1.4 shows that, in addition, Cϕ must have dense range; in partic-
ular, there is a sequence (fn) of functions in H2 such that fn(ϕ(z)) → z
in H2. Now choose a subsequence (fnj ) such that fnj(ϕ(z)) → z almost
everywhere on ∂U , and observe that off the set of measure zero on which
fnj(ϕ(z)) may not go to z, ϕ must be univalent. 2

To observe this Corollary in action, note that if ϕ maps U univalently

onto the slit disk U\[0, 1), then Cϕ is not cyclic.
Motivated by the preceding results, we will focus primarily on univalent

self-maps ϕ that extend continuously to ∂U and are everywhere univalent
on ∂U . The image of the unit disk under such a map is a Jordan domain
(the interior of a Jordan curve), and hence, Walsh’s Theorem (Theorem

0.7) shows that Cϕ satisfies the necessary conditions for cyclicity presented
above.

We remark that the necessary conditions for cyclicity discussed in this
section are not sufficient. We will show in the next section that, for example,
if ψ (z) = z

2−z , then Cψ is not cyclic (Theorem 2.8). Note, however, that Cψ

does have dense range. This follows, for example, from the fact that ψ (U)
is a Jordan domain—a disk, or from the elementary argument below:

Suppose that f is orthogonal to the range of Cψ . Then because 1 is in
the range, 0 = 〈f, 1〉 = f(0) so that f = zg for some g in H2. Because ψ n

belongs to the range of C ψ , we have

0 = 〈f, ψ n〉

= 〈zg,

(
z

2− z

)n

〉
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=
1

2n
〈g,

zn−1

(1− (1/2)z)n
〉

=
1

2n(n− 1)!
g(n−1)(1/2).

Since g and all of its derivatives vanish at the point 1/2 we see that g ≡ 0

and hence, f ≡ 0. It follows that C ψ has dense range.

Hypercyclicity Basics

In what follows, X will always denote a separable Banach space, and T a
continuous linear operator on X. Recall from the Introduction that a vector
f ∈ X is hypercyclic (for T ) if its orbit Orb (T, f) is dense in X , in which
case T is a hypercyclic operator. Clearly only separable Banach spaces can

support hypercyclic operators. Note also that the collection of hypercyclic
operators is similarity invariant (as is the collection of cyclic operators).

Observe that

• The collection of hypercyclic vectors for T forms a Gδ set;

for this set can be written as:

⋂

s,k

{f ∈ X : ‖T nf − s‖ < 1/k for some n ≥ 0},

where k ranges through the positive integers, and s through a countable
dense subset of X. This countable intersection is a Gδ set because, thanks

to the continuity of T , the set in braces is open. Now if T has a hypercyclic
vector, then everything in the orbit of this vector is also hypercyclic so that
T has a dense set of hypercyclic vectors. Thus we have an amusing “zero-one
law”:

• An operator has either no hypercyclic vector, or a dense Gδ set of
them.

From this result, Baire’s Theorem yields a couple of interesting observations:

• Every countable collection of hypercyclic operators has a common hy-
percyclic vector.

• If T is a hypercyclic operator on X , then every vector in X is the sum
of two hypercyclic vectors for T .
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The second result was shown to us by Gilles Godefroy. To see why it is
true, let E denote the collection of hypercyclic vectors for T , and suppose
x ∈ X . Since both E and x − E are dense Gδ subsets of X , they have

nonvoid intersection. To say that h1 is in the intersection means that it is
hypercyclic, and that there exists hypercyclic h2 for which h1 = x− h2.

We will rely heavily on the following sufficient condition for hypercyclic-
ity. Essentially the same result was presented in [25], and proved indepen-
dently by Kitai in [34] (see also [48, Chapter 7]).

Theorem 1.8 (Sufficient Condition for Hypercyclicity) Suppose T is

a continuous linear operator on a separable Banach space X, for which the
sequence of non-negative powers (Tn) tends pointwise to zero on a dense
subset of X. Suppose further that there is a (possibly different) dense subset
Y of X, and a (possibly discontinuous) map S : Y → Y such that TS =
identity on Y , and (Sn) tends pointwise to zero on Y . Then T is hypercyclic.

To view Theorem 1.8 in action, note how it provides a quick proof of the

following result of Rolewicz [42] concerning the backward shift B on H2,
defined by Bf(z) = z−1(f(z)− f(0)).

For each complex number λ > 1 the operator λB is hypercyclic
on H2.

For the proof, just take X = Y = {p : p is a polynomial} in Theorem
1.8, let T = λB, and let S be multiplication by λ−1z. One checks easily
that all the hypotheses of Theorem 1.8 are satisfied.

In the next section we will see how Theorem 1.8 shows, with almost equal
ease, that composition operators induced by non-elliptic disc automorphisms
are hypercyclic.



2 Linear-Fractional Composition Operators

A linear-fractional transformation is a mapping of the form

ϕ(z) =
az + b

cz + d
,

where a, b, c, and d are complex constants and where, in order to insure that
ϕ is non-constant, we also assume that ad − bc 6= 0. If such a mapping
ϕ takes U into itself, we call the induced operator Cϕ a linear-fractional

composition operator. In this section we completely characterize the cyclic
behavior of linear-fractional composition operators.

Linear-Fractional Basics

We require only the most basic facts about linear-fractional transformations

and their classification (see, e.g., [1, §3.3]), [48, Chapter 0]). In particu-
lar, with the obvious conventions about ∞, each such transformation maps
the Riemann sphere one-to-one and holomorphically onto itself. Acting
as a mapping of plane sets, each linear-fractional transformation permutes
the collection of circles and lines, and hence the collection of disks, disk-

complements, and half-planes. Under functional composition, the set of all
linear-fractional transformations forms a group that acts triply transitively
on the sphere.

If ϕ = T ◦ ψ ◦T−1, where T and ψ are linear-fractional transformations,
we say ϕ is conjugate to ψ (by T ). The quadratic formula shows that every

linear-fractional transformation ϕ, except the identity, has one or two fixed
points in the sphere, and is therefore conjugate to a “normal form” ϕ that
has respectively a single fixed point at ∞, or fixed points at 0 and ∞. In the
former case ϕ is a translation: ϕ(z) = z+α for some complex number α, and
in the latter it is a complex dilation: ϕ(z) = κz for some complex κ. The

precise constants α and κ depend on the conjugating transformation. The
reader may verify that in the one fixed point case, α can be any non-zero
complex number, while in the two fixed point case either κ or its reciprocal
can appear.

23
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Linear-fractional transformations with one fixed point are called para-
bolic. Those with two fixed points are classified according to their normal
forms: elliptic if |κ| = 1, hyperbolic if κ > 0, and otherwise loxodromic.

The normal forms show us that every non-elliptic linear-fractional transfor-
mation has exactly one fixed point p that is attractive. By this we mean
that for each z in the sphere, not itself a fixed point, ϕn(z) → p, where,
as before, ϕn denotes the n-fold composition of ϕ with itself. If ϕ is nei-
ther parabolic nor elliptic, then the other fixed point is repulsive, i.e., it is

attractive for ϕ−1. Observe that conjugation preserves derivatives at fixed
points so that the derivative of a parabolic map at its fixed point is 1; the
derivative of a hyperbolic map at its attractive fixed point is less than 1
(and at its repulsive fixed point greater than 1).

If a non-elliptic linear-fractional transformation ϕ happens also to be a

self-map of U , then its attractive fixed point must clearly lie in the closure
of U . We refer to a fixed point in U as an interior fixed point, one on ∂U
as a boundary fixed point, and one in the complement of the closed disk as
an exterior fixed point. Finally, there are these simple consequences of the
Schwarz lemma:

• Any automorphism of U with interior fixed point must be elliptic.

• No self-map of U may have more than one interior fixed point.

• No linear-fractional self-map of U with interior fixed point can be

parabolic (a parabolic map must have derivative one at its fixed point).

Note also that a linear-fractional self-map of U with two boundary fixed
points must be an automorphism.

Cyclicity: First Observations

We now turn our attention to the cyclicity problem for linear-fractional
composition operators. Recall from the Introduction that maps with interior

fixed point are never hypercyclic. Thus the possibility of hypercyclicity
arises only for linear-fractional self-maps of U with no interior fixed point;
for the rest, the issue is confined to cyclicity.

We dispense once and for all with the elliptic case.

Proposition 2.1 If ϕ is an elliptic automorphism of U , then Cϕ is cyclic
if and only if ϕ is conjugate to a rotation through an irrational multiple of

π.
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Proof. Note that any elliptic self-map of U has to be an automorphism of U
with interior fixed point, and hence must be conjugate (by automorphisms)
to a rotation about the origin. Specifically, if ϕ is an elliptic automorphism

of U with fixed point a, then there is a unimodular constant λ such that

(ψ a ◦ ϕ ◦ ψ a)(z) = λz,

where ψ a is the automorphism of U defined by

ψ a(z) =
a− z

1− āz

(note that ψ a, and hence Cψ a , is self-inverse). Thus Cϕ = C ψ aCλzCψ a is
similar to Cλz.

Now, Cλz fails to be hypercyclic because its symbol has an interior fixed
point. If z 7→ λz is a rotation through rational multiple of π, then Cλz

also fails to be cyclic because in this case the orbit of any function in H2

under Cλz is a finite set. If, however, λ induces a rotation through irrational
multiple of π, then Cλz is cyclic. To see this, let α 6= 0 be a point in U and
note that any function orthogonal to

Orb (Cλz,Kα) = {Kλ̄nα : n = 0, 1, 2, . . .}

must vanish at infinitely many points on the circle |z| = |α|, hence must

vanish identically on U . Because cyclicity is similarity invariant, the proof
is complete. 2

The Main Theorem

Having forever disposed of the elliptic case, we state the main result of this
section: a complete characterization of the cyclic behavior of non-elliptic

linear-fractional composition operators.

Theorem 2.2 (Linear-Fractional Cyclicity) Let ϕ be a non-elliptic
linear-fractional self-map of U .

(a) Cϕ is cyclic unless ϕ has both a fixed point in U and one on ∂U . In this
latter case, Cϕ is strongly non-cyclic, in the sense that every finitely

generated Cϕ- invariant subspace has infinite codimension.

(b) If ϕ has no fixed point in U , then Cϕ is hypercyclic unless ϕ is a
parabolic non-automorphism. In this latter case Cϕ is strongly non-
hypercyclic, in the sense that the only functions that can adhere to
Cϕ-orbits are constant functions.
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The theorem says, for example, that if a linear-fractional self-map of U
has no interior fixed point, then it induces a cyclic composition operator.
In particular, every parabolic self-map of U induces a cyclic composition

operator; but in this regard the theorem asserts that among the parabolics,
only the automorphisms induce hypercyclic operators.

As we have seen (Proposition 0.1), if ϕ is a non-elliptic self-map of U
with interior fixed point, then only the constant functions can adhere to
Cϕ-orbits. Thus the second part of the theorem asserts that, relative to

hypercyclicity, the fixed point of a parabolic non-automorphism acts “as if
it were inside the disc.”

Nina Zorboska, in her dissertation [55], studied composition operators
induced by non-elliptic disc automorphisms, and proved that they are all
cyclic. The theorem above shows that they are actually hypercyclic. It

also shows that, except for the basic necessary condition 1.4, the geome-
try of ϕ(U ) does not play a major role in determining cyclic behavior of
composition operators. For instance, if

ϕ(z) =
z

2− z
and ψ (z) =

1 + 2z

3
,

then the image of U under both maps is the disc of radius 2/3 centered at
the point 1/3, yet according to the theorem, Cϕ is non-cyclic (ϕ fixes 0 and
1), whereas Cψ is hypercyclic ( ψ fixes 1 and ∞, so it has no fixed point in
U , and is not parabolic).

The Linear-Fractional Cyclicity Theorem 2.2 is really a summary of sev-
eral results, the statements and proofs of which will occupy the rest of this
section.

Proof of Part (b). Here we consider linear-fractional self-maps ϕ of U
that have no interior fixed point. Three cases exhaust the possibilities:

• ϕ is an automorphism. In this case we show that Cϕ is hypercyclic
(Theorem 2.3).

• ϕ is not an automorphism and not parabolic, so that it has two fixed
points: the attractive one necessarily on ∂U , the other necessarily
outside the closure of U . We prove that in this case Cϕ is again
hypercyclic (Theorem 2.4(i)).

• ϕ is parabolic, but not an automorphism. In this case ϕ has only one
fixed point, which necessarily lies on ∂U . We prove that Cϕ is strongly
non-hypercyclic (Theorem 2.4(ii)).

Now down to business.



COMPOSITION OPERATORS 27

Theorem 2.3 Every non-elliptic automorphism of U induces a hypercyclic
composition operator on H2.

Proof. Let ϕ denote the automorphism in question. Because ϕ is not
elliptic, it has an attractive fixed point a on ∂U . If ϕ is not parabolic, there

is one other (repulsive) fixed point b, which (because ϕ is an automorphism)
must also lie on the boundary. If ϕ is parabolic, a is the attractive fixed
point for both ϕ and ϕ−1. In order to treat both cases simultaneously, we
set a = b if ϕ is parabolic.

Let Za be the set of functions holomorphic in a neighborhood of the

closed unit disc, which vanish at a; and define Zb similarly. According to
the special case of Beurling’s theorem discussed in Section 1 (Proposition
1.1), these sets are dense in H2. Since ϕn → a pointwise on ∂U , with
one possible exception (the repulsive fixed point of ϕ, if there is one), we
see that for every f ∈ Za, the sequence (f ◦ ϕn) converges a.e. on ∂U to

f(a) = 0. Since the sequence is uniformly bounded on ∂U , the Lebesgue
Bounded Convergence Theorem insures that it also converges to zero in the
norm of H2. In other words, the sequence of positive powers of Cϕ tends
pointwise to zero on a dense subset of H2.

Now Cϕ is invertible on H2: its inverse is Cψ , where ψ = ϕ−1. Since

b is now the attractive fixed point for ψ , the operator Cψ maps Zb into
itself, and the argument above shows that the sequence of non-negative
powers of Cψ tends to zero pointwise on on the dense set Zb. Thus the
hypotheses of our sufficient condition for hypercyclicity 1.8 are satisfied with
T = Cϕ, S = C ψ ,X = Za, and Y = Zb. 2

The next result completes the proof of part (b) of the Linear-Fractional

Cyclicity Theorem.

Theorem 2.4 Suppose ϕ is a linear-fractional self-map of U that is not an
automorphism and does not have an interior fixed point.

(i) If ϕ is not parabolic, then Cϕ is hypercyclic.

(ii) If ϕ is parabolic, then Cϕ is not hypercyclic; in fact, the only possible
limit points of Cϕ-orbits are constant functions.

Proof. (i) We use an elementary transference argument that foreshadows
the work of the next section. Suppose ϕ is not parabolic. We will show that
Cϕ is hypercyclic by intertwining ϕ with a hyperbolic automorphism ψ , and

using an approximation argument.
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By the observations made earlier in this section, ϕ has its attractive fixed
point on ∂U and its repulsive fixed point outside the closure of U . Now, ϕ
is conjugate by an appropriate disk automorphism to a self-map having 1 as

its attractive fixed point and ∞ as its repulsive fixed point. Such a self-map
must have the form z 7→ az + (1− a), where 0 < a < 1. Hence Cϕ is similar
to Caz+(1−a); and we may therefore assume without loss of generality that

ϕ(z) = az + (1− a).

Note that ϕ is an automorphism of the half-plane G = {z : Re z < 1}.
Hence if σ is a linear-fractional transformation mapping G onto U , then

ψ = σ ◦ ϕ ◦ σ−1(1)

is a disk automorphism with no interior fixed point. By Theorem 2.3, Cψ is
hypercyclic; let f be a hypercyclic vector for Cψ . We claim that f ◦ σ is a
hypercyclic vector for Cϕ; that is, we claim Orb (Cϕ, f ◦ σ) is dense in H2.

Because sigma maps G onto U , and U ⊂ G, the disk σ(U ) must also be
a subset of U . Hence, f ◦ σ is an H2 function; moreover, the composition
operator Cσ must have dense range since, for example, σ(U) is a Jordan
domain. By (1),

Orb (Cϕ, f ◦ σ) = CσOrb (Cψ , f);

hence Orb (Cϕ, f ◦ σ), being the image of the dense set Orb (Cψ , f), under
the operator Cσ that has dense range, is itself dense in H2. Thus Cϕ is
hypercyclic.

(ii) Suppose ϕ is parabolic, so it has a unique fixed point, necessarily

on the unit circle. Without loss of generality we may assume this fixed
point is 1. We compute ϕ explicitly by employing the change of variable
w = (1+z)/(1−z), which sends U to the right half-plane Π, the fixed point
1 to ∞, and ϕ to the translation map

ϕ(w) = w + a (w ∈ Π),

where Re a > 0 (the strict inequality reflecting the fact that ϕ is not an
automorphism of U ). Pulling back to the unit disc we obtain:

ϕ(z) =
(2− a)z + a

−az + (2 + a)
(z ∈ U),(2)

and more generally, for n = 0, 1, 2, ...; the n-th iterate ϕn of ϕ is obtained
by replacing a by na in formula (2). Some calculations show that for z ∈ U :

1− ϕ(z) =
2(1− z)

a(1− z) + 2
, and ϕ(z)− ϕ(0) =

4z

(2 + a)(2 + a− az)
.
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Upon replacing a by na in these expressions and letting n →∞, we obtain

lim
n→∞

n(1− ϕn(z)) =
2

a
,(3)

and

lim
n→∞

n2[ϕn(z)− ϕn(0)] =
4z

a2(1− z)
.(4)

Now suppose f, g ∈ H2, with g a cluster point of Orb (Cϕ, f) = (f ◦ϕn).
Our goal is to show that g must be constant on U . Recall formula (3) from
Section 1:

|f ′(z)| ≤
‖f‖

(1− |z|)3/2
.

