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Introduction. This paper deals mainly with non-locally convex F-spaces,
and contains variations on the following theme: every closed, bounded, conver
subset of £ (0 < p < 1) s compact. More generally (Theorem 1), if F is an
F-space with an absolute basis (e,), and the set {te, : { > 0} is unbounded in
the E-metric for each n, then the following three statements are equivalent:

{a) 1f {{.} is 2 block basis for (e,) which is bounded away from zero, then
the series Y t,e, diverges for some sequence (¢,) in £.

{b) No infinite dimensional subspace of E is loeally eonvex.

{c) Every elosed, metrically bounded, convex subset of K is compact.

A related result (Theorem 2) which depends only on the topology of E,
and not on the particular metric that produces it, is the following: if £ has a
boundedly complete basis satisfying condition (a) above, then every closed,
(topologically) bounded, convex subset of F is compact.

We apply these results to some sequence spaces related to the {* spaces
(0 < p < 1). Specifically we consider the spaces { Yosp, £ (0 = po < 1); the
spaces {* of complex sequences  with

©.1) ]l = 22 (fm]) < =,

where ¢ is a continuous, unbounded, subadditive, inereasing funetion on {0, =},
with ¢{t) = 0iff ¢ = 0; and the spaces {(p,) of complex sequences f with

{0.2) Wl = 2P < =,

where (p,) is a sequence of numbers with 0 < p, = 1. Using Theorem 1 we
show that whenever the function t "e{f) is monoctone decreasing on (0, )
for some 0 < p < 1, then every closed, norm bounded, convex subset of £°
is compact; and that the same conclusion holds for £(p,) iff lim sup p, < L
We show that if lim p, = 1, then every infinite dimensional subspace of £(p.,)

has a further one isomorphie to a dense subspace of £'. This is of interest because
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£(p,) is not locally convex when p, tends rather slowly to 1; which yields an
example of a non-locally convex F-space with the property that every infinite
dimensional subspace contains a further infinite dimensional locally convex
subspace.

We use Theorem 2 to show that every closed, bounded, convex subset of
{\osr. £ (0 = py < 1) is compact. In particular, no infinite dimensional subspace
of (Vps5. £ is isomorphic to a normed space. We show that, in spite of this,
every infinite dimensional subspace contains a further infinite dimensional
locally convex subspace.

This last result, along with the corresponding one for £(p,), depends on the
well known selection theorem of Bessaga and Pelezyfski [1, Theorem 3], set
in the context of locally pseudo-convex spaces (Theorem B). In fact, throughout
the paper we use standard techniques related to this theorem; in particular,
the “sliding hump’’ argument used in its proof provides the crucial step (Lemma
3) in the proofs of Theorems 1 and 2.

The body of the paper is organized into four sections, the first of which
contains background material. The main theorems are stated and applied in
the second section, and proved in the third. In the last section we comment on
some related topics and open problems.

This investigation was motivated by the following result of W. J. Stiles
[24, Theorem 4}: every continuous linear mapping of a normed space into £
(0 < p < 1) 4s compact. We wish to thank Professor Stiles for providing us
with a preprint of his paper.

1. Background. Let E be a real or compiex linear space. By an F-norm on £
we mean a non-negative, subadditive functional ||-]| with the following ad-
ditional properties:

(2) |lel]| = 0iff e = 0.

(b) lite]] = |le]] for all scalars ¢ with |tf = 1.
(¢) lim, |le/n|| = O for each ein .

(d) the metric die, f} = lle — f]| iz eomplete.

We remark that this definition is slightly more restrietive than the usual one
(cf. [3, p. 521). Two F-norms on F are equivalent if they induce the same topology.
We call a linear space equipped with an F-norm an F-space. Every F-space is
a complete, metrizable, linear topological space, and conversely every such
space can be regarded as an F-space [9, p. 51, Problem Cl. Note, however, that
in this paper we regard different (but equivalent) F-norms on F as defining
different (but isomorphie) F-gpaces.

Let E be an F-space and ||-]] its Fenorm. A subset B of E is norm bounded
if sup {Jifll: f in B} < «, and (topologically) bounded if for each neighborhood
U of zero there exists a positive number { such that tB C U. Every bounded
set is norm bounded, but the converse may fail: for example, the formula

{t]l = min (¢, 1)  { real)

(1.1)
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defined an F-norm on the real line for which every subset is norm bounded.