Thus for any z and w ∈ U , with |z| ≤ |w|, it follows upon integrating f ′

over the line segment from z to w, and using the inequality above, that:

|f(z)− f(w)| ≤ ‖f‖
|w − z|

(1− |w|)3/2
.(5)

By referring to the half-plane realization of ϕn as translation by na,
where we recall that Re a > 0, we see that the ϕ - orbit of any point in U
converges nontangentially to 1 (this is the only place where make essential

use of the fact that ϕ is not an automorphism!). Now fix z ∈ U , and write
sn = ϕn(0) and tn = ϕn(z). Then there exists a constant C such that:

|1− sn| ≤ C(1− |sn|), and |1− tn| ≤ C(1− |tn|) for all n.(6)

For convenience, let un denote either sn or tn: the one with larger mag-

nitude. Then, letting “const. ′′ denote a constant independent of n which
may, nonetheless vary from line to line, the previous estimates show:

|f(tn)− f(sn)| ≤ ‖f‖ |tn − sn|
(1− |un|)3/2

[by (5)]

≤ const. ‖f‖
|tn − sn|
|1− un|3/2

[by (6)]

≤ const. ‖f‖ n−2

n−3/2
[by (3) and (4)]

= const. n−1/2.
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Thus
lim

n→∞
[f(tn)− f(sn)] = 0.

Now suppose g ∈ H2 is a cluster point of the sequence (f ◦ ϕn). Then
some subsequence f ◦ϕnk

converges to g in H2, hence pointwise on U . Thus

g(z)− g(0) = lim
k→∞

[f(ϕnk(z))− f(ϕnk(0))]

= lim
k→∞

[f(tnk
)− f(snk

)]

= 0.

Thus g(z) = g(0), regardless of our choice of z ∈ U , so g is constant, as
desired. 2

This completes the proof of part (b) of the Linear-Fractional Cyclicity
Theorem.

Proof of Part (a). We begin this proof by showing that if ϕ is a parabolic
non-automorphism, then—although by the last result Cϕ is not hypercyclic—

Cϕ is cyclic (Theorem 2.5). We then consider non-elliptic self-maps of U with
interior (attractive) fixed point. Because such maps cannot be parabolic, ex-
actly one the following holds:

(a-1) ϕ has interior and exterior fixed points;

(a-2) ϕ has interior and boundary fixed points.

We show that Cϕ is cyclic in case (a-1) and noncyclic in case (a-2) (Theo-
rems 2.6 and 2.8 respectively), which will complete the proof of the Linear-
Fractional Cyclicity Theorem.

Theorem 2.5 Every parabolic linear-fractional self-map of U induces a
cyclic composition operator on H2.

Proof. We have proved (Theorem 2.3) that parabolic automorphisms in-
duce (hyper)cyclic composition operators, so we need only consider parabolic
self-maps ϕ of U that are not automorphisms. For such a ϕ, we will show
that the identity map u, defined on U by u(z) = z, is a cyclic vector for Cϕ.

Without loss of generality we may assume that 1 is the fixed point of ϕ.

Recall formula (2), which asserts that

ϕ(z) =
(2− a)z + a

−az + (2 + a)
.
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for some complex number a with Re a > 0 (the strict positivity of Re a
reflecting the fact that ϕ is not an automorphism). For our purposes a more
convenient expression for ϕ is:

ϕ = γ̄ + ᾱKβ,

where

γ̄ =
a− 2

a
, ᾱ =

4

a(a + 2)
, β̄ =

a

2 + a
,

and Kβ(z) = (1− β̄z)−1.
The requirement that Re a > 0 insures that none of the denominators in

the definitions of α, β, and γ is zero. In addition it guarantees that β ∈ U ,
so Kβ is the H2 reproducing kernel for the point β, as discussed in Section
1:

〈f,Kβ〉 = f(β) for all f ∈ H2.

Now suppose f ∈ H2 is orthogonal to the Cϕ-orbit of u. That is, suppose

〈f, ϕn〉 = 0 for n = 0, 1, 2, ...,

where ϕ0 = u. Since the sequence of iterates (ϕn) is uniformly bounded on
∂U , and pointwise convergent to 1 on the unit circle, it converges to 1 in

the norm of H2, so

0 = lim〈f, ϕn〉 = 〈f, 1, 〉 = f(0).

Using this along with the orthogonality of ϕ and f , we have

0 = 〈f, ϕ〉 = 〈f, γ̄ + ᾱKβ〉 = γ〈f, 1〉+ α〈f,Kβ〉 = αf(β),

so that f(β) = 0. But f is also orthogonal to ϕn for each n, and the formula
for ϕn is obtained from that of ϕ by replacing a with na. Thus the last
calculation actually shows that the function f vanishes identically on the
sequence of points

βn =
na

2 + na
(n = 1, 2, . . .),

each of which belongs the unit disc. Because of the strict positivity of Re a
we have:

1− |βn|2 =
4(1 + Re na)

4 + 4Re na + |na|2
≥ const.

1

n
,

hence
∑

(1− |βn|) = ∞, i.e., (βn) is not a Blaschke sequence. Thus f , being
in H2, must vanish identically on U .

We have shown that only the zero vector can be orthogonal to the Cϕ-
orbit of u; therefore u is a cyclic vector for Cϕ. 2
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To this point we have shown that every linear-fractional self-mapping of
U with no interior fixed point (i.e., with its attractive fixed point on the
boundary) induces a cyclic composition operator on H2. We now turn our

attention to non-elliptic mappings with an interior fixed point. Necessarily
this fixed point is attractive, and since such a mapping cannot be parabolic,
there is a repulsive fixed point somewhere outside U: either on the boundary
or outside the closure of U (possibly at ∞). The results below show that
each of these cases gives rise to different cyclic behavior for the induced

composition operator.

Theorem 2.6 If a linear-fractional self-map of U has attractive fixed point
in U and repulsive fixed point outside the closure of U , then the induced
composition operator is cyclic on H2.

Proof. Suppose ϕ is a linear-fractional map with interior and exterior
fixed points. Without loss of generality we may assume the interior fixed
point is the origin. In this case ϕ can be written out explicitly as

ϕ(z) =
z

az + b
,

where, by the Schwarz Lemma, |b| > 1 (since ϕ′(0) = 1/b). What is the
restriction on a? The repulsive fixed point of ϕ is (1−b)/a (to be interpreted

as ∞ if a = 0), and the requirement that this point lie outside the closed
unit disc is equivalent to the condition

∣∣∣∣
a

1− b

∣∣∣∣ < 1.(7)

We claim that for any non-zero α ∈ U , the reproducing kernel Kα(z) =
1/(1− ᾱz) is a cyclic vector for Cϕ. A straightforward induction argument
shows that for any non-negative integer n:

Kα ◦ ϕn(z) =
asnz + 1

asnz + 1− ᾱzb−n
,

where s0 = 0, and for positive n:

sn =
n∑

k=1

1

bk
.

Now fix a vector g ∈ H2 that is orthogonal to the orbit {Kα ◦ ϕn : n =
0, 1, 2, . . .}. We claim that g is the zero-function. To see this, note that the
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sequence (Kα ◦ ϕn) converges to 1 in H2 (since it converges to 1 uniformly
on the closed unit disc); therefore

0 = lim〈g,Kα ◦ ϕn〉 = g(0).

Recalling the proof of the last theorem, we write Kα ◦ ϕn in terms of a
reproducing kernel:

Kα ◦ ϕn = λn + γnKβn,

where λn and γn non-zero complex constants, and

βn =
α

b̄n
− ās̄n.

Thus our orthogonality hypothesis on g yields:

0 = 〈g, Kα ◦ ϕn〉 = λng(0) + γng(βn) = γng(βn).

Thus g vanishes identically on the sequence (βn). Upon recalling that |b| > 1

we see from the definition that sn → (b− 1)−1, hence

βn →
−ā

b̄ − 1
,

where, by inequality (7), this limit belongs to U . Thus g vanishes on a
sequence with limit point in U , hence g is the zero-function. This shows
that Kα is cyclic for Cϕ. 2

Our proof of the Linear-Fractional Cyclicity Theorem is almost finished;
it only remains to consider composition operators induced by maps that
have both an interior and a boundary fixed point. We will show that such
operators are strongly non-cyclic in the sense that every finitely generated
invariant subspace has infinite codimension. The key to this result is the

following generalization of the fact that the orthogonal complement of the
range of a cyclic operator has dimension at most one.

Proposition 2.7 If the adjoint of a bounded linear operator T on a Hilbert

space has a multiple eigenvalue, then T is not cyclic. If the adjoint of T
has an eigenvalue of infinite multiplicity, then every finitely generated T -
invariant subspace has infinite codimension.

Proof. Suppose T is cyclic on the Hilbert space H, with cyclic vector
f . Let λ denote an arbitrary complex number. The binomial theorem shows
that the linear span of Orb (T, f) equals the linear span of Orb (T − λ, f), so
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T −λ is also cyclic. Hence, the kernel of T ∗− λ̄ (which equals the orthogonal
complement of the range of T − λ) is at most one dimensional. Since λ was
arbitrary, it follows that T ∗ has no multiple eigenvalues.

For the second part of the Proposition, we prove something a little more
precise (which also contains the proof of the first part). For the moment,
suppose only that T ∗ has an eigenvalue λ of multiplicity no less than some
positive integer m > 1. Suppose g1, g2, . . . , gn are n < m vectors in H, and
let G denote the closed, T−invariant subspace generated by these vectors;

that is, G is the closed linear span of ∪n
j=1Orb (T, gj). We claim that G has

codimension at least m−n. Thus in particular, if λ has infinite multiplicity,
then given n, we can choose m as large as desired, so that G has infinite
codimension, as desired.

We prove the claim by exhibiting m − n linearly independent vectors

in H that are orthogonal to G. To this end, let f1, f2, . . . fm be the lin-
early independent eigenvectors of T ∗ promised by our hypothesis, and let
F denote their linear span. Let P denote the orthogonal projection of H
onto F , and observe that, because the subspace span{Pg1, Pg2, . . . , Pgn}
of F has dimension ≤ n, there exist m − n linearly independent vectors

h1, h2, . . . , hm−n ∈ F that are orthogonal to this subspace. In fact, these
are the desired vectors orthogonal to G.

To see this, we need only prove that hi ⊥ T kgj for each 1 ≤ i ≤ m− n,
each 1 ≤ j ≤ n, and each non-negative integer k. Indeed:

〈hi, T
ngj〉 = 〈T ∗khi, gj〉 = λk〈hi, gj〉 = λk〈Phi, gj〉 = λk〈hi, Pgj〉 = 0,

which completes the proof. 2

We now finish the proof of the Linear-Fractional Cyclicity Theorem.

Theorem 2.8 Suppose ϕ is a linear-fractional self-map of the unit disc
which fixes both an interior point and a boundary point of the disc. Then
Cϕ is not cyclic; in fact the closed linear span of any orbit has infinite
codimension in H2.

Proof. If ϕ is the identity function on U , then Cϕ is the identity
operator on H2, so in this case the result holds trivially. Suppose now that
ϕ not the identity function. We will show that C∗

ϕ has an eigenvalue of

infinite multiplicity; the desired result will then follow from Proposition 2.7.
We may without loss of generality assume that the fixed points of ϕ are
located at 0 and 1. In this case the change of variable w = (1 + z)/(1− z)
converts ϕ into a linear-fractional map of the right half-plane that fixes 1
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and ∞, and therefore has the form w 7→ sw + (1− s) for some 0 < s < 1 .
Pulling this mapping back to the unit disc, we obtain:

ϕ(z) =
sz

1− (1− s)z
(z ∈ U).

We need a representation for C∗
ϕ. Cowen [17] has computed the adjoint

of any linear-fractional composition operator, and we could read the desired
result off from his theorem. However, for reasons of variety and complete-
ness, we employ the following direct argument. Let H2

0 denote the closed

subspace consisting of H2 functions that vanish at the origin. Now the sub-
space of constant functions is invariant for any composition operator, and
since ϕ fixes the origin, H2

0 is invariant for Cϕ. Since these two subspaces
are complementary orthogonal subspaces in H2, they are also invariant for
C∗

ϕ.
We use a Cauchy integral argument to compute the action of C∗

ϕ on H2
0 .

Fix f ∈ H2
0 , and n a positive integer. Write ψ (z) = sz + 1 − s, and set

g(z) = f(z)/z. Then, resurrecting the notation u(z) = z:

〈C∗
ϕf, un〉 = 〈f, Cϕ(un)〉 = 〈f, ϕn〉

=
1

2π

∫ 2π

0
f(eiθ)ϕ(eiθ) ndθ

=
1

2π

∫

∂U
f(ζ)

[
sζ̄

1− (1− s)ζ̄

]n
dζ

iζ

=
sn

2πi

∫

∂U

g(ζ)

[ζ − (1− s)]n
dζ

=
sn

(n− 1)!
g(n−1)(1− s)

=
s

(n− 1)!
(g ◦ ψ )(n−1)(0).

Now the last quantity is the (n− 1)st Taylor coefficient in the expansion
of sg ◦ ψ about the origin, so upon recalling the definition of g in terms of f ,
and letting Mz and M1/z denote respectively the operator of multiplication

by z on H2, and multiplication by 1/z on H2
0 , we continue the calculation

as follows:

〈C∗
ϕf, un〉 = s〈g ◦ ψ, u n−1〉 = s〈Cψ M1/zf, un−1〉 = s〈MzCψ M1/zf, un〉.
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Thus we have shown that

C∗
ϕ

∣∣∣
H2

0

= sMzCψ M1/z.

Now eigenfunctions for Cψ are easy to find. Every function (1 − z)λ for
Re λ > −1/2 lies in H2 (because of the restriction on λ), and is an eigen-
function for Cψ corresponding to the eigenvalue sλ. For each such λ, define

fλ(z) = z(1− z)λ. Then fλ ∈ H2
0 , and by our formula for the adjoint of Cϕ,

C∗
ϕfλ = sλ+1fλ.

Now suppose λ, with Re λ > −1/2, is fixed. For each integer k set

λ(k) = λ + 2πik/logs.

Then one checks easily that the collection of H2 functions {fλ(k) : k ∈ Z} is
linearly independent, and

C∗
ϕfλ(k) = sλ(k)+1fλ(k) = sλ+1fλ(k).

Thus sλ+1 is an eigenvalue for C∗
ϕ that has infinite multiplicity, so the desired

result follows from Proposition 2.7. 2

Remarks on “Extreme Behavior”

A Banach space operator T is called multicyclic if there is exists a finite
subset of the space for which the smallest T -invariant subspace is the whole
space.

The preceding results show that if a linear-fractional composition opera-
tor is not cyclic, then it is not multicyclic either; in fact, since every finitely
generated invariant subspace of such an operator has infinite codimension, it
is very strongly non-multicyclic. Herrero introduced the corresponding hy-
percyclic idea: an operator T on a Banach space is called multi-hypercyclic

if there is a finite subset of the space, the union of whose orbits is dense.
Herrero [30] conjectures (in the context of Hilbert space) that every multihy-
percyclic operator is hypercyclic, and Salas [45] has verified this conjecture
for bilateral weighted shifts. Our results show that it is also true for linear-
fractional composition operators (recall that in every non-hypercyclic case,

including that of an interior fixed point, the only functions that can adhere
to an orbit are constant functions).

While non-cyclic composition operators are very strongly non-cyclic, the
cyclic ones are, in the following sense, very strongly cyclic.
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Every cyclic linear-fractional composition operator has a dense
set of cyclic vectors.

We have already noted that every hypercyclic operator has a dense Gδ set
of (hyper)cyclic vectors. Each cyclic operator also has a Gδ set of cyclic

vectors [51, Prop. 40], but this set need not be dense.
Indeed, consider the operator Mz of multiplication by z on H2. It is

cyclic with cyclic vector 1 (a fancy way of saying that the polynomials are
dense in H2); however, since convergence in H2 implies uniform convergence
on compact subsets of U , no cyclic vector can vanish at any point of U , and,

by Hurwitz’s Theorem, neither can any any norm limit of a sequence of
cyclic vectors. Thus the collection of cyclic vectors for Mz is not dense in
H2.

We prove that the situation is different for linear-fractional composition
operators, by showing in the next section (Corollary 3.3) that if ϕ is linear

fractional with interior and exterior fixed points, then Cϕ has a dense set
of cyclic vectors. This leaves only the case where ϕ is a parabolic nonau-
tomorphism unsettled. This can be handled by transferring the setting to
the right half-plane, and showing that the collection of cyclic vectors for the
resulting operator (translation by a vector with positive real part) is the

dense set
{F ∈ H2(Π) : F̂ is nonzero a.e. on (0,∞)}.

(Here F̂ denotes the Fourier transform of the boundary function of F .) We
leave the details to the reader.

The composition operators that we have shown to be hypercyclic actually
have a very strong form of hypercyclicity. The reason is that (as was also

noted in [25]) the proof of the Hypercyclicity Criterion actually gives a much
stronger conclusion:

If the operator T satisfies the hypotheses of the Hypercyclicity
Criterion 1.8 then for any subsequence (nk) of positive integers,
there exists f ∈ X for which the set {T nkf} is dense in X.

Let us call operators for which the last conclusion is true strongly hyper-

cyclic. Since we used the Hypercyclicity Criterion to establish hypercyclicity,
and since the linear-fractional maps that do not satisfy its hypotheses are
also not hypercyclic, our work actually shows:

Every hypercyclic linear-fractional composition operator is strongly
hypercyclic.
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It turns out that our hypercyclic composition operators are actually
“chaotic”: In addition to having a vector with dense orbit, they have a
dense set of periodic points and display “sensitive dependence on initial

conditions” (see [26, section 6] for other instances of chaotic behavior in
operator theory). On the other hand, not every hypercyclic Hilbert space
operator is chaotic (see [31], [13]).



3 Linear-Fractional Models

In this section we describe in more detail our transference method for treat-
ing the cyclicity problem for more general composition operators Cϕ. In
the Introduction we observed that the linear-fractional self-maps of the unit
disc fall naturally into four categories, determined by position of, and be-
havior at, the Denjoy-Wolff point; and that this determines a corresponding

classification of arbitrary holomorphic self-maps of U into the following four
types (Definition 0.3):

• Dilation type, if the Denjoy-Wolff point is in U ,

• Hyperbolic type, if the Denjoy-Wolff point is on ∂U , and the map has

derivative < 1 there.

• Parabolic-automorphism type, if the Denjoy-Wolff point is on ∂U , the

derivative is = 1 there, and some orbit is (hence all orbits are) hyper-
bolically separated.

• Parabolic-nonautomorphism type, if the Denjoy-Wolff point is on ∂U ,
the derivative is = 1 there, and some orbit is (hence all orbits are) not
hyperbolically separated.

The Linear-Fractional Model Theorem (Theorem 0.4) lends credence to this
classification by guaranteeing that each univalent self-map of U is confor-
mally similar to a linear-fractional self-map of U that has the same type,
but is now viewed as acting on a more complicated domain. For maps ϕ

of hyperbolic type we used this to derive a sample transference theorem
(Theorem 0.6). Here is the general result that will guide the rest of our
work.

Theorem 3.1 (Transference Principle) Suppose that ϕ is a univalent
self-map of U of either dilation, hyperbolic, or parabolic-automorphism type.

Let σ be the intertwining map for ϕ promised by the Linear-Fractional Model
Theorem. Suppose further that the set of polynomials in σ is dense in H2.
Then the cyclic behavior of the linear-fractional composition operator Cψ

transfers to Cϕ. More precisely:

39
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• If ϕ is of dilation type, then Cϕ is cyclic, but not hypercyclic.

• If ϕ is of hyperbolic type, or parabolic-automorphism type, then Cϕ is
hypercyclic.

Remarks. (a) The Transference Principle does not address the issue of

whether the cyclic behavior of parabolic nonautomorphisms, established in
section 2, transfers to more general self-maps of that type. In section 5
we show this is indeed the case for maps that are regular in the sense of
Definition 0.8, and sufficiently smooth at the Denjoy-Wolff point.

(b) We have already proved the Transference Principle when ϕ is of hy-

perbolic type (Theorem 0.6). The same argument works for ϕ of parabolic-
automorphism type; in fact it proves the following well-known general fact,
which implies transference in both cases:

Suppose that A, S, and T are operators on a Hilbert space, with
TA = AS. Suppose that A has dense range. Then if S is cyclic

(resp. hypercyclic), so is T .

The point is that if the vector f is cyclic (resp. hypercyclic) for S, then Af
will be cyclic (resp. hypercyclic) for T provided A has dense range. This
result arises in our work with T = Cϕ, A = Cσ, and S = Cψ , where ( ψ, σ )
is the appropriate linear-fractional model for ϕ.

Thus we need only prove the Transference Principle for maps of dilation
type. A separate argument is required because in this case the intertwining

map σ cannot always be taken to be a self-map of U . Koenigs [35] showed
that in the dilation model ( ψ, σ ) for a map φ with interior fixed point, the
intertwining map σ is unique up to a constant multiple. Hence, for instance,
if φ(z) = σ−1 ◦ (σ

2 ) where σ maps U univalently onto an unbounded domain

that is, say, star-like with respect to 0 (to ensure σ(U)
2 ⊂ σ(U )), then no

(nonzero) intertwining map in a dilation model for φ will even be bounded.

Theorem 3.2 Suppose that σ maps U univalently onto a domain G ⊂ C,
and that there exists a complex number λ ∈ U such that λG ⊂ G. Suppose
further that the polynomials in σ are dense in H2. Let ϕ = σ−1 ◦ λσ. Then

the composition operator Cϕ is cyclic. Furthermore, the collection of cyclic
vectors for this operator is dense in H2.

Proof. Let (an) be a sequence of nonzero complex numbers chosen so that

∞∑

n=0

|an| ‖σn‖ < ∞.
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Then v
def
=

∑∞
n=0 anσn belongs to H2, and we claim that v is a cyclic vec-

tor for Cϕ. To this end, observe that σn is an eigenvector for Cϕ with

corresponding eigenvalue λn. Let f ∈ H2 be arbitrary and suppose that
〈Ck

ϕv, f〉 = 0 for k = 0, 1, 2, . . .; it suffices to show that f is the zero-vector.
We have for every non-negative integer k:

0 = 〈Ck
ϕv, f〉

= 〈
∞∑

n=0

anλnkσn, f〉

=
∞∑

n=0

an〈σn, f〉(λk)n.

Hence, if we define h(z) =
∑∞

n=0 an〈σn, f〉zn, then h(λk) = 0 for k =
0, 1, 2, . . .. Now h is analytic on U (in fact h is in the disk algebra be-
cause its coefficient sequence is absolutely summable), and the sequence
(λk) has limit point 0; hence, h ≡ 0 on U . Because an 6= 0 for all n, we
have 〈σn, f〉 = 0 for all n. It follows that f ≡ 0 because, by hypothesis,

the polynomials in σ are dense in H2. This completes the proof that Cϕ is
cyclic, and with it, the proof of the Transference Theorem.

Finally, note that the collection of cyclic vectors for Cϕ must be dense
in H2 because any polynomial in σ is the limit of cyclic vectors having the
same form as v. 2

First Applications of Transference

As a first application of Theorem 3.2, we present another proof that a

linear-fractional composition operator is cyclic if its inducing map has both
an interior and an exterior fixed point. This proof also reveals that the
collection of cyclic vectors for such an operator is dense (cf. Theorem 2.6).

Corollary 3.3 Suppose that ϕ is a linear-fractional self-map of U with inte-
rior and exterior fixed points. Then Cϕ is cyclic, and has a dense collection
of cyclic vectors.

Proof. We may assume that ϕ has the form ϕ(z) = z
az+b with |b| > 1

and
∣∣∣ a
1−b

∣∣∣ < 1. Set σ(z) = az
az+b−1 . Observe that σ is holomorphic on a

neighborhood of the closed unit disk, and that

ϕ = σ−1 ◦ 1

b
σ.
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Now, the polynomials in σ are dense in H2 (this may proved directly, or is
a consequence of the fact that σ(U ) is a Jordan domain—a disk); hence by
Theorem 3.2, Cϕ is cyclic and has a dense set of cyclic vectors. 2

We now apply the Transference Principle to show that the cyclicity prob-
lem for Cϕ is equivalent to a polynomial approximation problem for ϕ when
‖ϕ‖∞ < 1 (where ‖ϕ‖∞ = sup{|ϕ(z)| : z ∈ U}). Note that the condi-

tion ‖ϕ‖∞ < 1 implies, by the Denjoy-Wolff theorem, that ϕ must have an
interior fixed point.

Theorem 3.4 Suppose that ϕ is analytic on U and that ‖ϕ‖∞ < 1. Then
Cϕ is cyclic if and only if the polynomials in ϕ are dense in H2.

Proof. We have already seen that density of the polynomials in ϕ is a
necessary condition for cyclicity of Cϕ. Our goal is to prove the converse.

Suppose that the set of polynomials in ϕ is dense in H2 (or equivalently,
that Cϕ has dense range). Note that by the proof of Corollary 1.7, ϕ must
be univalent on U (and univalent a.e. on ∂U). Because ‖ϕ‖∞ < 1, ϕ must
have an interior fixed point; without loss of generality, we assume ϕ(0) = 0.
Let λ = ϕ′(0) and observe 0 < |λ| < 1, where the first inequality follows

from the univalence of ϕ and the second follows from the Schwarz lemma.
The dilation model guarantees the existence of a univalent map σ : U → C
such that

σ ◦ ϕ = λσ.(1)

Note that the intertwining relationship (1) may be rewritten σ = 1
λσ ◦ ϕ,

and it follows that σ(U) is a bounded subset of C because ‖ϕ‖∞ < 1.

Because σ(U ) is bounded, we may choose a positive integer n large
enough so that λnσ maps U into itself. We claim that the range of the
composition operator Cλnσ is dense in H2, or equivalently, that the set
polynomials in λnσ is dense. Since the set of polynomials in λnσ equals the
set of polynomials in σ, this will complete the proof of the theorem.

Because σ(U) is an open set containing 0, there is a integer m such
that the function υ defined by υ(z) = σ−1(λmz) is a self-map of U . Since
composition with υ preserves H2, we have

Range Cλnσ ⊃ {(f ◦ υ) ◦ (λnσ) : f ∈ H2}

= {f ◦ σ−1λm+nσ : f ∈ H2}

= {f ◦ ϕm+n : f ∈ H2}

= Range Cϕm+n .
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Now Cϕm+n has dense range (because Cϕ does); thus the range of Cλnσ

contains a dense set and is therefore dense. 2

Remark. Density of the polynomials in ϕ does not, in general, imply
cyclicity of Cϕ. To see this, let ϕ be any linear-fractional self-map of U
that fixes both an interior and a boundary point. Then Cϕ is not cyclic, by
Theorem 2.8. However the polynomials in ϕ are dense in H2, since ϕ(U) is

a disc (so either Walsh’s Theorem or an elementary argument shows that
the polynomials in z are dense in H2(ϕ(U ))).

By Walsh’s Theorem, the polynomials in ϕ are dense in H2 whenever
ϕ(U ) is a Jordan domain, so we have the following:

Corollary 3.5 If ϕ maps U univalently onto the interior of Jordan curve
lying in U , the Cϕ is cyclic.

One can formulate corollaries similar to the one above with “Jordan
domain” being replaced by “Carathéodory domain” or “image of a weak-
star generator of H∞”.

Corollary 3.6 Suppose that ‖ϕ‖∞ < 1. If Cϕ is cyclic then Cϕ has a dense
collection of cyclic vectors.

Proof. If Cϕ is cyclic, then the set of polynomials in ϕ is dense in H2

(Corollary 1.6). By the proof of Theorem 3.4, density of the set of polyno-
mials in ϕ in this situation implies density of the set of polynomials in the

corresponding σ. Hence, by Theorem 3.2, Cϕ must have a dense set of cyclic
vectors. 2

Corollary 3.7 Suppose that ϕ is an analytic self-map of U and that ‖ϕn‖∞ <
1 for some n ≥ 1. If the set of polynomials in ϕ is dense in H2, then Cϕ is
cyclic and has a dense set of cyclic vectors.

Proof. Density of the set of polynomials in ϕ implies density of the set
of polynomials in ϕn. Furthermore, if f is cyclic for Cϕn, then clearly f
is cyclic for Cϕ. Hence the result follows from Theorem 3.4 and Corollary
3.6. 2

Note that the preceding result yields another proof of Corollary 3.3,
because if ϕ is a linear-fractional transformation with interior and exterior
fixed points, then ‖ϕ2‖∞ < 1.
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Cyclicity and Fixed-Point Position

We conclude this section with the promised example showing how Theorem

2.8 can fail for general self-maps of ϕ.

Example: The mapping σ(z) = log(1+z
1−z ), takes U univalently onto the

strip S
def
= {z : −π/2 < Im z < π/2}. Hence, the holomorphic function ϕ

defined by

ϕ(z) = σ−1
(

σ(z)

2

)
=

1−
√

1− z2

z
.

maps U univalently onto the shaded region of Figure 3, and fixes 0, 1, and
-1.

Figure 3: Image of ϕ.

We claim that Cϕ is cyclic. In view of Theorem 3.2 (and Theorem 1.5),
to verify this claim we need only show that the polynomials are dense in
H2(S).

Theorem 3.8 The polynomials are dense in H2(S).

Proof. In the following argument, which was shown to us by Carl Sundberg,

we work with the inner product on H2(S) induced by the point z0 = 0. This
inner product has integral representation

〈f, g〉 =

∫

∂S
fḡdω (f, g ∈ H2(S)),

where ω is harmonic measure on ∂S representing the origin. The reader
may verify that

∫

∂S
fdω =

1

2π

∫ ∞

−∞
[f (x + iπ/2) + f(x− iπ/2)]

dx

coshx
.(2)
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Let P denote the collection of polynomials in z, and suppose that f ∈ H2(S)
is orthogonal to P. Then

∫

∂S
z̄nf(z)dω(z) = 0 for n = 0, 1, 2, . . . .(3)

Moreover, by the definition of ω we have for each non-negative integer n,

∫

∂S
znf(z)dω(z) = 0.(4)

Thus both f and f̄ are orthogonal to P; hence the same is true of the
real and imaginary parts of f . We see from (2), that (3) and (4) hold if z̄

replaces z; hence if g(z) = f(z̄), then Re g and Im g are also orthogonal to
P. Define H1(z) = Re f + Re g; and H2(z) = Ref − Re g. Observe that
H1(z̄) = H1(z) and H2(z̄) = −H2(z) a.e. on ∂S and that H1 and H2 are
orthogonal to P.

Claim: H1 = H2 ≡ 0. Observe that the claim implies Re f ≡ 0 and that
Re f ≡ 0 implies f ≡ 0 (since f(0) = 〈f, 1〉 = 0). Hence, the proof will be

complete once the claim is established. For this we define

Ij(λ) =

∫

∂S
eλz̄Hj(z)dω(z),

and observe that Ij is holomorphic for |Re λ| < 1/2. The decay of dω
justifies differentiation under the integral sign:

I
(n)
j (0) =

∫

∂S
z̄nHj(z)dω(z),

from which it follows, because Hj is orthogonal to P, that Ij ≡ 0 for |Re λ| <
1/2. In particular,

0 = Ij(iy) =

∫

∂S
eiyz̄Hj(z)dω(z)

for all real numbers y. It follows that the Fourier transforms of Hj(t+ iπ/2)
and Hj(t− iπ/2) vanish a.e. on the real line; thus, Hj ≡ 0 and the proof is
complete. 2

It is possible to use the transference method to construct examples of
cyclic composition operators induced by self-maps ϕ that fix infinitely many

points on ∂U . A result of Džrbašyan asserts that if G is a simply-connected
domain that omits a sector, and has the further property that the linear
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measure of its intersection with the circle {|z| = r} tends to zero rapidly
enough as r →∞, then the polynomials in z are dense in the Bergman space
of G (see [39, Theorem 10.1, page 153]). Bourdon has shown that when the

polynomials are dense in the Bergman space of a simply connected domain,
they are also dense in the Hardy space of that domain [8, Corollary 3.4].
Thus if we adjoin to the unit disc infinitely many disjoint spikes that go
out to ∞ in such a way that the result is starshaped about the origin, and
the spikes get thin fast enough to satisfy Džrbašyan’s condition, then the

polynomials will be dense in H2(G). Let σ be a Riemann map taking U onto
G with σ(0) = 0 and set ϕ = σ−1 ◦ (σ/2). Then ϕ is a univalent self-map
of U of dilation type that fixes infinitely many points on the boundary (one
for each spike) and, by transference, Cϕ is cyclic on H2.



4 The Hyperbolic and Parabolic Models

We now turn our attention to the models that apply when a self-map of U
has its Denjoy-Wolff point on ∂U . These are the hyperbolic and parabolic
cases of the Linear-Fractional Model Theorem, and they have a simpler form
if they are reformulated for the setting in which they were actually first
proved: the right half-plane Π = {z : Re z > 0}. As in the Introduction,

we accomplish this change of scene by conjugating with the linear-fractional
map

T (z) =
1 + z

1− z
,

which maps U onto Π and takes the point 1 to ∞.

Let ϕ be a self-map of U that has Denjoy-Wolff point on ∂U so that
ϕ has either a hyperbolic or a parabolic model. Without loss of generality
(in terms of the cyclicity problem) we may assume that ϕ has Denjoy-Wolff
point 1, so ϕ(1) = 1 and 0 < ϕ′(1) ≤ 1. We denote by Φ the self-map of the
right half-plane that corresponds to ϕ via T :

Φ = (T ◦ ϕ ◦ T−1).

Clearly the sequence of Φ-iterates of any point in Π converges to ∞, so ∞
functions as the half-plane analogue of the Denjoy-Wolff point of Φ. We will
also need to transfer to the right half-plane the alternative characterization
of the Denjoy-Wolff point in terms of angular limits and derivatives.

For 0 < α < π, let Sα = {w : | arg w| < α/2}, where as usual “arg”

denotes the principal branch of the argument. Since the image of Sα under
T−1 is contained in the angular approach region sα of U and is tangent to
sα at 1 (see Figure 4), we see that angular limits in U correspond to limits
in Π through the sectors Sα. Hence we say that a function F defined on Π
has angular limit L at ∞, and write

6 lim
w→∞

F (w) = L,

provided that given any α with 0 < α < π, F (w) converges to L as w
approaches ∞ through Sα. We say that a self-map Φ of Π has angular

47
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Figure 4: T−1(Sα) ⊂ sα

derivative Q at ∞ (and write Φ′(∞) = Q) provided that Φ′ has an angular
limit Q at ∞.

Transferring information from U to Π via T we have:

• If Φ is a self-map of Π with Denjoy-Wolff point∞, then Φ has angular
limit ∞ at ∞ and has angular derivative at ∞ equal to 1/ϕ′(1), where
ϕ′(1) is the angular derivative of T−1 ◦ Φ ◦ T at 1. In particular,
Φ′(∞) ≥ 1.

• The Julia-Carathéodory theorem shows that Φ′(∞) may be calculated

as the angular limit at ∞ of Φ(w)
w .

For self-maps of Π with Denjoy-Wolff point ∞, the hyperbolic and
parabolic parts of the Linear-Fractional Model Theorem have the follow-
ing simple forms:

Theorem 4.1 (Right Half-Plane Models) Suppose Φ maps the right half-
plane into itself and has Denjoy-Wolff point at ∞. Let c = Φ′(∞), so that
c ≥ 1.

(a) The Hyperbolic Model: If c > 1, then there exists a nonconstant ana-
lytic self-map ν of Π such that

ν ◦Φ = c ν.(1)

In other words, (Ψ, ν) is a linear-fractional model for Φ, where Ψ is
the hyperbolic automorphism of Π given by Ψ(w) = cw ([53]).

(b) The Parabolic Models: If c = 1, then there exists a nonzero complex
number a with Rea ≥ 0, and a nonconstant analytic function ν defined
on Π such that

ν ◦Φ = ν + a.(2)
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Moreover, in equation (2): If Re a = 0 (the parabolic automorphism
model), then ν may be taken to be a self-map of Π [41], [2].

Remarks. (a) When Re a 6= 0 (the parabolic non-automorphism model),
we cannot assert that the intertwining map ν may be taken to be a self-map

of Π; in fact, we will show that for some maps of parabolic-nonautomorphic
type, no “nice” intertwining map ν can be a self-map of Π (see Theorem
4.12, part (c), and the remarks following equation (28).

(b) In both models above, univalence of Φ implies univalence of ν.