If {e,} is a basis for an F-space F, then we denote its coordinate functionals

by (&), so each element f in F has a unique expansion f = > el{f)e. , where

the series converges in the topology of E. Tt is well known that the coordinate

. functionals are continuous [11, Chapter IX, Section 5, Theorem 2]; in particular
an F-space with a basis has enough continuous linear funectionals to separate

points. The basis (e,) is called regular if inf |je.|| > 0 [8, Definition 1.1]; absolute if

(1.2) = 22 lel(Dedl|

for each f in E; and boundedly complele if the series 2 t.f. {{. sealars) converges
whenever its partial sums form a bounded set (cf. [11, Chapter III] for Banach
spaces). A sequence (f,) is basic if it is a basis for its closed linear span, and
block basic for (e,) (ef. [11, Chapter IV, Section 3, Definition 5]) if

(1.3) fe = stneﬂ (k =12 ):
vyl

where I, = {m -+ 1, -+, Mear ), () 18 & strictly increasing sequence of positive
integers, and (s,) is a scalar sequence. It is easy to see that every block basic
sequence is basic. A basie sequenee is regular (resp. absolule, boundedly complete)
if it is a regular (resp. absolute, boundedly complete) basis for its closed linear
span. We denote the linear span of a sequence (fi) by sp (fu), and its closure
by sp (fi).

Two basic sequences (f,) and (gy) are called equivalent if for (4) a scalar
sequence,

Z tfr econverges iff Z L, converges,

It follows from the Uniform Boundedness Principle (3, I1.1.11] that (fi) and
(gx) are equivalent i there is an isomorphism of gﬁ (f.) onto sp (g.) taking f,
to g» (k = 1,2, -+-)}. In this paper, isomorphism always means linear homeo-
morphism.

The following material oceurs in the applications, but is needed for neither
the statements nor the proofs of Theorems 1 and 2. A non-negative, subadditive
functional S on a linear space £ is called a p-seminorm (0 < p = 1) if S{le) =
iti? S(e) for all scalars t and vectors ¢; and a p-norm if, in addition, ¢ = 0 when-
ever S(e) = 0. A linear topological space E is called locally bounded if there
is 8 bounded neighborhood of the origin. It is well known [17] that E is locally
bounded iff its topology is induced by a p-norm. If the topology of ¥ is induced

. by a family (8,) of p,-seminorms, then F is ealled locally pseudo-convexr [25,
Section 1} (or semiconver [15, Definitions 1.4]). In this case £ is metrizable
HT (S.) ean be taken to be countable.

2. Main results and applications.
Theorem 1. Let E be an F-space with an absolule basts (e,) such that

1) sup {jitea]| £ >0} = @ (n=1,2 --°).
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Then ihe following are equivalent:

() If () is a regular block basis for (e.), then 3o ltefel] = o for some (L)
in {'.

(b) No infinite dimensional subspace of E s locally convex.

(¢) Every closed, norm bounded, convex subset of E vs compact.

Note that condition {2.1) is essential: if it {ails for some integer N, then the
one dimensional subspace spanned by the veetor ey is closed, norm bounded,
and convex, but not compact.

Theorem 1 depends entirely on the norm of E. The next result depends only
on the topology.

Theorem 2. Let E be an F-space with a boundedly complete basis (e.). Suppose
that for each regular block basis (fi) for (e,) the series 3" tf. diverges for some
(t) in £. Then every closed, bounded, convex subsel of E is compact.

We prove these results in the next section, and devote the rest of this one
to applications.

The spaces £°. These are special cases of spaces previously studied by Mazur
and Orliez [12], and Rolewicz [18]. Tt is not difficult to see that £ is an F-space
in the norm {0.1).

Corollary 1. Suppose the funclion {(t) 1s monolone decreasing on {0, =)
for some 0 < p < 1. Then every closed, norm bounded, convex subsct of £¥ ig compact.

Proof. Let e, denote the n® standard unit veclor: e.(m) = Omn (Kronecker
delta). Then (e,) is an absolute basis in £ and satisfies (2.1) since ¢ is un-
bounded. Thus we need only verify (a) of Theorem 1 for E = {°. Let {f.) be
a regular block basis for (e,), given in terms of (¢,) by (1.3). Letd = inf |if.l] > 0.
Since "¢ (t) is decreasing on (0, =) we have ¢(af) = p(a) whenever a > 0
and 0 £ ¢t < 1. Choose a non-negative scalar sequence (f,) with >t = land
Z f£ = o, Then for each &,

Hufll 2 2 te(ls.l) = di2

nelyp

s0 2 |ltfel] = .
If () = ¢, then £ = £, and a subset is bounded iff it i1s norm bounded.

Corollary 2. Buery closed, bounded, convex subset of ££ (0 < p < 1) is compact.