Recall from Section 3 that in order to apply the Transference Principle
(Theorem 3.1) when the self-map ϕ of U has linear-fractional model ( ψ, σ ),

we must find conditions on ϕ that imply that the polynomials in σ are dense
in H2. Rather than work with ϕ and σ, we will work with their right half-
plane equivalents—Φ and ν, then transfer the information obtained back to
the disk setting. The Julia-Carathéodory inequality for self-maps of Π plays
a crucial role in our analysis.

Theorem 4.2 (Julia-Carathéodory Inequality) Suppose that Φ : Π →
Π has Denjoy-Wolff point ∞ and that Φ′(∞) = c. Then

Re Φ(w) ≥ cRe w

for any w ∈ Π; moreover, if for some w0 ∈ Π equality holds, then Φ must
be an automorphism of Π.

Proof. To obtain the inequality, translate the disk version (Theorem 1.3
with p = 1) to Π via T . If equality holds for some w0 ∈ Π, then the analytic
function w 7→ Φ(w)− cw mapping Π to Π takes on a value in ∂Π and hence

must be a constant function with constant value, say, λ. Note that λ must be
pure imaginary (λ = Φ(w0)−w0); hence Φ(w) = cw+λ is an automorphism
of Π. 2

This inequality yields the following representation of self-maps of Π.

Theorem 4.3 Suppose that Φ is a self-map of Π with Denjoy-Wolff point
∞ and that Φ′(∞) = c. Then

Φ(w) = cw + ρ(w)

where ρ is a self-map of Π, and ρ has angular derivative 0 at infinity.
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Proof. The real part of ρ(w) = Φ(w)− cw is positive by Theorem 4.2, so
ρ is a self-map of Π. Moreover,

ρ′(∞) = 6 lim
w→∞

ρ(w)

w
= 6 lim

w→∞
Φ(w)

w
− c = 0,

which completes the proof. 2

To obtain further information about the nature of ρ, we assume that
Φ has some smoothness near ∞ (i.e., that the original map ϕ has some
smoothness near its Denjoy-Wolff point). This information will allow us to
derive asymptotic representations of the intertwining maps ν in the right

half-plane models of Theorem 4.1, and will lead to criteria that distinguish
the parabolic automorphic type from the parabolic nonautomorphic type.

Expansions About the Denjoy-Wolff Point

We seek series representations for a holomorphic self-map ϕ of U about
its Denjoy-Wolff point, when that point lies on the boundary. We assume
(without loss of generality) that ϕ has Denjoy-Wolff point 1. By the Julia-

Carathéodory theorem (1.2), ϕ′ extends continuously to {1} ∪ sα, for any
α ∈ (0, π), where sα is the angular approach region with angle α at 1. Hence,

ϕ(z) = 1 + ϕ′(1)(z − 1) + γ(z),(3)

where γ(z) = o(|z − 1|) as z → 1 in sα. If the expansion (3) holds with
γ(z) = o(|z − 1|) as z → 1 in the full disk U , we say that ϕ ∈ C1(1). More

generally, if 0 ≤ ε < 1, we say that ϕ ∈ C(n+ε)(1) provided that ϕ has the
expansion

ϕ(z) =
n∑

k=0

ϕ(k)(1)

k!
(z − 1)k + γ(z),(4)

where γ(z) = o(|z − 1|n+ε) as z → 1 in U . It is not difficult to show that
ϕ ∈ C(n)(1) if and only if ϕ(n) extends continuously to U ∪ {1}.

Expansion (4) for ϕ yields a corresponding expansion about ∞ for its

right half-plane analogue Φ = T ◦ ϕ ◦ T−1. For example, when ϕ ∈ C1+ε(1)
has Denjoy-Wolff point 1, we have

1− ϕ(z) = ϕ′(1)(1− z)− γ(z),(5)
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where γ(z) = o(|1−z|1+ε). Upon phrasing the action of the map T in terms
of the change of variable w = (1 + z)/(1− z), we obtain the equations

1− z =
2

1 + w
; and 1− ϕ(z) =

2

Φ(w) + 1

which, when substituted into equation (5) above yield

Φ(w) + 1 =
1

ϕ′(1)

(w + 1)

1− γ(z)
ϕ′(1)

w+1
2

.(6)

Because γ(z) = o(
∣∣∣ 2
w+1

∣∣∣
1+ε

), equation (6) shows that

Φ(w) =
1

ϕ′(1)
w + Γ(w),

where Γ(w) = o(|w + 1|1−ε) as w → ∞ in Π. Similar manipulations yield
the expansions for Φ appearing in Table III below (in the last row of this
table we write the expansion of Φ in terms of w + 1 instead of w in order to

avoid needless worry about what is happening near the origin).

Table III
Expansions of Φ at ∞ (ϕ has Denjoy-Wolff point at 1)

Hypotheses on φ
(0 ≤ ε < 1)

Φ(w) =
Growth of Γ

as w →∞ in Π

φ ∈ C1+ε(1), φ′(1) = 1/c cw + Γ(w) Γ(w) = o(|w|1−ε)

φ ∈ C2(1), φ′(1) = 1,

a = φ′′(1)
w + a + Γ(w) Γ(w) = o(1)

φ ∈ C3+ε(1), φ′(1) = 1,

a = φ′′(1), b = φ′′′(1)
w + a +

a2− 2
3 b

w+1 + Γ(w) Γ(w) = o
(

1
|w|1+ε

)
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Remark. The constant a2 − 2
3b that appears in row 3 of the table is a

multiple of (Sϕ)(1), the Schwarzian derivative of ϕ at 1:

a2 −
2

3
b = −

2

3
(ϕ′′′(1)−

3

2
ϕ′′(1)2)

= −2

3

((
ϕ′′

ϕ′

)′
(1)− 1

2

(
ϕ′′

ϕ′

)2

(1)

)

= −
2

3
(Sϕ)(1).

Consequences for Parabolic Type

As a first application of the expansions set out in the second and third rows
of Table III we briefly discuss the role played by the second derivative in
determining the properties of a map of parabolic type (recall Definition 0.3).

Theorem 4.4 Suppose ϕ is a holomorphic self-map of U that is of parabolic

type, has Denjoy-Wolff point at 1, and that ϕ ∈ C2(1). Then:

(a) Re ϕ′′(1) ≥ 0.

(b) If either ϕ′′(1) = 0 or Re ϕ′′(1) > 0, then ϕ is of nonautomorphic
type.

(c) Conversely, if ϕ′′(1) is nonzero and pure imaginary, and ϕ ∈ C3+ε(1),
then ϕ is of automorphic type.

Remarks. (a) The last two parts of Theorem 4.4 are not really needed for
the sequel if the reader is willing to:

• Consider only maps ϕ with C3+ε-smoothness at the Denjoy-Wolff

point, and

• interpret the terms “automorphic type” and “nonautomorphic type”
to mean respectively: “Reϕ′′(1) = 0 but ϕ′′(1) 6= 0”, and “ϕ′′(1) = 0
or Reϕ′′(1) > 0”.

(b) The third statement of Theorem 4.4 is false for maps with less than
C3-smoothness at the Denjoy-Wolff point. We give examples of this phe-

nomenon in section 6.
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Proof. For part (a), suppose for the sake of contradiction that a = ϕ′′(1)
has strictly negative real part. Then according to the information in the
second row of Table III, we would have Re Φ(−a

2 + iy) < 0 whenever the

magnitude of the real number y is sufficiently large. This contradicts the
fact that Φ maps the right half-plane into itself.

For parts (b) and (c) we begin with some elementary observations about
the hyperbolic distance on Π (see [48, Chapter 4] for more on this point of
view). Given ε > 0 and p ∈ Π, let ∆(p, ε) denote the hyperbolic disc of

radius ε and center p, that is:

∆(p, ε) = {w ∈ Π : %(w, p) < ε},

where % is the hyperbolic distance in Π (we will never need to write down a
formula for %). The advantage of working in the right half-plane is that for
p, q ∈ Π, the affine map

Ap,q(w) =
Re q

Re p
(w − i Im p) + i Im q

is a conformal automorphism of Π that takes p to q. Thus the disc ∆(q, ε) is
just Ap,q(∆(p, ε)), so it has Euclidean dimensions Rep

Re q times those of ∆(p, ε).
To view this principle in action, fix w0 ∈ Π and consider the orbit

wn = Φn(w0) (n = 1, 2, . . .).

By the Julia-Carathéodory Inequality (Theorem 4.2), Re wn+1 ≥ Re wn,
hence the Euclidean dimensions of ∆(wn, ε) increase with n. By row 2 of
Table III, if a = ϕ′′(1) = 0, then |wn+1 − wn| → 0, so by our comment on
Euclidean dimensions, wn+1 ∈ ∆(wn, ε) for all sufficiently large n. Since ε
is an arbitrary positive number, this implies that %(wn+1, wn) → 0, so that

ϕ is of nonautomorphic type, as promised.
Continuing to focus on row 2, note that if Re a > 0 then, as n →∞, we

have Re wn →∞, whereas

|wn+1 − wn| = |a + Γ(wn)| → |a|.(7)

Thus as n →∞, the Euclidean distance between wn and wn+1 stays bounded,
while the Euclidean dimensions of ∆(wn, ε) do not. Thus wn +1 ∈ ∆(wn, ε)

for all sufficiently large n, hence once again, %(wn+1, wn) → 0. This com-
pletes the proof of part (b).

For part (c), we will show a bit later in this section (Theorem 4.14) that
the extra differentiability assumed there insures that Re wn is bounded as
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n →∞. Granting this, and writing

M = sup
n

Rewn

Re w1
< ∞,

we see that the Euclidean dimensions of ∆(wn, ε) never get larger than M
times those of ∆(w0, ε). Now we still have (7) above, which tells us that the
orbit (wn) is separated in the Euclidean metric (since a 6= 0). Thus for ε
small enough, ∆(wn, ε) does not contain wn+1 for any n, which shows that

the orbit (wn) is hyperbolically separated. 2

Recall that if a linear-fractional self-map of U is a parabolic nonauto-
morphism, then the induced composition operator is not hypercyclic on H2

(Theorem 2.4). The following Lemma will allow us to adapt the argument
that worked in the linear-fractional case to this general setting.

Lemma 4.5 Suppose that ϕ ∈ C2(1) is of parabolic type, with Denjoy-Wolff
point at 1, and that ϕ′′(1) 6= 0. Let z0 ∈ U be arbitrary. Then the sequence of
iterates (ϕn(z0)) converges to 1 nontangentially if and only if Reϕ′′(1) > 0.

Moreover, if Re ϕ′′(1) > 0, then (ϕn(z0)) is not a Blaschke sequence.

Proof. Because ϕ has Denjoy-Wolff point 1, we know the sequence (ϕn(z0))
converges to 1. What we must show is that this sequence is eventually
contained in one of the angular approach regions sα if and only if Re ϕ′′(1) >
0. Shifting the scene to the right half-plane, we must show that Re ϕ′′(1) > 0
if and only if the orbit of the point w0 = T (z0) under Φ = T ◦ ϕ ◦ T−1 is

eventually contained in one of the sectors Sα.
Now suppose for the moment that w is any point of Π. Upon substituting

successively Φ(w),Φ2(w), . . . for w in the expression for Φ in the second row
of Table III we obtain

Φn(w) = w + na +
n−1∑

j=0

Γ(Φj(w)).(8)

Let wn = Φn(w0) for n > 0. Since wn →∞ in Π, we know that Γ(wn) → 0.
Therefore,

1

n

n−1∑

j=0

Γ(wj) → 0 as n →∞.

This, along with equation (8) above shows that

lim
n→∞

wn

n
= lim

n→∞

w0 + na +
∑n−1

j=0 Γ(wj

n
= a.(9)
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Because n is real and a 6= 0, it follows that

arg(wn) → arg a as n →∞,

where “arg” denotes the principal value of the argument. Hence, if Re a = 0,

then the terms of the sequence (wn) will eventually lie outside of any of one
the sectors Sα. On the other hand, if Rea > 0 then {wn} will eventually lie
in Sα for any α larger than 2 arg a.

To see that (ϕn(z0)) is not a Blaschke sequence when Re a > 0; note
that the Blaschke condition

∑
(1−|zn|2) < ∞ for sequences in U transforms

in the right half-plane to

∑ 4 Rewn

|wn + 1|2
< ∞,(10)

where wn = T (zn)). Estimate (9) shows that when Re a > 0, the growth of
wn and Re wn are both comparable to n, hence this condition fails for Φ. 2

Theorem 4.6 Suppose ϕ is of parabolic type, and has C2-smoothness at
the Denjoy-Wolff point. If Reϕ′′ does not vanish at the Denjoy-Wolff point
(so that, by Theorem 4.4 ϕ is of non-automorphism type) then Cϕ is not

hypercyclic; in fact, only constant functions may adhere to Cϕ-orbits.

Remark. A proof similar to the one below shows that, even if ϕ′′ vanishes
at the Denjoy-Wolff point, Cϕ will not be hypercyclic, provided ϕ has C3

smoothness there. Our methods do not, however, appear to handle less
smooth situations.

Proof. We model the proof on that of Theorem 2.4. We may without loss
of generality assume that the Denjoy-Wolff point of ϕ is at 1. From the
series representation (4) of ϕ, we have

lim
z→1

1− ϕ(z)

1− z
= 1 and lim

z→1

ϕ(z)− z

(z − 1)2
=

a

2
,(11)

where a = ϕ′′(1). Now fix z ∈ U , and for notational convenience, set

zn = ϕn(z). Since zn → 1 non-tangentially as n →∞, we have for each n,

|1− zn| ≤ const. (1− |zn|)(12)

where here (and throughout the rest of the argument) the constant is in-
dependent of n. Upon substituting zn for z in the second part of (11) and
using (12) we obtain

|zn+1 − zn| ≤ const. (1− |zn|)2.(13)
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Similarly, the same substitution in the first part of (11) provides, in con-
junction with (12),

1− |zn+1| ≥ const. (1− |zn|).(14)

Now fix f ∈ H2 and use estimates (13) and (14), together with the
functional difference estimate (5) of Section 2 to obtain

|f(zn+1)− f(zn)| ≤ const.
|zn+1 − zn|

(min{1− |zn|, 1− |zn+1|})3/2

≤ const.
(1− |zn|)2

(1− |zn|)3/2

= const. (1− |zn|)1/2

→ 0 (n →∞).

In other words,
lim

n→∞
[f(ϕn+1(z))− f(ϕn(z))] = 0

for each z ∈ U . Hence, because convergence in H2 implies pointwise con-

vergence in U , any limit point g of Orb (Cϕ, f) must satisfy

g(ϕ(z)) = g(z).

It follows that g must be constant, since it is constant on the sequence
(ϕn(z)), which, by Theorem 4.5, does not obey the Blaschke condition.
Hence, only constant functions may adhere to the Cϕ-orbit of f . Since f
was arbitrary, Cϕ has no hypercyclic vectors. 2

Remark. We will show in section 5 that if ϕ is a regular map (Definition
0.8) of parabolic-nonautomorphism type that has C3+ε smoothness at the
Denjoy-Wolff point, then although Cϕ is not hypercyclic (as we just showed),
it is, nevertheless, cyclic. This generalizes Theorem 2.5, which deals with
linear-fractional maps, and it completes the proof of the statements made

in the third row of Table II of the Introduction.

In the rest of this section we will generalize the positive hypercyclicity
results of Section 2 from the linear-fractional case to the smooth, regular
case. We will show that, when ϕ is regular and of either hyperbolic or
parabolic-automorphism type, with some smoothness at the Denjoy-Wolff
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point (e.g., C1+ε in the hyperbolic case; and C3+ε in the parabolic case),
then Cϕ will be hypercyclic. We intend to use the Transference Principle;
hence, we must obtain information about the intertwining maps σ in the

hyperbolic and parabolic models for ϕ.

The Hyperbolic Case

Our goal is to prove the following result, which is summarized in the first
row of Table II of the Introduction.

Theorem 4.7 (Hyperbolic Hypercyclicity) If ϕ is a regular self-map

of U that is of hyperbolic type and has C1+ε-smoothness at its Denjoy-Wolff
point, then Cϕ is hypercyclic.

By a result of Kellogg, ϕ will have the required smoothness if, for example,
it takes the unit disc onto a Jordan domain with C2 boundary (see [27],
Theorem 6, page 426). Thus:

Corollary 4.8 Suppose ϕ has Denjoy-Wolff point 1 and ϕ′(1) < 1. If the
boundary of ϕ(U ) is a C2 Jordan curve which intersects ∂U at only the point
1, then Cϕ is hypercyclic.

We remark that since hypercyclicity of Cϕn implies hypercyclicity of Cϕ,
Theorem 4.7 holds as long as some iterate of ϕ obeys the hypotheses, even
if ϕ itself does not.

To prepare for the proof of Theorem 4.9, we assume that the Denjoy-
Wolff point of ϕ is 1 and use the linear-fractional map T defined at the

beginning of this section to translate the hypotheses on ϕ into corresponding
conditions on Φ = T ◦ ϕ ◦ T−1. We denote the closed right half-plane
{w ∈ C : Re w ≥ 0} by Π, so Π ∪ {∞} = T (U ). Our conditions on ϕ then
transform into:

(H-1) Φ is continuous on Π ∪ {∞}.

(H-2) Φ(Π) ⊂ Π.

(H-3) Φ has the following representation on Π:

Φ(w) = cw + Γ(w),

where c = 1/ϕ′(1) > 1, and Γ is a self-map of Π satisfying

|Γ(w)| ≤ M(|w|1−ε) (w ∈ Π)

for some constant M , independent of w.
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(H-4) Φ is univalent on Π ∪ {∞}.

That the expansion (H-3) holds on Π was noted earlier (see the first row
of Table III); that it holds on the closure on Π follows quickly from the
continuity of Φ on Π.

Theorem 4.9 (Hyperbolic Model) Suppose that Φ is an analytic self-

map of Π satisfying hypotheses (H-1) through (H-3) above. Then:

(a) Φ has a linear-fractional model (Ψ, ν) in which Ψ(w) = cw (a hyper-
bolic automorphism of Π), and ν is an analytic self-map of Π that is
continuous on Π, and has the representation

ν(w) = w + Λ(w) w ∈ Π,(15)

where Λ(w) = O(|w|1−ε).