The spaces £(p.) (0 < p. = 1). Equation (0.2) defines an F-norm on £(p.),
for (p.) a sequence with 0 < p, £ 1. These spaces have been studied by various
authors (2], [10], [14], [19], 23]. Of particular interest to us is the following
result of 8. Simons [23, Theorems 3 and 5].

Theorem A. The jollowing ave equivalent:
(a) p.) = £.
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(b) £(p.) 18 locally conver.
(c) D N**V < w for some inleger N > 1.

This result and Theorem 1 yield the following:

Corollary 3. The following stalements are equivalent:

{a) limsup p, < 1

(b)Y No infinite dimensional subspace of £(p.) ts locally convez.
(¢} Every closed, norm bounded, convex subset of £(p.) is compact.

Proof. The standard unit vectors {e,) defined in the proof of Corollary 1
form an absolute basis for {(p,) which satisfies (2.1). Thus we need only show
that statement (a) of Theorem 1 holds for £ = £(p,) iff im sup p. < L.

Suppose lim sup p, < 1. Then for some N > 0 we have p = sup {p.:n >
N} < 1. Suppose (f) is a regular block basis for {e.) satisfying (1.3). Then
d = inf ||f]| > 0, so choosing (f,) as in the proof of Corollary 1 and using the
inequality

el 2 167 1] 2 d 6]

we obtain D ||tfi|l = =, so (a) of Theorem 1 holds.

Conversely, if lim sup p. = 1, then by Theorem A there is a sequence (n,)
such that £(p,,) = £ Let i = €. (k = 1,2, ---}. Then (f,) is a regular block
basis for (e,), and 2. |[|tfll < « whenever (&) £ £', so (a) of Theorem 1 fails.

Our next result requires the selection theorem of Bessaga and Pelezyfiski
{1, Theorems 3 and 3'] in the context of locally bounded spaces. For later use
we state it in a more general setting.

Theorem B. Let E be a locally pseudo-convex F-space with a basis (e,).
Suppose (g,) s a sequence in E with inf {jg,}] > 0, and

limeL{g.) = 0 (m=12 ---).

Then ithere exists a basic subsequence (g,.) equivalent lo a block basis for (e.).

A proof of this theorem is sketched in Section 3. The result was first proved
in [1] for Banach spaces, and extensions to locally bounded and loeally convex
F-spaces were stated without proof. Kalton [8, Theorem 4.3} gives a proof for
locally convex F-spaces, and in seetion 3 this proof is carried over almost ver-
batim to the locally pseudo-convex case.

Theorem 3. If im p, = 1, then every infinite dimensional subspace of {{p.)
contains a further one isomorphic to a dense subspace of {'.

Proof, Suppose lim p, = 1. Then it is easy to see that £(p,) is locally bounded
(in fact, Simons shows that £(p,) is locally bounded iff inf p, > 0 {23, Theorem 6}),
so Theorem B applies. Suppose ¢ is an infinite dimensional subspace of £(p,).
Then there exists a sequence (g,) in G such that for each n,

gl =0 (k=12 -+, n—1
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while {ig.]i = 1 (ef. [1, p. 157, Corollary 2]). We are going to show that {g,)
has s basic subsequence {g,) equivalent to the standard unit veetor basis
of £. ¥rom this it follows that there is an isomorphism of sp (g.,) onto £ taking
Ony Onto & (b = 1, 2, ---). Thus sp {g,.) is a subspace of & isomorphic to a
dense subspace of £', which completes the proof.

Using Theorem B we find that some subsequence of (g,) is equivalent to a
block basis {f;) for {e,), and since ||g.|| = 1 for all n, we must have

(2.2) 0<m=inljlfi]| Esup llfi]| = M < =,

It is enough to show that (f.) has a subsequence equivalent to the standard
basis for £'. Suppose f, has the form (1.3}, and let

{2.3) ry = Inf {p.nel,] (k=12 ).
Replacing (f,) by a suitable subsequence, we may assume that
(24) Z 2rk/(rkvi) < o,

H

We claim that 2 tf; converges in E iff (1,) ¢ £'. Suppose 2, 4], converges.
Then the sequence (4,f,) tends to zero in E, and since (f,) is bounded away from
zero we must have lim {, = 0. In particular, we may assame that Ji;] = 1 for
all k. A ecomputation like the one used to prove Corollary 3 shows that

it = 2 il 2 20 16l 116l 2 m 20 s

hence () £ £'.
Conversely, if 2, |t| < 1, then 2 |4 < = by Theorem A and (2.4). Since
ltil = 1, we have from (2.3):

olhdl = 2wt = M 2™ < o,

80 the series Z If, converges in K. Thus (f.) is equivalent to the standard
unit vector basis of £,

If (p.) converges to 1 too rapidly, then according to Theorem A, £(p,) = £,
and Theorem 3 is just a special ease of {1, Corollary 5, p. 157]. However when
{p.) tends to 1 and fails to satisfly (¢) of Theorem A, then & new phenomenon
OCOUrE:

Corollary 4. There exist F-spaces which are not locally convex, but have the
property that every infinite dimensional subspace contuins a further infinite dimen-
stonal locally conver subspace.