(b) If, in addition, Φ is univalent on Π then ν(Π ∪ {∞}) is a Jordan
subregion of the Riemann Sphere; in particular, y 7→ ν(iy), y real,

is a Jordan curve in Π such that Im ν(iy) → ∞ as y → ∞ and
Im ν(iy) → −∞ as y →−∞.

We claim that the preceding theorem will yield the Hyperbolic Hyper-
cyclicity Theorem 4.7. For if ϕ satisfies the hypotheses of Theorem 4.7, then
Theorem 4.9 guarantees the existence of an intertwining map ν for Φ such
that the boundary of ν(Π ∪ {∞}) is a Jordan curve in Π ∪ {∞}. It follows

that σ = T−1 ◦ ν ◦ T maps ∂U onto a Jordan curve, hence the polynomials
in σ are dense in H2. Because σ intertwines ϕ and the hyperbolic auto-
morphism ψ = T−1(cT ), an application of Theorem 3.1 (the Transference
Principle) establishes Theorem 4.7.

We are going to obtain the intertwining map ν in the Hyperbolic Model

Theorem as a limit of a sequence of normalized iterates of Φ; specifically,
we will show that the limit

ν(w) = lim
n→∞

Φn(w)

cn
.(16)

exists uniformly on compact subsets of Π. Having done this, it follows easily

that ν is the desired intertwining map for Φ and Ψ. Indeed, for each w ∈ Π,

ν(Φ(w)) = c lim
n→∞

Φn+1(w)

cn+1
= c ν(w).
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Our realization of ν as a limit of normalized iterates is entirely analogous to
the one used by Koenigs to obtain the intertwining map in the interior fixed
point case. In the present case the result is due to Valiron [53], who assumed

minimal hypotheses, and obtained ν as the limit of Φn(w)/|Φn(w0)|, where
w0 denotes any fixed point of Π. Our stronger hypotheses (H-1) through
(H-3) on Φ allow us to obtain ν by a less complicated argument, and more
important, they allow us to obtain the expansion (15) for ν, from which we
will deduce the extra regularity demanded by our methods. (We remark that

for general self-maps, the sequence Φn
cn need not converge; see the Lemma

on p. 121 of [53].)
Our analysis of ν requires two preliminary lemmas, the first of which is

obtained quickly by induction.

Lemma 4.10 Suppose Φ has the expansion given in (H-3). Then for any
w ∈ Π and any positive integer n:

Φn(w) = cnw +
n−1∑

j=0

cn−1−jΓ(Φj(w)),(17)

and

|Φn(w)| ≤ |w|
n∏

k=1

(
c +

M

|Φk(w)|ε

)
.(18)

Lemma 4.11 If Φ satisfies hypotheses (H-1) through (H-3), then there exist
constants t > 1 and δ > 0 such that for each w ∈ Π and each positive integer
n,

|Φn(w)| ≥ δ tn.(19)

Proof. From expansion (H-3) and the triangle inequality we obtain

|Φ(w)| ≥ |w|
(
c− M

|w|ε

)
.(20)

Let t be any number satisfying c > t > 1. Equation (20) shows that there
is an R > 0 such that if |w| > R then |Φ(w)| ≥ t|w|. This inequality may
be iterated to obtain the following inequality: For |w| > R

|Φn(w)| ≥ tn|w| > tnR.

We must obtain a similar inequality on the compact subset K of Π consisting
of those points w ∈ Π satisfying |w| ≤ R. Observe that the positivity and
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continuity of Re Φ on K imply that α = min {Re Φ(w) : w ∈ K} > 0. Also
observe that because ReΓ ≥ 0, it follows from equation (17) that

Re Φn−1(w) ≥ cn−1 Re w(21)

for any w in Π.
Combining these observations, we have for each w ∈ K

|Φn(w)| ≥ Re Φn(w)

≥ cn−1Re Φ(w)

≥ cn−1α,

where the second inequality is obtained by replacing w with Φ(w) in inequal-
ity (21). We obtain the desired conclusion upon setting δ = min{R,α/c}. 2

Proof of Theorem 4.9. By equation (17),

c−nΦn(w) = w +
n∑

j=1

c−jΓ(Φj−1(w)).

Using first the growth estimate on Γ supplied by (H-3), and then inequality
(18), we obtain:

∞∑

j=1

c−j |Γ(Φj−1(w))| ≤ M
∞∑

j=1

c−j |Φj−1(w)|1−ε

≤ M |w|1−ε
∞∑

j=1

c−j
j−1∏

k=1

(
c +

M

|Φk(w)|ε
)1−ε

=
M

c1−ε
|w|1−ε

∞∑

j=1

c−εj
j−1∏

k=1

(
1 +

M

c|Φk(w)|ε
)1−ε

.

The sequence of products appearing in the numerator of the summands
on the last line is uniformly bounded on Π because

∞∑

k=1

M

c|Φk(w)|ε
≤

M

cδε

∞∑

k=1

t−εk,
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where t > 1 is the constant appearing in inequality (19). It follows that the
series

∞∑

j=1

c−jΓ(Φj−1(w))

converges uniformly on compact subsets of Π to a function Λ, with

|Λ(w)| ≤ const. |w|1−ε(w ∈ Π)(22)

Since Γ is continuous on Π, so is Λ; in addition, since Γ is a self-map of Π
and c > 0, it follows that Λ must also be a self-map of Π.

Thus the sequence of functions

c−nΦn(w) = w +
n∑

j=1

c−jΓ(Φj−1(w))

converges uniformly on compact subsets of Π, and its limit function ν is a
continuous self-map of Π having representation

ν(w) = w + Λ(w).(23)

We have already noted that ν, thus defined, satisfies the functional equa-
tion (1). Moreover we have just seen that Λ has the desired growth restric-

tion, so part (a) of our theorem is proved. We now address the assertions of
part (b).

Suppose that Φ is univalent on Π. Since the sequence (c−nΦn) converges
to ν uniformly on compact subsets of Π, Hurwitz’s theorem shows that ν
must be univalent on Π. Of course this argument requires one to check

that ν is not constant, but this is obvious from the fact that ν(w)/w → 1
as w → ∞ (equation (23) and inequality (22)). Hypothesis (H-2) and the
intertwining formula (1) now show that ν is univalent on Π.

To see that ν(Π ∪ {∞}) is a Jordan subregion of the Riemann sphere
note that the representation (23) of ν yields for each real number y,

Im ν(iy) = y(1 +
Im Λ(iy)

y
).

This, along with estimate (22) shows that Im ν(iy) converges to ∞ as y →
∞, and to −∞ as y → −∞. 2
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The Parabolic Case

Suppose that ϕ ∈ C3+ε(1) is a regular self-map of U that is of parabolic type.

We may assume without loss of generality that the Denjoy-Wolff point of ϕ
is 1, so by definition, ϕ′(1) = 1. We know from the Linear-Fractional Model
Theorem that ϕ has a linear-fractional model ( ψ, σ ), where ψ is a parabolic
self-map of U . Our goal here is to re-derive this fact in such a way that we
can make statements about the regularity of the intertwining map σ. As

in the hyperbolic case, we will obtain this information by transferring the
setting to the right half-plane, and deriving an asymptotic expansion for the
corresponding intertwining map ν. However this time the expansion will be
much more difficult to obtain than the one for the hyperbolic case.

Our hypotheses on ϕ translate into the following conditions on its right

half-plane incarnation Φ.

(P-1) Φ is continuous on Π ∪ {∞}.

(P-2) Φ(Π) ⊂ Π.

(P-3) Φ has the following representation on Π:

Φ(w) = w + a +
b

w + 1
+ Γ(w + 1),

where a = ϕ′′(1) is non-zero and has non-negative real part, and b =

ϕ′′(1)2 − (2/3)ϕ′′′(1), and for some positive constants C and ε,

|Γ(w + 1)| ≤ C

|w + 1|1+ε

for all w ∈ Π.

(P-4) Φ is univalent on Π ∪ {∞}.

The expansion (P-3) was obtained from the third row of Table III (the
continuity of Φ on Π allowing the extension of this expansion to Π). The
following theorem shows that the constant a = ϕ′′(1) in that formula controls

which parabolic model applies: ϕ has a parabolic automorphism model if
Re a = 0 (and a 6= 0), and a parabolic nonautomorphism model when
Re a > 0.

Theorem 4.12 (Parabolic Models) Suppose that Φ is an analytic self-
map of Π satisfying hypotheses (P-1) through (P-3) above. Then Φ has
linear-fractional model (Ψ, ν) in which Ψ(w) = w+a (a parabolic self-map of
Π) and ν is a nonconstant analytic map on Π having the following properties.
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(a) If Re a > 0 in (P-3), then

ν(w) = w −
b

a
log(1 + w) + B(w) (w ∈ Π),(24)

where B is a bounded holomorphic function on Π that is continuous
on Π.

(b) If Rea = 0 then then representation (24) holds for all points in H,
where H is the upper half of Π when Im a > 0 and the lower half when
Im a < 0, and where B is bounded and continuous on H, holomorphic

on its interior.

(c) The real part of ν is bounded below on Π if and only if Re ab ≤ 0.

(d) If Φ is univalent on Π, then ν(Π ∪ {∞}) is a Jordan subregion of the
Riemann Sphere; in particular, the curve y 7→ ν(iy) (y real) is a Jordan

arc in Π such that Im ν(iy) → ∞ as y → ∞ and Im ν(iy) → −∞ as
y →−∞.

Remarks. (i) In case Re a = 0, we will assume henceforth, for purposes of
normalization, that Im a > 0. Since our standing assumption is that a 6= 0,
this entails no loss of generality.

(ii) Just as in the hyperbolic case, the intertwining map ν will emerge as
a limit of a sequence of normalized iterates of Φ, and Hurwitz’s theorem will
show that if Φ is univalent then so is ν. Hence the real issue in part (d) is

behavior of ν(iy) as |y| → ∞. Note that if Rea > 0 then upon substituting
w = iy (y ∈ R) in (24) and taking imaginary parts, we obtain

Im ν(iy) = y + o(|y|) (|y| → ∞),

from which follows (d). If Re a = 0, then the same argument gives Im ν(iy) →
∞ as y →∞. Showing Im ν(iy) → −∞ as y → −∞ is harder; this argument

occupies the last part of the section.

(iii) Note that for Rea > 0, Part (c) of Theorem 4.12, follows immedi-
ately from the representation (24). Indeed, upon taking real parts of both

sides of (24) we obtain

Reν(w) = Re w − Re ab

|a|2
log |1 + w|+ a bounded function.

Since log |1+w| is unbounded on Π, the result follows immediately. Corollary
4.26 below establishes part (c) of the theorem for Re a = 0.
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(iv) After submitting this monograph for publication, we learned from
reading [28, Chapter 1] that our work, in the case Re a > 0, overlaps sub-
stantially with that of P. Fatou’s [24, Chapter 2].

Consequences of The Parabolic Models Theorem

Before proving Theorem 4.12, we point out some of its consequences. Note
that in part (c), Reab is just the real dot product of the plane vectors a
and b. So part (c) can be restated:

The real part of ν is not bounded below on Π if and only if b
makes an acute angle with a.

The figure below illustrates the utility of this theorem: it is based on a
computer generated image of the intertwining map ν for Φ(w) = w + 1 +

1/(w + 1). Although it is not obvious from the numerical calculation, the
fact that Re āb = 1 > 0 assures us that the real part of ν is not bounded
below.

Figure 5: The intertwining map ν for Φ(w) = w + 1 + 1/(w + 1).

The significance of (c) of Theorem 4.12 is that if Re ν is bounded below
by, say, the real number α, then (Ψ, ν − α) is a parabolic model for Φ in
which the intertwining map ν−α is now a self-map of Π (a condition which,

back in the unit disc, was vital to our transference technique).
The following proposition and (c) show that, under the assumptions

of Theorem 4.12, the intertwining map ν is always bounded below in the
automorphism case of the model, i.e., the case Re a = 0.

Proposition 4.13 If Re a = 0 in the expansion (P-3), then b ≥ 0.
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Proof. Upon setting w = iy, with y real, in the expansion (P-3) and taking
real parts on both sides, we obtain

y Re Φ(iy) =
y Re b + y2 Im b

1 + y2
+ yΓ(iy + 1),(25)

hence
Im b = lim

|y|→∞
y Re Φ(iy).

But Re Φ(iy) > 0 by condition (P-2), so y Re Φ(iy) has the sign of y. Letting
y tend separately to +∞ and −∞ we see that Im b is respectively non-
negative and non-positive, hence zero. Thus b is real.

To see that b ≥ 0, use the information above in (25), multiply both sides
of the resulting equation by y, and let y →∞. The result is:

b = lim
y→∞

y2 Re Φ(iy),

from which it follows that b ≥ 0. 2

We can now interject a result that finishes the proof of Theorem 4.4.

Lemma 4.14 Let ϕ ∈ C3+ε(1) be a self-map of U of parabolic type, with
Denjoy-Wolff point at 1. Suppose further that ϕ′′(1) is pure imaginary and
6= 0. Let Φ be the corresponding map of the right half-plane. Then the real

part of every Φ-orbit is bounded.

Proof. We are assuming that ϕ′′(1) = iα for some real nonzero α. Then
by Table III, Φ has the following expansion on Π:

Φ(w) = w + iα +
b

w + 1
+ Γ(w + 1)

where b > 0 (by Theorem 4.13) and

|Γ(w + 1)| ≤
C

|w + 1|τ
.

for some τ > 1. Let w0 ∈ Π be arbitrary and for n > 0 set wn = Φn(w0).
We show that supn Re wn < ∞, and thus the sequence (wn) is separated in
pseudohyperbolic metric on Π. Note that

wn = w + niα +
n−1∑

j=0

b

wj + 1
+

n−1∑

j=0

Γ(wj + 1).
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Hence,

Rewn ≤ Rew +
n−1∑

j=0

b

|wj + 1|
+

n−1∑

j=0

C

|wj + 1|τ
.(26)

Now because
wn

n
→ iα,

we have

Re wn ≤ Rew + C1

n−1∑

j=0

b

j + 1
+ C2

n−1∑

j=0

1

(j + 1)τ

≤ C1 + C2 log(n + 1) (n ≥ 1).

Using this preliminary estimate and the fact that |wn| ≈ n, we can show
that Rewn is bounded:

Re wn = Re w + Re
n−1∑

j=0

b

wj + 1
+

n−1∑

j=0

Γ(wj + 1)

≤ Re w +
n−1∑

j=0

bRe wj + b

|wj + 1|2
+

n−1∑

j=0

C

|wj + 1|τ

≤ Re w + b
n−1∑

j=0

C1 + C2 log(j + 1)

(j + 1)2
+

n−1∑

j=0

C

(j + 1)τ
.

Since both sums on the right converge as n → ∞, we see that Re wn is

bounded. 2

Remark. The proof above shows that, under the hypotheses of Lemma
4.14, for each w ∈ Π there is a non-negative constant C such that

Re Φn(w) ≤ Re w + C,

where C generally depends on w. This dependence of C on w will be de-
scribed more explicitly in Propositions 4.25 and 4.29.

Lemma 4.14, in addition to finishing the proof of Theorem 4.4, provides
additional information about the classification of parabolic-type maps that

are very smooth at the Denjoy-Wolff point.
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Theorem 4.15 Suppose ϕ is of parabolic type, with Denjoy-Wolff point at
1. Suppose further that ϕ ∈ C3+ε(1), and ϕ′′(1) 6= 0. Then the following are
equivalent:

(a) ϕ is of automorphism type (every ϕ-orbit is hyperbolically separated).

(b) Every ϕ-orbit converges to 1 tangentially.

(c) Every ϕ-orbit converges to 1 and lies outside some circle in U that is
tangent to ∂U at 1.

(d) ϕ′′(1) is pure imaginary.

Proof. Lemma 4.5 shows that (b)↔ (d), even under the weaker assumption
ϕ ∈ C2(1). The second and third parts of Theorem 4.4 show that (a) ↔
(d), while Lemma 4.14, with its conclusion interpreted for the unit disc,
asserts that (d) → (c). Clearly (c) → (b), and this (somewhat redundantly)

completes the circle. 2

We return to our main theme. Recall that b = −(2/3)(Sϕ)(1), where Sϕ
is the Schwarzian derivative of the original map ϕ, and 1 is the Denjoy-Wolff

point of ϕ. Thus when translated back to the unit disk, Proposition 4.13
and the comments preceding it show that if ϕ′′(1) is pure imaginary (and
nonzero), then

• (Sϕ)(1) ≤ 0, and

• ϕ has a parabolic model ( ψ, σ ) in which σ is a self-map of U .

Recall that when σ is self-map, we may apply the Transference Principle
to obtain information about cyclicity:

Theorem 4.16 Suppose that ϕ is a regular self-map of U that is of parabolic

type, has Denjoy-Wolff point at 1, and has C3+ε-smoothness at 1. If ϕ′′(1)
is pure imaginary (and nonzero), then Cϕ is hypercyclic.

Proof. We know that Φ, the right half-plane alter ego of ϕ, satisfies (P-
1) through (P-4) so that Theorem 4.12 applies, and shows that Φ has a
parabolic model (Ψ, ν) in which Ψ(w) = w + a, where a = ϕ′′(1). Moreover,

by part (4) of the theorem, ν(Π ∪ {∞}) is a Jordan domain.
Suppose now that ϕ′′(1) is pure imaginary so that Re a = 0. Then in the

model for Φ, the map Ψ is a parabolic automorphism, and Re ν is bounded
below (by Proposition 4.13 and part (3) of Theorem 4.12). Choose a real
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number α such that ν +α is a self-map of Π. Of course, ν +α will still be a
Jordan map and will still intertwine Φ and Ψ ; hence, σ = T−1◦(ν +α)◦T is
a Jordan self-map of U that intertwines ϕ and the parabolic automorphism

T−1 ◦Ψ ◦ T . The Transference Principle now yields the result. 2

If Re ϕ′′(1) > 0 then we have seen that Cϕ is not hypercyclic (Theorem

4.6) and we have asserted that Cϕ is nevertheless cyclic. In those situations
where the intertwining map is a self-map of Π, this cyclicity follows from
the Transference Principle by an argument just like the one above:

Theorem 4.17 Suppose that ϕ is a regular self-map of U that is of parabolic
type, has Denjoy-Wolff point at 1, and has C3+ε-smoothness at 1. Suppose
further that Re ϕ′′(1) > 0 and Re ϕ′′(1)(Sϕ)(1) ≥ 0. Then Cϕ is cyclic.