This situation occurs again in the next class of examples.

The spaces [ Yool (0 = pa < 1). Fix 0 = po < 1, and let £ = MNeonit™s
taken in the natural upper bound topology. Thus E is a complete, metrizable,
linear topological space (a sequence converges to zero in E iff it converges to
zero in & for all p > po), and it is easy 1o see that I is peither locally convex
nor locally bounded. However, unlike the previous examples, F has no “natural”
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F-norm. For example, i 1 = 2. | po, and |[f|l. = 2.« [f(k)["", then the equation

il = 32 min (il , D

defines an F-norm on E which induces the correct topology, but makes every
subset norm bounded. In fact we will shortly see that F contains infinite dimen-
sional locally convex subspaces, so no F-norm on X can render Theorem 1
applicable. However the topological result, Theorem 2, applies readily.

Corollary 5. Every closed, bounded, conver subset of { Yoo’ (0 = po < 1)
is compact.

Proof. A subset of E = [ \,5,.£ is bounded iff it is bounded in £ for each
p > po . From this it follows easily that the standard basis vectors (e,) form a
boundedly complete basis for E. Suppose (f;) is a regular block basis for (e,).
Then (f.) is bounded away from 0 in £ for some p, < p < 1. Choosing (%)
in £ with 3 |, = =, and performing a simple calculation, we see that > b
diverges in £; hence in . Thus the basis (e.) satisfies the hypothesis of Theorem 2.

The last result shows that [ ),»,.£° contains no infinite dimensional subspace
isomorphie to a normed space when 0 £ p, < 1. By analogy with & (0 < p < 1)
one might guess that no infinite dimensional subspace could be locally convex,
but this is not the case.

Theorem 4. FEvery infinite dimensional subspace of MNond (05 pp < 1)
contains a further infinite dimensional subspace which is locally convex.

Proof. Suppose @ is an infinite dimensional subspace of £ = MNos» 7. Then
as in the proof of Theorem 3 there is a sequence (g:) in G which converges to
zero coordinatewise, but not in E. Since F is a locally pseudo-convex F-space,
Theorem B applies, and by passing to a suitable subsequence we may assume
that (g.) is equivalent to a regular block basis (f.) for (e.).

Let 7 be the resulting isomorphism of sp (f,) onto sp (g:) taking f, to gx (k =
1,2, ---). We are going to show that there is a block basis (h;} for (f;) such
that sp (h;) is locally convex. Suppose for the moment that this has been done.
Then (Th;) is a block basis for (g,) equivalent to (k;) and contained in G. Thus
sp (Th;) is a subspace of G isomorphie to sp {k;); hence infinite dimensional
and locally convex; which completes the proof.

It remains to find (k). For 0 < p £ 1, let ||, = 2. [{(n)]. Normalize (f.)
so that [If,]l; = 1. Let {I,) be a sequence of consecutive disjoint blocks of positive
integers, with 2’ elements in I, (j = 1,2, -+ ). Let

{25.) h; = 27 ij (] = 1,2, - '))

kel

so (h;) is block basic for {f,) and ||h;]l; = 1 for each j; and let H = sp (h;). We
claim that H 1s locally convex.
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To see this, let W be the space of sequences ({;) such that
2.6) St = sup (] [I][,” < =
i

for p, < p £ 1, taken in the topology induced by the semi-norms {S, : po <
p £ 1}. Clearly W is locally convex. Since for each fixed j, the numbers {|h;[}}"”
increase as p decreases, the same is true for S,{¢;) for each sequence (i;); and
it follows readily that W is an F-space.

We complete the proof by showing that H is isomorphic to W. Suppose h e H,

g0 h = Z t;h; , where
Rl = 22 67 IRl < = (2o < p = D).
Let Th = {(i;). The last equation shows that
S;(Th) = {Ibl], (po < p = 1),

so T is a one-to-one continucus linear map taking H into W. It is enough to
show that T maps H onto W; the continuity of 77* then follows from the Interior
Mapping Prineiple [3. II. 2.1].

Suppose (t;) ¢ W. Fix p, < p £ 1, and choose g with p, < ¢ < p. Since
izl = 1, every coordinate of fris <1, s0 ||full, = lifille 6 = 1,2, ---). From
this and (2.5) we have for each j:

@8 sl = 27 22 lfelle = 2777 (IRl -

Now ;1" Ik, = S°(t), and [|All, = ||JAlls = 1 for all j, so {t,;) is bounded.
Thus we may assume without loss of generality that |1,] = 1 for all j. Combining
this with {(2.8) we get

L Bl = 27979 (L]0 Il = Si@)277™7

(G = 1,2 --); hence 3 [t;[" |lhsll, < «. Thus the series ), t;h; converges
to an element k of H, and Th = {i,); so T maps H onto W.

We remark that in the last part of the proof we are really showing that the
space of sequences (f;) such that
2Pl <= @<p=D,

I

in the topology induced by the above p-seminorms, is locally convex. Similar
results have already been obtained by Fenske and Schock (see [7, Section 3.2,
P. 344, Beispiel 11).

3. Proofs of Theorems 1 and 2. Before proving these theorems we require
some preliminary resulis. If E is an F-space with a basis (e,), then we call the
Ioeally convex topology induced on E by the seminorms

f— !8,’1{_',)1 (?’L = 1,2, - )
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the topology of coordinatewise convergence (with respect to {e,)); and denote it
by «, or «(e,) if we wish to emphasize the basis. Clearly « is Hausdorff, metrizable,
and weaker than the original topology of E. We call a x-convergent sequence
coordinatewise convergend, since k-lim f, = 0 if lim, ¢.(f,) = O for each m. Em-
bedding the space (E, x) into a countable product of scalar fields, we obtain
the following useful fact: if (f,) is a x-bounded sequence in E, then there 1s a
subsequence {f,,) such that

(3.1) lim el (f,,) = t, exists for each m,
k

Lemma 1. Let E be an F-space with a basis {e.}.

(a) If (e.) is absolufe and obeys condition (2.1), then every norm bounded subsel
of E is relatively x-compact.

(b) The basis (e,) 1s boundedly complete iff every bounded subsel of E is relatively
k-compact.

Proof. (a): Suppose {(e,) is absolute and obeys (2.1). Let B be a norm bounded
subset, of E. It follows from {1.2) and (2.1) that B is x-bounded. 8ince « is metriz-
able, it is enough to show that every sequence in B has a coordinatewise con-
vergent subsequence. If (f,) is a sequence in B, then, from the remarks preceding
the statement of Lemma 1, there is a subsequenee (f,,) satisfying (3.1). The
continuity of the F-norm yields

3 llteall

i

hkm ; i 13;(fni}emi l

2 en(fuen

1

= Hm
s sup [l

for N = 1,2, -+, soit follows that ) {{t.e.|| < <; henee the series 3 bl
converges to an element [ of E. Since e/(f) = (. for each m, we see that (f,,)
converges coordinatewise to f, which completes the proof of (a).

(b): Suppose (e,) is boundedly complete. Let B be a bounded subset of £.
Then B is bounded in the weaker topology &, so if () is a seguence in B, then
there is a subsequence (f,,) satisfying (3.1). We claim that the partial sums of
the series Z t.e,. form a bounded set. It is enough to show that the set

N
: B, = {Zei(f)eﬂ:ffB;N =12 }
Bl
is bounded, because the partial sums in question belong to its closure by (3.1);
and the closure of a bounded set is bounded.
To see that B, is bounded, we first note that F ean be equivalently renormed
so that
|
(3.2) Wl = sup |

N

12 er(flen
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for each { in B 111, Chapter 1X, Section 5, proof of Theorem 2]. Suppose ¢ > 0
is given, Bince B is bounded,
sup {|[tf]l : f in B} <

for some ¢ > 0; hence by {3.2),

N |

> elthe.

1

t i e.{{)ex

for each { in B and each N, so B, is bounded.

Thus the series Z {6 has bounded partial sums. It therefore converges
to an element f in E, since (e,) is boundedly complete. Moreover, e.(f) = .
for each m, so (f,,) eonverges coordinatewise to f; hence B is relatively x-compaet.

Conversely, suppose every bounded subset of E is relatively x-compact.
Then whenever the partial sums of the series > L6, form a bounded sequence,
they must have a subsequence which converges eoordinatewise to some f in B,
In particular, e/(f) = t, for each n. But f = > e!(f)e,. , where the series con-
verges in I; hence Z t.en converges in F. Thus the basis (e.) 18 boundedly
complete.

s [l <e

Lemma 2. Let E be an F-space with a basts (e.).
(a) If (e,) 1s absolute, then so is any block basis.
(b) If {e.) 1s boundedly complete, then so is any block basis.’