Proof. We know ϕ has a parabolic nonautomorphism model ( ψ, σ ) in which
σ is a Jordan map. Moreover, the hypothesis Reϕ′′(1)(Sϕ)(1) ≥ 0 tells us
that σ may be chosen to be a self-map of U . The cyclicity of Cψ (Theorem

2.5) now easily transfers to Cϕ: If f is a cyclic vector for C ψ , the f ◦ σ is a
cyclic vector for Cϕ. 2

In fact Cϕ is cyclic when Re ϕ′′(1) > 0, even if Re ϕ′′(1)(Sϕ)(1) < 0.
However this requires more work, and we postpone the proof to the following
section (see Theorem 5.2). We now begin the task of proving the Parabolic
Models Theorem.

Motivation for the Proof

We will obtain the intertwining map ν in Theorem 4.12 as a limit of a

sequence of normalized iterates of Φ. Here is some motivation for our choice
of normalization. Suppose that ν intertwines Φ and the translation Ψ(w) =
w + a, and that ν is nice—say ν ′(w) has nonzero limit c as w →∞ in Π (so
in particular, c is the angular derivative of ν at ∞). We have for any w ∈ Π

ν ◦ Φn(w) = ν(w) + na.

Taking derivatives of both sides yields

ν′(Φn(w))Φ′n(w) = ν ′(w).(27)

Now Φn(w) approaches ∞; hence letting n →∞ in 27 yields

ν′(w) = c lim
n→∞

Φ′n(w).
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Integrating, we see that ν(w) is the limit of cΦn(w) + tn for some sequence
of constants (tn). Fix ω0 ∈ Π and note that we may take tn to be ν(w0)−
cΦn(w0). Hence,

ν = c
{

lim
n→∞

(Φn − Φn(w0))
}

+ ν(w0).(28)

The preceding equation also shows that ν is unique up to an additive

constant—provided that we restrict our attention to maps whose deriva-
tives extend continuously to ∞ with nonzero derivative at ∞. To see this,
suppose υ is another such map intertwining Φ and Ψ(w) = w + a. Then

υ(w) = υ′(∞)
{

lim
n→∞

(Φn −Φn(w0))
}

+ υ(w0)

=
υ′(∞)

c
ν + β,

where β is the constant υ(w0)− ν(w0)υ
′(∞)/c. Hence, υ intertwines Φ and

the translation mapping w 7→ w + υ′(∞)
c a. But our assumption was that it

intertwined Φ and w 7→ w + a, thus υ′(∞)
c must be 1, so that υ = ν + β.

Another consequence of (28) is that if we assume there is “nice” inter-
twining map, then the sequence

Φn −Φn(w0)(29)

must converge to a map that intertwines Φ and a translation. We will show
that the sequence (29) does converge when Φ satisfies (P-1) through (P-3);
moreover, it converges to the intertwining map ν advertised in the Parabolic
Models Theorem.

Given this motivation, we now proceed more formally. Here, and in the
remainder of this section, we will be assuming that Φ is a self-map of Π
satisfying (P-1) through (P-3). Fix a “base point” point w0 ∈ Π and set,
for each non-negative integer n,

νn(w) = Φn(w)− Φn(w0) (w ∈ Π).(30)

(It should be noted that on the left side of this definition, the symbol νn

does not denote “the nth iterate of ν”) Each function νn is holomorphic on
Π and continuous on Π. We are going to:

• Show that the sequence (νn) converges to a function ν that is holo-
morphic on Π and continuous on Π, and which obeys the functional
equation

ν(Φ(w)) = ν(w) + a;(31)
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• Show that ν has the asymptotic representation (24), and

• Use this representation to study the boundary behavior of ν at ∞.

Two points deserve immediate comment here. First, the functional equation
(31) will follow from the definition of νn and the hypotheses on Φ as soon as
it is shown that νn → ν uniformly on compact subsets of Π. Indeed, suppose
the convergence has been established. Then

νn(Φ(w)) = Φn+1(w)−Φn(w0) = νn+1(w) + Φn+1(w0)− Φn(w0).

We see from representation (P-3) of Φ, and the fact that the Φ-orbit of each

point tends to ∞, that Φn+1(w0)− Φn(w0) → a, so the right hand side of
the last displayed equation tends to ν(Φ(w)) while the left side tends to
ν(w) + a.

Observe that the choice of base point w0 is irrelevant. For suppose we
have shown that the sequence (νn) converges for a certain w0. Let w1 be any

other point of Π, and set

ν̃n(w) = Φn(w)−Φn(w1) (w ∈ Π).

Then for w ∈ Π,

νn(w)− ν̃n(w) = Φn(w1)− Φn(w0) = νn(w1) → ν(w1).(32)

Thus the sequence (ν̃n) converges on Π to a function ν̃ that differs from the
original function ν by the constant ν(w1).

Estimates on Orbit Magnitudes

We now derive the estimates on Φ-orbits that are required for the proof
of the Parabolic Models Theorem. These are summarized in the following

statement, in which ΠR denotes the part of the closed right half-plane that
lies above the line y = R, and n is a non-negative integer. In what follows we
use the symbol C (possibly lower case, possibly with subscripts), to denote
a positive constant which may vary from one appearance to the next, but
which never depends on the point w or the index of iteration n.

Proposition 4.18 (Fundamental Orbital Estimates) If Re a > 0, then

c(|w|+ n) ≤ |Φn(w)| ≤ C(|w|+ n)(33)

for all w ∈ Π and all n.
If Re a = 0, then the upper estimate in (33) holds for all w ∈ Π, and

there exists R > 0 such that the lower one holds for all w ∈ ΠR.
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Eventually we will see that the positive constant R can be taken to be
0.

Proof. The representation (P-3) insures that there is a positive constant
R such that

|Φ(w)− w − a| <
|a|
2

(34)

whenever w ∈ Π and |w| > R. Thus |Φ(w)−w| < 3|a|/2 whenever |w| > R.

On the other hand, the continuity hypothesis (P-1) shows that |Φ(w)−w| is
bounded on the compact half-disc D = {|w| ≤ R} ∩Π. Thus |Φ(w)− w| is
bounded on all of Π. Upon substituting Φj(w) for w in this uniform bound,
summing, and using the triangle inequality, there results:

|Φn(w)− w| < Cn (w ∈ Π, n = 1, 2, . . .),(35)

from which it follows (upon taking C > 1 in the last equation) that for all
w ∈ Π,

|Φn(w)| < |w|+ Cn < C(|w|+ n).

This proves the upper estimate in inequality (33) for all values of a 6= 0.
For the lower estimate we have to consider separate cases.

The case Re a > 0. Suppose the constant a in (P-3) has strictly positive
real part. The key to the lower estimate in inequality (33) is the fact that
the slopes of the vectors Φn(w)− w are uniformly bounded both in n and

w:
sup{slope[Φn(w)−w] : w ∈ Π, n = 1, 2, . . .} < ∞.(36)

To prove this, take real parts on both sides of (P-3) to obtain a “real” version
of inequality (34), from which follows

Re [Φ(w)− w] >
1

2
Re a (w ∈ Π, |w| > R).

Also, the Julia-Carathéodory inequality (4.2) and hypothesis (P-2) insure
that the real part of Φ(w)−w is strictly positive in Π. These facts, along with
the continuity of Φ, insure that there exists c > 0 such that Re [Φ(w)−w] > c
for all w ∈ Π. (The constant c here is not the one that occurs in (4.2).) Upon

replacing w by Φj(w) in this inequality and summing, we obtain

Re [Φn(w)−w] > cn (w ∈ Π;n = 1, 2, . . .).(37)
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This inequality, along with (35) shows that

slope[Φn(w)− w] =
Im [Φn(w)− w]

Re [Φn(w)− w]

≤
|Φn(w)−w|

Re [Φn(w)− w]

≤
Cn

cn
=

C

c
,

which proves (36).
Let µ denote the supremum in inequality (36). This inequality asserts

that for each w ∈ Π and each positive integer n, the angular sector in Π
with vertex at w and sides of slope ±µ contains Φn(w). Thus the horizontal
translate of this sector to one with a vertex on the imaginary axis also

contains Φn(w), so a little trigonometry based on Figure 6 below, shows
that

|Φn(w)| ≥ r = | Im w| sin β.

where β is the angle between the sides of the translated sector and the
imaginary axis (0 < β < π/2).

Figure 6: Lower estimate for Φn(w).

Furthermore, the lower estimate (37) yields

|Φn(w)| ≥ Re Φn(w) ≥ cn + Re w.
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Upon averaging the last two inequalities, we obtain

|Φn(w)| ≥ 1

2
(cn + | Im w| sinβ + Re w),

which, because sin β > 0, becomes the desired lower estimate:

|Φn(w)| ≥ c(n + |w|) (w ∈ Π; n = 0, 1, 2, . . .).

This completes the proof of the first part of Proposition 4.18.

The case Re a = 0. Our standing assumption in this case is that Im a > 0,
so in condition (P-3) we have a = αi for some positive constant α. For
definiteness, suppose α > 0 (henceforth we make this a standing assumption
whenever Re a = 0).

Fix w ∈ Π with |w| > R, so inequality (34) holds, and this implies,

α

2
< Im [Φ(w)− w] <

3α

2
.(38)

Thus the image of each w ∈ ΠR, has larger imaginary part than does w, so
it too lies in ΠR, as does—upon repetition of the argument—the entire orbit

of w.
Upon substituting Φn(w) for w in (38) we obtain

α

2
< Im {Φn+1(w)− Φn(w)} <

3α

2
,(39)

while summation of the lower inequality in (39) yields

Im Φn(w) ≥ Imw + n
α

2
.(40)

The Julia-Carathéodory inequality guarantees that

ReΦn(w) ≥ Re w,

and upon adding the last two inequalities we obtain the desired result:

|Φn(w)| ≥
1√
2
[ ImΦn(w) + Re Φn(w)]

≥ 1√
2
[ Imw + Re w +

nα

2
]

≥
1√
2
(|w|+

nα

2
)

≥ c(|w|+ n).

This completes the proof of Proposition 4.18. 2
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Proof of the Parabolic Models Theorem

Existence of ν, Part I. Our primary tools in this enterprise will be

the series representation (P-3), and the orbit-magnitude estimate (33) of
Proposition 4.18. In fact, these will allow us to prove most of the first two
parts of the Parabolic Models Theorem.

We employ the following notation which emphasizes our focus on orbits
while removing extraneous symbols. For each w ∈ Π write

w(n)
def
= Φn(w) + 1,

and
∆w(n)

def
= w(n + 1)−w(n) = Φn+1(w)−Φn(w).

In this notation (30) becomes

νn(w) = w(n)−w0(n).(41)

Moreover, we can write the result of substituting Φj(w) for w in (P-3) as

∆w(j) = a +
b

w(j)
+ Γ(w(j)),(42)

from which follows

∆νj(w) = b

[
1

w(j)
−

1

w0(j)

]
+ Γ(w(j))− Γ(w0(j)).(43)

Now sum both sides of this equation, noting that ν0(w) = w−w0, to get for
each w ∈ Π and each non-negative integer n:

νn(w) = w −w0 + b
n−1∑

j=0

[
1

w(j)
− 1

w0(j)

]
+

n−1∑

j=0

[Γ(w(j))− Γ(w0(j))] .

Now the general term of the first sum on the right is:

1

w(j)
−

1

w0(j)
= −

νj(w)

w(j)w0(j)

=
−w

w(j)w0(j)
+

w0 − (νj(w)− ν0(w))

w(j)w0(j)
.

Thus

νn(w) = w − bwHn(w) + Bn(w) + βn(w),(44)
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where

Hn(w) =
n−1∑

j=0

1

w(j)w0(j)
,

Bn(w) = −w0 + b
n−1∑

j=0

w0 − (νj(w)− ν0(w))

w(j)w0(j)
,

and

βn(w) =
n−1∑

j=0

[Γ(w(j))− Γ(w0(j))] .

To further explicate matters, it helps to use the notation Ω = Π if the

real part of the constant a in (P-3) is strictly positive, and Ω = ΠR if
Re a = 0 where we recall that R is the radius of the half-disc outside of
which inequality (34) holds, and ΠR is the quarter-plane that lies above the
line y = R).

We are going to show that each of the three sequences of functions de-

fined above converges uniformly in Ω to a function that is bounded on Ω
and holomorphic on its interior, and by (44) this will establish the desired
convergence of the sequence (νn).

From now on, we assume for technical reasons that the base point w0

lies in Ω (a restriction only in the case Re a = 0; in fact, recall our earlier

observation that once convergence of the sequence (νn) is established for
one choice of basepoint, then convergence follows for all basepoints, and the
resulting limit functions differ from each other by constants).

From the fundamental estimate of Proposition 4.18 we know that if w ∈
Ω then |w(n)| ≥ c(|w|+n), while positivity of the real part of Φ implies that

|w(n)| ≥ 1. Upon averaging these inequalities there results

|w(n)| ≥ c

2
(|w|+ n) +

1

2
≥ c

2
n +

1

2
,(45)

from which the desired convergence of the sequence (Hn) follows immedi-
ately. In addition, (45) yields

n∑

j=0

|Γ(w(j))| ≤ c

where, as always, the constant c is independent of n and w. This establishes
the desired convergence of (βn). For (Bn) we need only show that the series

∞∑

j=0

|νj(w)− ν0(w)|
|w(j)w0(j)|
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has the desired convergence. For this we use equation (43) along with in-
equality (45) to obtain

|∆νj(w)| ≤ b

[
1

|w(j)|
+

1

|w0(j)|

]
+ |Γ(w(j))|+ |Γ(w0(j))| ≤ c

1

j + 1
,

from which a summation yields

|νj(w)− ν0(w)| ≤
j−1∑

i=0

|∆νi(w)| ≤ c log(j + 1)

for all non-negative integers j. Using this estimate along with (45), we see
that

|νj(w)− ν0(w)|
|w(j)w0(j)|

≤ c
log(j + 1)

(j + 1)2
(j = 0, 1, 2, . . .),

which establishes that the sequence (Bn) has the desired convergence on Ω.

Here is what we have proved so far:

Proposition 4.19 (The existence and first representation of ν)
The sequence (νn) converges uniformly on compact subsets of Ω to a contin-
uous function ν that is holomorphic on the interior of Ω. Moreover

ν(w) = w − bwH(w) + B(w),

where the function B is bounded and continuous on the region Ω and holo-
morphic on its interior; and

H(w) =
∞∑

n=0

1

w(n)w0(n)
,

where the series converges uniformly on Ω.

We remark that the work above actually shows both that as |w| → ∞,

the function B(w) tends to a constant, and H(w) tends to zero. We will not
need this additional fact about B, and we are going to considerably refine
the observation about H.

We devote the remainder of this section to (essentially) finishing the
proof of the first two parts of Theorem 4.12. In view of Proposition 4.19,

the desired result can largely be rephrased as:

wH(w)
b
=

1

a
log(1 + w),
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where the “equation” f(w)
b
= g(w) means that f − g is a bounded function

on Ω.

Our strategy is to show that for each w ∈ Ω, the modified orbit element
w(n) is approximated closely enough by w + an so that

wH(w)
b
=

∞∑

n=0

w

(w + an)(w0 + an)
b
=

∫ ∞

1

w dt

(w + at)(w0 + at)
,

after which a direct calculation shows that the difference between the integral

and 1
a log(1 + w) is bounded. The following inequalities make everything

work.

Lemma 4.20 For each w ∈ Ω and each positive integer n,

(a) |w + na| ≥ C(|w|+ n).

(b) |w(n)− w − na| ≤ C log(n + 1).

Proof. To obtain the first inequality, apply Proposition 4.18 to the map
Φ(w) = w + a.

For the second one, use equation (42) and inequality (33) to provide the

estimate

|∆w(j)− a| ≤ |b|
|w(j)|

+
C

|w(j)|1+ε
≤ C

|w|+ j
≤ C

j
.

The desired inequality follows upon summing both sides of this one, and
using the triangle inequality. 2

Lemma 4.21 For each w ∈ Ω and each positive integer n,

∞∑

n=1

1

n

∣∣∣∣
1

w(n)
−

1

w + na

∣∣∣∣ ≤
C

|w|+ 1
.

Proof. Using respectively Lemma 4.20 and inequality (33), we obtain

∣∣∣∣
1

w(n)
− 1

w + na

∣∣∣∣ =
|w(n)−w − na|
|w(n)||w + na|

≤ C
log(n + 1)

|w(n)|(|w|+ n)

≤ C
log(n + 1)

(|w|+ n)2
,
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whereupon

∞∑

n=1

1

n

∣∣∣∣
1

w(n)
−

1

w + nb

∣∣∣∣ ≤ C
∞∑

n=1

log(n + 1)

n(|w|+ n)2

≤ C

|w|+ 1

∞∑

n=1

log(n + 1)

n2

≤ C

|w|+ 1
,

as desired. 2

Corollary 4.22 For w ∈ Ω,
∣∣∣∣∣H(w)−

∞∑

n=1

1

(w + na)(w0 + na)

∣∣∣∣∣ ≤
C

|w|+ 1
.

Proof. The quantity whose magnitude is to be estimated can be written

as I(w) + II(w) + III(w), where

I(w) =
1

w(0)w0(0)
=

1

(w + 1)(w0 + 1)

is the term corresponding to n = 0 in the sum defining H(w),

II(w) =
∞∑

n=1

1

w0(n)

[
1

w(n)
−

1

w + na

]
,

and

III(w) =
∞∑

n=1

1

w + na

[
1

w0(n)
− 1

w0 + na

]
.

Clearly I(w) obeys the desired inequality. Upon using inequality (33) along
with Lemmas 4.20 and 4.21 to estimate the magnitudes of terms in the sums
defining II(w) and III(w), we obtain this inequality for those sums also. 2

Let us summarize how far we have progressed toward proving the first
two parts part of Theorem 4.12. We have shown that:

For every w ∈ Ω,

ν(w) = w − bw
∞∑

n=1

1

(w + na)(w0 + na)
+ B(w)(46)

where B is a bounded, continuous function on Ω.
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The next step is to replace the sum in this representation by the corre-
sponding integral.

Proposition 4.23 For each w ∈ Ω,
∣∣∣∣∣

∞∑

n=1

1

(w + na)(w0 + na)
−

∫ ∞

1

dt

(w + ta)(w0 + ta)

∣∣∣∣∣ ≤
C

|w|+ 1
.

Proof. The difference in question has magnitude bounded by the infinite
sum of the integrals

∫ n+1

n

∣∣∣∣
1

(w + na)(w0 + na)
−

1

(w + ta)(w0 + ta)

∣∣∣∣dt.

A little calculation shows that the integrand above is
∣∣∣∣∣

a(t− n)(w + w0) + (t2 − n2)a2

(w + na)(w0 + na)(w + ta)(w0 + ta)

∣∣∣∣∣ ,

which, since t lies between n and n+1, is dominated by a constant multiple

of
|a||w + w0|+ 2(n + 1)|a|2

n2(|w|+ n)2
,

where we have also used Lemma 4.20 to get the lower bounds used for the
terms of the denominator. The last quantity is clearly bounded by a constant
multiple of 1

n2(|w|+1) , so the magnitude of the original difference is bounded

by a constant multiple of

∞∑

n=1

1

(|w|+ 1)n2
≤ C

|w|+ 1
,

which yields the desired inequality. 2

Upon substituting this result into (46), we obtain for w ∈ Ω,

ν(w) = w − bw

∫ ∞

1

1

(w + ta)(w0 + ta)
dt + a bounded function.(47)

To complete the proof of the representation of ν promised in the Theorem
4.12, we need only evaluate the integral and estimate the answer. An easy

calculation shows that
∫ ∞

1

dt

(w + ta)(w0 + ta)
=

1

a(w − w0)
log

w + a

w0 + a
,



80 P.S. BOURDON AND J.H. SHAPIRO

and the reader can easily check that the function

log(w + 1)− log
w + a

w0 + a

is bounded for w ∈ Π. Thus
log(w+1)

aw can replace the integral in the rep-
resentation (46) above, causing only a bounded amount of damage. This
completes the proof that ν has the representation (24) promised by Theo-
rem 4.12, at least on the region Ω and for w0 ∈ Ω. 2

Summarizing our progress to this point:

• The work above and the discussion immediately following the state-

ment of Theorem 4.12 prove that Theorem completely for the case
Re a > 0.

• For the case Rea = 0 we have proved that ν has the representation
(24) on the part of Π that lies above the line {y = R} (the Theorem
promises this for the entire upper half of Π), and have observed that
this yields

lim
y→+∞

Im ν(iy) = +∞,

which is half of what is needed to prove part (d) of Theorem 4.12.

Existence of ν, Part II. Our main objective now is to prove part (d) of
Theorem 4.12 for the case where the parameter a is pure imaginary (along
the way we complete the proof of parts (b) and (c)). Recall that we are
assuming a 6= 0, and for definiteness are taking a to be positive imaginary:
a = αi for some α > 0.

In analytical terms, our goal is to prove that

lim
y→−∞

Im ν(iy) = −∞.(48)

In a curious twist, our proof of this will require a detailed analysis of the
behavior of the real part of Φn(w). Proposition 4.13 and condition (P-3)
combine to give the following asymptotic representation of Re Φ.

Lemma 4.24 (Representation of Re Φ) For w ∈ Π,

Re Φ(w) = Re w + b
Rew + 1

|w + 1|2
+ Θ(w + 1)(49)
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with

Θ(w + 1) ≤ C

|w + 1|1+ε
,

where C and ε are positive constants, independent of w.

Proof. Take real parts of both sides of the original representation (P-3).

Use the fact that b is real (Lemma 4.13) and a pure imaginary. The result
follows immediately. 2

Before stating the first of our estimates on the real part of an orbit, recall
our convention that the symbol “C ,” as well as any of its variants, denotes
at every occurrence a constant that does not depend on either the index of
iteration n or the point w.

Proposition 4.25 For w ∈ Π with Imw > R,

Re Φn(w) ≤ C1 Rew + C2.

Proof. For the points w in question we know from Proposition 4.18 that

|Φn(w)| ≥ C(|w|+ n).

Now because a is pure imaginary, it disappears from (P-3) upon taking real

parts, so upon substituting Φj(w) for w in what results, and using the lower
estimate above, we obtain

0 < Re ∆Φj(w) ≤
b

C(|w|+ j + 1)
+

C

(|w|+ j + 1)1+ε
≤

C

j + 1
.

Upon summing both sides of this inequality, we obtain the preliminary es-
timate:

ReΦn+1(w) ≤ Rew + C(1 + log(n + 1)).(50)

Now replace w by Φj(w) in the representation of Re Φ provided by Lemma

4.24, and recycle the last inequality. The result is:

Re ∆Φj(w) = b
Re Φj(w) + 1

|Φj(w) + 1|2
+ Θ(Φj(w) + 1)

≤ b
Re w + C1(1 + log(j + 1))

(j + 1)2
+

C2

(j + 1)1+ε
,
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whereupon

Re [Φn(w)−w] ≤ (Re w)
n−1∑

j=0

b

(j + 1)2
+ C1

n−1∑

j=0

1 + log(j + 1)

(j + 1)2

+C2

n−1∑

j=0

1

(j + 1)1+ε

which gives the desired result. 2

We can now begin filling in the remaining pieces of the proof of Theorem
4.12.

Corollary 4.26 The sequence (νn) converges uniformly on compact subsets
of Π to a function ν that is holomorphic on Π and continuous on Π. The
resulting function ν obeys the functional equation (31) and has real part
bounded below on Π. The base point w0 in the definition of νn can be chosen

anywhere in Π, changing the definition of ν by only a constant.

Proof. To get started we initially choose w0 ∈ Π with Imw0 > R. By the
last result, the sequence (Re Φn(w0)) is bounded, say by the constant M ,
so for each w ∈ Π we have

Re νn(w) = Re [Φn(w)− Φn(w0)] ≥ −M.(51)

Thus {νn} is a normal family on Π; moreover we already know the sequence
(νn) converges uniformly on compact subsets of an upper quadrant of Π.
Thus the sequence converges uniformly on compact subsets of Π, and so by

(P-2) on all of Π. That the limit ν has real part bounded below follows from
(51). The other properties of ν, including the fact that the base point can
now be taken to be anywhere in Π, have already been discussed. 2

Orbit structure. Our next task is to examine in some detail the struc-
ture of an arbitrary Φ-orbit. Recall that we are assuming that in the rep-

resentation (P-3), the constant a is positive imaginary: a = iα, α > 0.
Recall also the fundamental estimate (34) that holds for all points of Π
that lie outside the disc {|w| ≤ R}. In particular, this estimate holds for
every point outside the closed rectangle B in Π defined by the inequalities
| Im w| ≤ R, 0 ≤ Re w ≤ R. Henceforth we refer to this rectangle as the

bad rectangle, and to its complement G as (of course) the good region.
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Thus inequality (38) holds whenever w lies in the good region, and asserts
that Φ(w) is at least α/2 units higher than w. Of course whenever Φn is in
the good region, we may substitute Φn(w) for w in this last statement to

obtain:

Each point of a Φ-orbit rises at least α/2 units above its prede-
cessor, unless that predecessor lies in the bad rectangle B.

We define the bad points of an orbit to be the consecutive points from
the first that has imaginary part between −R and R, to the last that has

imaginary part < R. The remaining points of the orbit are the good points.
The reader should take note that these “bad points” include all the ones (if
any) that lie in the bad rectangle B, but they can include more. Figure 7
below illustrates the situation. Two orbits are shown; the one on the left
intersects B, while the one on the right does not. The solid dots indicate

the bad points of each orbit.

Figure 7: Two orbits; the solid dots are the bad points.

The observation just made about how orbits rise shows that if an orbit
never encounters B, then it has at most 4R/α bad points, while the good
points fall into a (possibly empty) finite initial segment, and an infinite final
segment. Our next task is to show that something similar happens even if

the orbit encounters the bad set.
Since each orbit tends to∞, no orbit can have more than a finite number

of points in B. The key to the next result is that there is a bound on this
number that is uniform over all starting points.
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Proposition 4.27 There exists M < ∞ such that no Φ-orbit has more than
M bad points.

Proof. First we prove that no more than a fixed number of points of any
orbit can lie in the bad rectangle B. Since ν is continuous on Π and B is

compact, the image ν(B) is a compact subset of the plane. Let h denote the
vertical height of this set.

Fix w ∈ Π. The sequence (ν(w)+inα) has no more than (h/α)+1 points
in ν(B); this implies that no more than (h/α)+1 points of the orbit (Φn(w))
can lie in B.

Let µ denote the maximum of the continuous function |Φ(w) − w| over
the compact set B. Then the worst that can happen to an orbit which
encounters B is that its last point in B has image with imaginary part equal
to −µ−R. Since the successor of every point not in B lies at least α/2 units
above the original point, it will take no more than 2(2R + µ)/α additional

steps for the orbit to rise up to, or above, the line y = R. Thus an orbit
which encounters B can have no more than h+1+4R+2µ

α + 1 bad points. We
have previously noted that orbits that never encounter B fare better, so the
proof is complete. 2

Proposition 4.27 allows us to complete the proof of part (b) of the Para-
bolic Models Theorem.

Corollary 4.28 If, in hypothesis (P-3), we have a = αi for some α > 0,

then

ν(w) = w − b

a
log(1 + w) + B(w) (w ∈ H),

where H = {w ∈ Π : Imw ≥ 0}, and B is a function that is bounded and
continuous on H, and holomorphic on its interior.

Proof. We have already shown that ν has the desired form for any w ∈ Π
with Imw ≥ R. Suppose that 0 ≤ Imw ≤ R so that the first point in

Orb(Φ, w) is either in the bad rectangle B or to the right of B. In either
case, if M is the constant of Proposition 4.27, ΦM+1(w) will be on or above
the line y = R. Hence,

ν(w) + i(M + 1)α = ΦM+1(w)− b

a
log(1 + ΦM+1(w)) + B(ΦM+1(w))

Now (35) shows that |w − ΦM+1(w)| is uniformly bounded on Π, and it
follows that ν has the desired representation on H. 2
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We now complete our analysis of the real part of an orbit.

Proposition 4.29 (Growth of real part of an orbit) For each w ∈ Π
and each positive integer n,

Re Φn(w) ≤ C1 Re w + C2 log(1 + | Imw|) + C3.(52)

If Imw ≥ 0, then the inequality holds with C2 = 0.

Proof. Recall that in the proof of Proposition 4.18 we saw that the series
expansion (P-3) guarantees that the distances between consecutive points

of orbits are uniformly bounded:

δ = sup{|∆Φn(w)| : n = 0, 1, 2, . . . ; w ∈ Π} < ∞.(53)

Now we have already proved the last statement of the Proposition for start-
ing points w with imaginary part > R (Proposition 4.25). The extension
of this statement to starting points in the upper half-plane, and indeed to
starting points lying above the line y = −R, follows from this, the fact that

orbits have no more than a bounded number of bad points, and the bound
(53) above, which shows, among other things, that as the orbit runs through
its no more than M bad points, it progresses to the right by no more than
Mδ units.

In particular, if an orbit intersects the bad rectangle B, we may as well
discard all the predecessors of the first point (call it w′) in B, for they lie to

the left of this point. Applying the work of the last paragraph to the orbit
originating at w′, we see that all its members have real part ≤ C1R + C3.
That is:

All the orbits that encounter B lie in a fixed vertical strip of
finite width.

Thus we need only prove inequality (52) for orbits that never hit the bad

set, and have starting points w with imaginary part < −R. So fix such a
point w, and recall that its orbit progresses to the right (as all orbits must,
by the Julia-Carathéodory Inequality; Theorem 4.2), and upward, at each
step increasing in height by at least α/2. Let ΦN+1(w) be the first point of
the orbit whose imaginary part exceeds −R (i.e., the first bad point).

We wish to estimate how far the initial good segment progresses to the

right. For this we use the method of proof of Proposition 4.25, this time the
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idea is to count backward from ΦN(w). Since each good point of an orbit
lies at least α/2 units above the previous point, we have for 0 ≤ j ≤ N ,

| Im Φj(w)| ≥ R + (N − j)
α

2
.(54)

Upon substituting Φj(w) for w in the representation of Re Φ found in
Lemma 4.24, we obtain

Re ∆Φj(w) = b
Re Φj(w) + 1

|Φj(w) + 1|2
+ Θ(Φj(w) + 1) ≤

C

|Φj(w) + 1|
,(55)

which, along with (54), yields the estimate

Re ∆Φj(w) ≤ C

R + α
2 (N − j)

.

Upon summation this yields:

Re [ΦN(w)− w] =
N−1∑

j=0

Re ∆Φj(w)

≤ C
N−1∑

j=0

1

R + α
2 (N − j)

≤ C
N−1∑

j=0

1

N − j

≤ C
N∑

j=1

1

j

≤ C log(N + 1),

hence

Re ΦN(w) ≤ Re w + C log(N + 1).

Now recall that ΦN (w) is the last point of the orbit of w that lies below the
line y = −R, and recall yet again that, since the orbit never encounters the

bad set, each of its points lies at least α/2 units higher than the previous
one. Thus

Nα

2
≤ | Im [ΦN(w)− w]| ≤ | Imw| − R.
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Upon substituting the resulting estimate for N into the previous inequality,
we obtain

Re ΦN(w) ≤ Re w + C log(| Imw|+ 1).(56)

By Proposition 4.27, no orbit has more than M bad points, so the imagi-
nary part of ΦN+M+1(w) must exceed R. Since the orbit progresses no more
than (M + 1)δ units to the right during these additional M + 1 steps, we
can replace the index N by N + M + 1 in inequality (56), at the expense
of appropriately modifying the constant C (the reader should note that we

have finally used the condition that ΦN(w) is the last point of the orbit of
w with imaginary part less than −R).

Finally, if n > N + M + 1, then Proposition 4.25, with w replaced by
ΦN+M+1(w), shows that

Re Φn(w) ≤ C1 Re ΦN+M+1(w) + C2

≤ C1[ Re w + C log(| Im w|+ 1)] + C2,

which, once the constants have been properly renamed, is the desired esti-

mate. 2

The dénoument. To finish the proof of Theorem 4.12, it remains only to
show that

lim
y→−∞

Im ν(iy) = −∞.

Proof. Consider the orbit that starts at iy, where y < −R. Let N = N(y)
be the first index n for which Im Φn(iy) > R. Thus

N ≥ |y|+ R

δ
,

where δ, defined in (53), bounds the distance between consecutive points of
any orbit. Let w′ = ΦN (iy), the first point of the orbit with imaginary part
> R. By the functional equation for ν,

ν(iy) = −iNα + ν(w′),

which, along with the previous estimate of N , yields

Im ν(iy) ≤ −
( |y|+ R

δ

)
+ Im ν(w′).(57)
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Now we have already established part (b) of the Theorem 4.12, and when
applied to w′ it yields

ν(w′) = w′ + i
b

α
log(w′ + 1) + B(w′).

Recalling that b is real, this implies

Im ν(w′) = Imw′ +
b

α
Re log(w′ + 1) + Re B(w′).

Recall that the function B is bounded on Π. Moreover, w′ is the first orbit
point above the line y = R, so Imw′ < R + δ. Thus the last equation yields
the estimate

Im ν(w′) ≤ R + δ +
b

α
log |w′ + 1|+ C.

Since the imaginary part of w′ is bounded independent of y, its real part
controls its magnitude. By Proposition 4.29 we have

Rew′ = ReΦN(iy) ≤ C2 log(1 + |y|) + C3.

Putting the last two estimates together, we obtain (recalling that w′ depends
on y),

Im ν(w′) ≤ C + o(y) (y →∞).

This estimate, along with (57) above yields

Im ν(iy) ≤ −C1|y|+ C2 (y < −R),

from which the desired result follows immediately. This completes our proof

of Theorem 4.12 2



5 Cyclicity: Parabolic Nonautomorphism Case

We have proved the promised generalizations for all of our linear-fractional
cyclicity results (Theorem 2.2) save one—that for parabolic nonautomor-
phisms. In terms of the summary presented in Table II of the Introduction,
we have delivered on everything but the cyclicity assertion in the last row.
In this section we complete this last bit of unfinished business.

We seek to generalize the part of Theorem 2.2 that deals with para-
bolic nonautomorphic self-maps of U , and for reference we recast this linear-
fractional result as follows:

Theorem 5.1 Suppose that ϕ is a linear-fractional self-map of U with Denjoy-
Wolff point at 1. If ϕ is of parabolic type, and Re ϕ′′(1) > 0, then Cϕ is
cyclic, but it is not hypercyclic.

We show here that this theorem generalizes to the class of composition
operators with smooth, regular symbol. We are already part of the way
there. We showed in Theorem 4.6 that if ϕ ∈ C2(1) is a self-map of U of
parabolic type, with Denjoy-Wolff point 1, then the condition Re ϕ′′(1) >
0, implies Cϕ is not hypercyclic. We have also shown (Theorem 4.17),
that if ϕ is sufficiently smooth and regular, then Cϕ is cyclic whenever

Re φ′′(1)(Sφ)(1) ≥ 0. Thus, to complete our work we need to eliminate
this last hypothesis on the Schwarzian derivative. The next few paragraphs
explain the difficulties associated with this task.

Recall from the discussion following the statement of Theorem 4.12 that
the hypothesis Re φ′′(1)(Sφ)(1) ≥ 0 makes “transference of cyclicity” easy

to accomplish by allowing us to choose a linear-fractional model ( ψ, σ ) for
ϕ in which σ is a self-map of U . Recall also the basic idea behind the
transference technique in this situation:

If the polynomials in σ form a dense subset of H2, and f is a
hypercyclic (cyclic) vector for Cψ , then f ◦σ will be a hypercyclic
(cyclic) vector for Cϕ.

89
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Note that in order for this idea to work, σ must be a self-map of U , so that
f ◦σ will always be a Hardy-space function. Unfortunately, the intertwining
map supplied by the Parabolic Models Theorem (Theorem 4.12) cannot

always be taken to be a self-map of U . Indeed, part (c) of that theorem
shows that the intertwining map that arises from our work cannot be taken
to be a self-map of U when Re φ′′(1)(Sφ)(1) < 0.