Proof. Part (a) is immediate; indeed it has already been used several times
in Section 2. To prove (b), suppose {¢.) is boundedly complete, and let (f;)
be a block basis for {e,). Set F = sp (fi), and suppose B is a bounded subset
of F. Then B is bounded in E; bence relatively x(e,}-compact by Lemma 1(b).
But «(f;) is weaker than the restriction to F of «(e.), and F is x(e,)-closed in E.
Tt follows easily from this that B is relatively «(fy)-compact, so (fi} is boundedly
complete by Lemma 1(b).

The following well known “sliding hump” result is crucial to the proofs of
Theorems 1 and 2.

Lemme 3. Let E be an F-space with a basis (e,), and suppose {g,) ts a sequence
in E which converges to zero coordinatewise. Then for each postiive sequence (&)
there exisls a subsequence {g.,) and a block basis (f,) for (e,) such that |ign, — fil] < &
(k=1,2 -]

Proof. Choose a positive integer p, such that

f: eig a)eiil

<&,
P2l
andletn, = land f, = 2 o, ei(p)e: . Then ||g., — fil] < & . Choose ny > n,
such that
P
i Z e:(gﬂa eql < 52/2:
=3
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and choose p, > p, such that

@

1|22 ellgaes

] Patl

< e2/2.

Let f, = 220, edgn)e; , 50 |f: — ga,]] < & ; and continue in this manner.
Before proving Theorem 1, we record an elementary fact about F-norms.

Lemma 4. Suppose |i-]| is an F-norm on a linear space E. Then lite|| =
1| |lell/2 forallen E, 0 £ }t] £ 1.

Proof. The inequality is trivial for [¢| = 0, 1. For each positive integer n
we have |[n"%el] 2 =" ||e|| by subadditivity. If 0 < |t| < 1, then (n + 1)7" =
lt| < n™" for some positive integer n, so using the above inequality and (1.1b)
we get

el 2 HHn + V7%l = (v + D7 el 2 ([t1/2) Hell.

Proof of Theorem 1. (c) = (b): Suppose {(¢) holds and F is a subspace of K
which is locally convex in the relative topology. Then the neighborhood
{f £ F: |lfll < 1} contains a closed, convex neighborhood of zero, which must,
by (c), be compact. Thus F must be finite dimensional {9, Theorem 7.8, p. 62].

(b) = (a): Suppose (a) {ails, so there is a regular block basis (f,) such that

&Lif» converges for each sequence () in £. We claim that (f.) is equivalent
to the standard unit vector basis of {'. Suppose (&) is a scalar sequence, and
3 t,f, converges in E. Then tf, — 0in E, and since d = inf ||fi}] > 0 we must
have t, — 0. Thus we may assume without loss of generality that [t,] = 1 for
all k. From Lemmas 2 and 4 we have

I = o 1l 2 (/2 220 16l iRl 2 (d/2) 22 |ul,

so (£} € ££. Thus (f,) is equivalent to the standard basis for £'; so (b) also fails.
(a) = (¢): Suppose (a) holds and B is a closed, norm bounded, convex subset
of E. If B is not compact, then it contains a sequence (h:) having no convergent
subsequence. Using Lemma 1(a) and passing to a subsequence we may assume
that (k) converges coordinatewise to some element h in E; hence the vectors
gy = by — h{k = 1,2, ---) form a sequence in B — & which eonverges to zero
. coordinatewise, but has no norm convergent subsequence. In particular, d =
inf |lge]| > 0. Using Lemma 3 and extracting another subsequence, we obtain
a block basis (f,) for {e,) such that

(3.3) e — @l < d/28 (k=1,2,--).
In particular, inf ||fi] > d/2, so {f) is regular; and it follows from (a) that

there is a sequence (%) in £ such that Y |jtf:]| = . We see from (1.1b) that
{t,) can be chosen to be non-negative; moreover it can be normalized so that
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E By = 1. Thus 0 £ {, = 1forailk;s0

N [ N
AT.‘.: LG |§1: Lufx

I
2

Z Llfy — gi)

1

N

SD WA S PAl

v

; Hikka - d

for N = 1,2, -+ -, where the second inequality follows from (1.1b), the triangle
ineguality, and the fact that {f.) is an absolute basie sequence (Lemma 2a,
Section 3). Thus the eonvex hull of (g,) is unbounded in norm, so the same is
true of the convex set B — f which contains it. But this eontradiets the norm
boundedness of B, so B must be compact.