Despite this difficulty, the work of the last section has provided us with
enough information about σ to prove the desired result:

Theorem 5.2 Suppose that ϕ is a regular self-map of U of parabolic type,

with Denjoy-Wolff point at 1. Suppose further that ϕ ∈ C3+ε(1), with
Re ϕ′′(1) > 0, and Reφ′′(1)(Sφ)(1) < 0. Then Cϕ is cyclic.

We assume throughout the remainder of this section that ϕ is a self-map
of U satisfying the hypotheses of Theorem 5.2. Our proof that Cϕ is cyclic
is organized as follows. First, we will apply the Parabolic Models Theorem
to obtain a linear-fractional model ( ψ, σ ) for ϕ in which ψ is a parabolic

nonautomorphism, and G = σ(U) is a Jordan region containing U . Then
we will prove that the linear span of { ψ n : n = 0, 1, 2, . . .} is dense in H2(G)
from which it will follow that the linear span of { ψ n ◦ σ : n = 0, 1, 2, . . .} is
dense in H2(U ). Then the intertwining relation ψ n ◦ σ = σ ◦ ϕn, will show
that σ is a cyclic vector for Cϕ.

Applying the Parabolic Model

As in Section 4, our initial hypotheses on ϕ translate into hypotheses (P-1)
to (P-4) (preceding the statement of Theorem 4.12) on its right half-plane
analogue Φ, and the additional condition Reφ′′(1)(Sφ)(1) < 0 becomes

(P-5) Re ab > 0.

So suppose Φ is a self-map of the right half-plane Π that satisfies (P-1)–
(P-5). According to Theorem 4.12, there is a Jordan map ν that intertwines
Φ and the parabolic nonautomorphism Ψ(w) = w +a, and has the following

representation on Π:

ν(w) = w −
b

a
log(1 + w) + B(w) (w ∈ Π),(1)

where B is a bounded holomorphic function on Π that is continuous on Π.
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Let G denote the Jordan domain ν(Π). The representation (1) gives rise
to the following parameterization of ∂G:

Re ν(iy)
b
= − Re āb

|a|2
log |1 + iy|; Im ν(iy)

b
= y − Im āb

|a|2
log |1 + iy|;(2)

for y real. Here, as in Section 4, the symbol “
b
=” is used to assert that the

expression on the right differs from the one on the left by a bounded function
(of the real variable y, this time).

It follows from (P-5) and (2) that Re ν(iy) is bounded above. Thus upon
replacing ν with ν − α for a sufficiently large positive constant α, we may
assume that ∂G lies between the imaginary axis and the curve Γ : R → C
defined by

Γ(y) = iy −
b

a
log(1 + iy)− C(3)

for C sufficiently large (see Figure 8).

Figure 8: ∂G (= ∂ν(Π)) lies between Γ and the imaginary axis.

A Cyclic Vector for Cϕ

Let ( ψ, σ ) be the the disk model for ϕ that corresponds to the right half-plane
model (Ψ, ν) developed above. Hence, ψ is a parabolic nonautomorphism,

and G = σ(U ) is Jordan domain containing U (because the image G of ν
contains Π). Upon transferring Figure 8 to the unit disk, we see that Jordan
curve ∂G must lie between ∂U and the curve T−1(Γ), as shown in Figure 9.

Recall that the inner product 〈f, g〉 of elements f and g in H2(G) may
be computed by integrating the product (f ◦ σ)(g ◦ σ) over the unit circle
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with respect to normalized Lebesgue measure m. Hence,

〈f, g〉 =

∫

∂G
fḡdµ,

where µ = mσ−1.
As we have already discussed, to show that σ is a cyclic vector for Cϕ it

suffices to prove the following:

Figure 9: ∂G lies in the region between ∂U and the curve T−1(Γ).

Theorem 5.3 The composition operator Cψ is cyclic on H2(G), with cyclic
vector u(z) = z.

Proof. We proceed as in the proof of Theorem 2.5. In that proof we pulled
the formula Ψ(w) = w + a back to the unit disk to obtain the parabolic
linear-fractional self-map of U :

ψ (z) =
(2− a)z + a

−az + (2 + a)

= γ̄ + ᾱKβ ,

where γ̄ = a−2
a , ᾱ = 4

a(a+2) , β̄ = a
2+a , and Kβ(z) = (1 − β̄z)−1; and we

obtained the formula for ψ n by replacing a with na in these formulas.
Since Ψ maps ∂G into G, it follows that ψ must map ∂G\{1} into G.

Since 1 ∈ ∂G is the (attractive) fixed point of ψ , we have ψ n(z) → 1 for all

z ∈ ∂G. Since the sequence ( ψ n) is uniformly bounded on ∂G we conclude
from all these observations that the sequence ( ψ n ◦ σ) converges to 1 point-
wise on ∂U and is uniformly bounded there. Thus ψ n ◦ σ → 1 in H2(U);
equivalently, ψ n → 1 in H2(G). Just as in the proof of Theorem 2.5 this
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shows that if f ∈ H2(G) is perpendicular to the C ψ -orbit of u, then f must
be orthogonal to the constant functions. Hence, just as before, we see that

0 = 〈f,Kβn〉 (n = 1, 2, 3, . . .),(4)

where βn = na
na+2 , and now (in contrast with the proof of Theorem 2.5) the

inner product is that of H2(G).

Suppose that f is a function in H2(G) satisfying (4); we complete the
proof of the theorem by showing f must be identically equal to zero.

Consider the “K-transform” of f :

F (λ) = 〈f,Kλ〉 =

∫

∂G

f(ζ)

1− λζ̄
dµ(ζ).(5)

The definition of F makes sense as long as 1/λ̄ /∈ ∂G; in particular this is
true for all points λ in M = (S2\Ḡ)∗ (where the “star” denotes reflection
in the unit circle, and Ḡ is the closure of G relative to the Riemann sphere
S2; see Figure 10). In particular, 0 ∈ M because ∞ ∈ S2\Ḡ. Differentiation
under the integral sign shows that F is holomorphic on M .

Figure 10: M = (S2\Ḡ)∗.

We claim that to show f ≡ 0 it suffices to show F ≡ 0 on M . Indeed

if F ≡ 0, then we can differentiate both sides of (5) with respect to λ to
obtain for n = 0, 1, 2, . . . ,

0 = F (n)(λ) = n!

∫

∂G

ζ̄nf(ξ)

(1− λζ̄)n+1
dµ(ζ) (λ ∈ M)

Setting λ = 0 in the preceding equation, we have

0 =

∫

∂G
ζ̄nf(ζ)dµ(ζ) = 〈f, zn〉 (n = 0, 1, 2, . . .).(6)



94 P.S. BOURDON AND J.H. SHAPIRO

Since G is a Jordan domain, Walsh’s theorem guarantees that the set of
polynomials in z is dense in H2(G); hence (6) implies f ≡ 0.

Having established the claim, we now complete the proof of the Theorem

by showing F ≡ 0. For this it suffices to show that F ≡ 0 on the open subset
M0 of M defined below. Note that the curve Γ pictured in Figure 8 lies in
S2\Ḡ. By (3), its reflection Γ∗ in the imaginary axis satisfies

Γ∗(y) = −Γ(y)

= iy + (b/a) log |1 + iy| − (b/a) arg(1 + iy) + C

b
= iy + (b/a) log(1 + iy),

so for a sufficiently large constant C, all the points that lie on and to the
right of the curve

Γ0(y)
def
= iy + (b/a)log(1 + iy) + C

lie in (S2\Ḡ)∗. Hence, the function

ν0(w)
def
= w + (b/a)log(1 + w) + C(7)

maps the right half-plane into a region M0 contained in (S2\Ḡ)∗, as shown

in Figure 11. Let M0 be the region in U that corresponds to M0 (M0 =
T−1(M0)) and let σ0 be the disk analogue of ν0 so that σ0(U) = M0.

Figure 11: (S2\Ḡ)∗ is shaded, and M0 lies to the right of Γ0.

Given the geometry of M0, any sequence converging to ∞ nontangen-
tially in Π must eventually lie inM0; in particular this is true of the sequence
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T (βn) = 1 + na (because Rea > 0). Hence for some positive integer N we
have βn ∈ M0 for all n ≥ N .

We claim that the sequence
(
σ−1

0 (βn)
)∞

n=N
(in U ) converges to 1 non-

tangentially and does not satisfy the Blaschke condition. This is easy to
verify. Note that the sequence (βn)∞n=N converges to 1 nontangentially and
is not Blaschke. Note also that the form of ν0 (7) shows that σ0 is in C1(1)
and σ′0(1) = 1. Hence, (σ0

−1)′(1) = 1 and it follows easily that image of

(βn) under σ0
−1 must also converge nontangentially and fail to satisfy the

Blaschke condition.
Observe that the function F ◦ σ0 defined on U vanishes at each point

σ−1
0 (βn) for n ≥ N (by its definition (5) as the “K-transform” of f , and

the fact that f is perpendicular to each function Kβn). Thus the function

(F ◦ σ0)(σ
′
0)

2 also vanishes at each of these points; we are going to show
that this function lies in the Bergman space L1

a(U ). From this we will
conclude that F ≡ 0, since any Bergman space function vanishing on a non-
Blaschke sequence that converges to a boundary point nontangentially must
vanish identically (see [32]—the point is that a Bergman space function on

U restricts to a Hardy space function on internally tangent subdisks of U ).
For this Bergman space estimate, let A denote 2-dimensional Lebesgue

measure, and compute:

∫

U
|(F ◦ σ0)(σ

′
0)

2| dA =

∫

M0

|F (λ)| dA(λ)

=

∫

M0

∣∣∣∣
∫

∂G

f(ζ) dµ(ζ)

1− λζ̄

∣∣∣∣ dA(λ)

≤
∫

∂G
|f(ζ)|

∫

M0

dA(λ)

|1− λζ̄|
dµ(ζ) .

Now fix ζ ∈ ∂G and consider the inner integral in the last line. Since

|ζ| ≥ 1 and M0 ⊂ U , we know that M0 is contained in the disc B that has
radius 2 and is centered at 1/ζ̄ . Then

∫

M0

dA(λ)

|1− λζ̄ |
≤

∫

M0

dA(λ)

|1/ζ̄ − λ|

≤
∫

B

dA(λ)

|1/ζ̄ − λ|
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=

∫

{|λ|<2}
|λ|−1 dA(λ)

= 4π.

Thus ∫

U
|F ◦ σ0||σ′0|2 dA ≤ 4π‖f‖

H2(G)
,

which completes the proof that (F ◦ σ0)(σ
′
0)

2 ∈ L1
a(U). 2

With this result, our characterization of cyclic phenomena for composi-

tion operators with smooth, regular symbol is complete.



6 Endnotes

In closing, we discuss some additional results, and speculate on further di-
rections suggested by our work.

Orbit Separation and Parabolic Subtype

We observed in Theorem 4.15 that if ϕ is a map of parabolic type, and,
at its Denjoy-Wolff point has C3+ε-smoothness and non-vanishing second
derivative, then the following are equivalent:

(a) ϕ is of nonautomorphic type.

(b) Every ϕ-orbit converges to 1 non-tangentially.

In fact, the result below (which extends Theorem 3.5 of [14], and consid-
erably simplifies its proof) shows that the implication (b)→(a) holds for

arbitrary self-maps of U .

Theorem 6.1 Suppose ϕ is a holomorphic self-map of U of parabolic type,
and that some ϕ-orbit converges non-tangentially to the Denjoy-Wolff point.
Then ϕ is of non-automorphic type.

Proof. Again, we transfer the problem to the right half-plane, where by
the Julia-Carathéodory inequality (4.2), Φ = T ◦ ϕ ◦ T−1 has the form

Φ(w) = w + Γ(w),(1)

with Γ a self-map of Π for which Γ(w)/w → 0 as w → ∞ nontangentially
(see Theorem 4.3).

We are assuming that there exists a point w0 ∈ Π for which the orbit
wn = Φn(w0) converges nontangentially to ∞. This means that

inf
n

Re wn

|wn|
= δ > 0,(2)
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and from (1) above, that

lim
n

Γ(wn)

wn
→ 0.(3)

Substituting wn for w in (1) and then using (2) and (3) we see that

|wn+1 −wn| = o(Re wn) as n →∞.

The rest of the argument proceeds in the same spirit as the proof of Theorem
4.15 (parts (b) and (c)). Fix ε > 0 and recall that the Euclidean dimensions

of ∆(wn, ε), the hyperbolic ε-disc about wn are proportional to Re wn. But
we just saw that the Euclidean distance between wn+1 and wn is o(Re wn),
and these facts guarantee that wn+1 ∈ ∆(wn, ε) for all sufficiently large n.
Since ε is arbitrary, it follows that %(wn, wn+1) → 0. 2

Less Differentiability

We present a class a class of examples that shows how, under less than

C3-differentiability at the Denjoy-Wolff point:

• The converse of Theorem 6.1 fails (recall that we just observed that
this converse holds under C3+ε-differentiability at the Denjoy-Wolff
point).

• The determination of parabolic sub-type by the second derivative fails
(note, however, that by Theorem 4.15 the second derivative does char-

acterize parabolic sub-type for C3+ε maps).

The Examples. For 0 < α < 1, let Φα : Π → Π be defined by

Φα(w) = w + i +
1/α

(w + 1)α
(w ∈ Π).(4)

Let ϕα be the self-map of U corresponding to Φα (ϕα = T−1 ◦ Φα ◦ T ).

Theorem 6.2 Suppose that 0 < α < 1. Then ϕα is univalent self-map of
U satisfying:

(a) ϕα ∈ C2+α(1) with ϕ′′α(1) = i.

(b) ϕα is of parabolic-nonautomorphic type (i.e., no ϕα orbit is separated).

(c) No ϕα orbit converges nontangentially.
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Proof. . To simplify notation we drop the subscript α. Since the derivative
of Φ has positive real part, Φ is univalent on Π; hence, ϕ is univalent on U .
That ϕ ∈ C2+α(1) with ϕ′′(1) = i follows from our earlier work with series

expansions about Denjoy-Wolff points (see the discussion preceding Table
III). That no ϕ-orbit converges nontangentially follows from Lemma 4.5. To
complete the proof, we need only show that no ϕ orbit is separated.

Returning to the right half-plane, let w0 ∈ Π be arbitrary, and for n > 0
let wn = Φn(w0). Observe that

wn = w0 + ni +
n−1∑

j=0

1/α

(wj + 1)α
.(5)

Hence,

Re wn ≥ Re w0 + (1/α)
n−1∑

j=0

cos(απ/2)

|wj + 1|α
.(6)

Just as in the proof of Lemma 4.5, we have

wn

n
→ i as n →∞.(7)

Using (6) and (7), we find

Re wn > C
n−1∑

j=0

1

|wj|α

> C
n−1∑

j=0

1

jα

→ ∞ as n →∞.

Thus the real part the the orbit of w0 is unbounded, but as we have
already observed this implies the orbit is not separated. 2

We remark that it is possible to show that the map ϕ1 is of automorphism
type (all orbits nonseparated), which suggests that it may be possible to
replace our C3+ε hypothesis in Theorem 4.15 with just “C3”.

Further Directions

Let us agree that “map” means “univalent self-map of U”. First, there is the
question of cyclicity for composition operators induced by maps of dilation
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type (i.e., maps with a fixed point in U ). Our results on this topic (except
those concerning the trivial elliptic case) may be summarized as follows:

• If ‖ϕn‖∞ < 1 for some n ≥ 1, then Cϕ is cyclic if and only if the
polynomials in ϕ are dense in H2 (Corollary 1.6 and Corollary 3.7).

• An example: Each univalent map ϕ of the unit disc onto the lens-

shaped region of Figure 3 (section 3) induces a cyclic composition
operator (Theorem 3.8).

• Each linear-fractional map with a fixed point in U and one on ∂U

induces a noncyclic composition operator (Theorem 2.2, part (b)).

There is an intriguing coincidence here: in the first two cases, the composi-
tion operators are all compact, while in the third, they are not compact (see
[48, Chapters 2,3], for example). Is there a connection between cyclicity and

compactness for composition operators induced by maps of dilation type?
The question that pervades all of our work on maps of hyperbolic and

parabolic type (Denjoy-Wolff point on ∂U) is this: Does the cyclic behavior
of Cϕ match that of its “linear-fractional role model”? We summarize this
question in Table IV, which may be viewed as the most general version of

Table II of the Introduction.

Table IV

Conjectured cyclic behavior of Cϕ (Denjoy-Wolff point of ϕ on ∂U)

Hypothesis
on ϕ′(p)

Type of ϕ
(Definition 0.3)

Cyclicity
of Cϕ

< 1 Hyperbolic Hypercyclic ?

=1
Parabolic

automorphism
Hypercyclic?

=1
Parabolic

non-automorphism
Cyclic?

Not Hypercyclic?

To settle this issue using our program requires a deeper understanding
of the nature of the intertwining maps that occur in the Linear-Fractional
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Model Theorem (Theorem 0.4). Much remains to be done, even if smooth-
ness is assumed at the Denjoy-Wolff point. For example, we know that the
third row of Table IV is true for regular maps ϕ with C3+ε-smoothness at

the Denjoy-Wolff point, and nonzero second derivative there (Theorems 4.6
and 5.2). However we do not know if the cyclicity of Cϕ persists when ϕ′′ is
allowed to vanish at the Denjoy-Wolff point.

In the direction of relaxing our smoothness hypotheses at the Denjoy-
Wolff point, a first step might be to analyze the cyclic properties of specific

examples such as the maps ϕα introduced above.
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composition operators, Indiana Univ. Math. J. 33 (1984), 305–318.

[17] C. C. Cowen, Linear fractional composition operators on H2, Integral
Eqns. Op. Th. 11 (1988), 151–160.

[18] C. C. Cowen and T. L. Kriete III, Subnormality and composition op-
erators on H2, J. Funct. Anal. 81 (1988), 298-319.

[19] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces
of Analytic Functions, CRC Press, Boca Raton, 1995.

[20] J. A. Deddens, Analytic Toeplitz and composition operators, Canadian
J. Math. 24 (1972), 859–865.
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