This proof shows, in addition, that conditions (a), (b}, and (¢} in the statement
of Theorem 1 are also equivalent to:
(b") No infinite dimensional subspace of E is isomorphic to £,

Proof of Theorem 2. Suppose E is an F-space with a boundedly complete
basis (e,) such that for every regular block basis (f.) for (e,) the series 3 4,1,
diverges for some () in €. As in the proof of Theorem 1, it is enough to show
that every bounded sequence with no convergent subsequence has unbounded
convex hull. Using Lemma 1Ib, translating, and passing to a subsequence, we
see that it suffices to show that the convex hull of every sequence which con-
verges 1o zero coordinatewise, but not in norm, is unbounded. So suppose (g.)
converges coordinatewise to zero, but d = inf |lg.]] > 0. As before, using Lemma
3 and passing to a subsequenee, we find a block basis (f,) for (e,) satisfying
{3.3), and a sequence (f,) in £ such that 2 #f, diverges. Examining real and
imaginary parts of (1), then positive and negative subsequences of these, we
see that (.} can be chosen 0 be non-negative. Moreover it can be normalized
so that ¥ 4, = 1. Since (£,) is boundedly complete (Lemma 2) the partial sums
of the series Z tfx form an unbounded set, so there exists an e > 0 and a strictly
increasing sequence (K ;) of positive integers such that

E; j
i 2 b
k=1

We are going to use (3.3) and (3.4) to show that there is a sequence (k;)
of convex combinations of (g.) such that inf [[s7'%;|| > 0; hence the convex
hull of {g,) is unbounded. Choose a positive integer p such that

3.4)

>e  (G=1,2 ).

-]

(3.5) Z Hgk - fk“ < &/4,

k=g

and choose ¢ > p so that whenever § > ¢, we have
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(3.6) ﬁq Z tkfkl < /2,

k=1
and K; > p. Then it follows from (3.4), (3.6), and (1.1b) that whenever j > g
we have

F:%
it 2 b

k=15

> e/2,

which, along with (3.5) yields

| K | ; Ki K )
! i’ ; b l = ’jﬁl > b l - Hjﬂ 2 bl — !Jk)i

k=p i k=p

N Al

= /2 — /4 = ¢/4.

Let a; = Zf,i?, s ,500 < a < 1, and let

]
=o' 2o (=120
k=p

Then each k; belongs to the convex hull of (g:), so from the last inequality
and (1.1b) we bave inf ||j7"%,}] Z /4, which completes the proof.

We conclude this section with a proof of Theorem B, closely following Kalton
[8, Proposition 4.1 and Theorem 4.3]. We require the following resuit.

Stability Theorem |8, Proposition 4.1). Let E be a locally pseudo-convex
F-space, with (S, : n 2 0) a sequence of p-seminorms (0 < p. = 1) nducing
its topology. Suppose (fi) 1s a basic sequence in E with coordinale funclionals
(f1) defined onsp (f.), and suppose thal

(3.7) sup i = See)

for all e in sp (fu). Let (g:) be a sequence tn E with

(3.9 S S — ) =K< ® (2 0),

k=i
and Ko < 1. Then (g.) s basic and equivalent to (fi).

With the exception of a few exponents of the form p./po , the proof is identical
with that of [8, Prop. 4.1}, and we omit it.

Proof of Theorem B (cf. {8, Theorem 4.3]). We are assuming that (g.) con-
verges to zero coordinatewise, and that inf {lg. > 0. Let (S, :n 2 1) be a
sequence of p,-seminorms inducing the topology of E. Recall that E has an
F-norm obeying (3.2). Using this and the fact that (g.) is bounded away from
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zero, we ean arrange that

{39} ilalf 81(911} =g 0,
and
(3.10) Siley = sup Sl( 2. ei(e)en)

for all ¢ in E. For we can clearly take S, to satisfy (3.9). If it does not already
satisfy (3.10), then denote the right hand side of (3.10) by 8{¢). Clearly § is
a pr-seminorm on E, and § = &, ; in particular, S satisfies (3.9). We claim
that S is continuous on E. It is enough to show continuity at the origin. Given
¢ > 0, choose 3 > 0 such that S;(e) < ¢ whenever [le]| < & (by the continuity
of 8, on E). Tt follows from (3.2) that whenever ||e|| < &, then || 2.7 €/(e)e.]| < &
for all N, hence

S,(ﬁ:e;(e)eﬂ) < e (N =1,2, ),

and therefore S(¢) = e This proves the continuity of S. Renaming S as S8,
we see that (S, : n = 1) is still a sequence of p.-seminorms which induces the
topology of E, and now S, satisfies (3.9) and (3.10}.

Now the seminorms S, are all continuous, so it follows from Lemma 3 that
there exists a subsequence {g,,) and a block basis (fi) for (e.) such that
(8.1 max 8¢ — ) < @ (k=12 --);

1898k '

hence (3.8) is satisfied (with g,, instead of gi). Letting (jf) be the coordinate
functionals for (f,), and using (3.10) and the argument in {8, Theorem 4.3],
we find that for each ¢ in sp(f.),

sup [fi{e)” = (4/€)8:(e).

Let po = p, and S, = (4/¢€)8, . Then S, is a continuous pg-seminorm on £
satisfying (3.7); and

K, = g: Solfus =~ @) S 5.

Thus, with respect to the seminorms (S, : n Z 0), the sequences (fi) and (gn.)
satisfy the hypotheses of the stability theorem, so (¢.,) 18 basic and equivalent
to (f;;)

4, Further remarks and open problems.

Completely non-convex spaces. We call a linear topological space complelely
non-convez if it has no infinite dimensional locally convex subspace. It follows
from the results of Section 2 that the spaces £ (0 < p < 1), £° with {"e(f)
decreasing for some 0 < p < 1, and £(p,) with lim sup p, < 1 are all completely
non-convex; while Yoo (0 £ ps < 1) and é(p,) with lim sup p, = 1 are not.
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We call a linear topological space r-conver (0 < r < 1) if its topology is
induced by a family of r-seminorms [10, p. 104 and 106]. Note that an r-convex
space is also p-convex for each 0 < p < 7} for if 8 is ap r-seminorm,
and 0 < p = r, then " is a p-seminorm.

The type t(E) of a linear topological space £ is the supremum of the numbers
r such that E is r-convex [22, p. 178]. It is known that {({") = p, and more
generally that t{{(p.)) = Lim inf p, {10, satz 4, 5]. In particular, whenever p,
tends to 1 slowly enough, then it follows from Theorem A that £(p,) is not
locally econvesx, but has type 1. It is not difficult to see that H{f Vossf) = Do
(0 = po < 1), and #£?) £ pif 27e(z) is decreasing (0 < p < 1).

Question 1. Suppose t{({*) < 1. Is £* completely non-convex? ‘What happens
when 1(£*) = 17

We will see shortly that the Hardy spaces H” (0 < p < 1) of functions f
analytic in the open unit disc with

27
4.1 {ifl] = sup [fre') " dl < =
Osr<l v 0
are locally bounded F-spaces of type p which, while not completely non-convex
themselves, have closed subspaces which are completely non-convex. These
examples suggest the following question:

Question 2. Does every locally bounded F-space of type <1 have a com-
pletely non-convex closed subspace?

Note that the spaces [ Yoss.f” (0 = po < 1) have type <1, but are not locally
bounded; while the spaces £(p,) {(lim p, = 1) are locally bounded, but have
type 1. By Theorems 3 and 4, neither of these spaees has a completely non-
convex subspace.

The Hardy spoces H* (0 < p < I1). With the norm {4.1} these spaces are
clearly locally bounded, and are known to be F-spaces [4, p. 37, Corollary 2]
of type p [10, Satz 3]. The next result, suggested to us by Allen Shields, shows
that they contain completely non-convex closed subspaces.

Proposition 1. H* (0 < p < 1) conlains a complemented subspace isomorphic
to £°.

' Proof. Tt follows from [4, Section 9.3, p. 153] that when 0 < p < 1 there
is a sequence (z,) of points in the open unit disk, and functions (h,) in H” such
that (i) hi(z) = 8, for all j, k; (ii) for each sequence (w,) in {* the series

S(w) = Z whe(1 — {27
converges in the H” norm; and {iii) the linear map

T{) = () — )"k z 1)



1088 J. H. SHAPIRO

takes H” continuously onto £. It follows from these facts that the composition
map P = ST is a projection taking H* onto a subspace isomorphic to £

Thus H” (0 < p < 1) contains a completely non-convex closed subspace
(the same method works for the spaces of analytic functions considered in
[20, Sections 8 and 4]). The next result shows that H” is not itself compietely
non-convex.

Theorem C |5, Theorem 12, p. 611 Let (n;) be a sequence of positive tniegers
with inf ne../ne > 1. Lel H*(n,) denote the collection of H” functions f whose
Taylor expansions have the form

fz) = i wme .

Akl

Then the norm

Hille = Q2 leal™y™  (fin HP(na))
15 equivalent to (4.1) on H*(n,). In particular, H*(n,) is isomorphic lo £

The Hakn-Banach theorem. The Hahn-Banach theorem fails in every non-
locally convex F-space with a basis. More precisely, every such space contains
a closed subspace which supports a continuous linear functional having no
continuous linear extension to the whole space {21, Theorem 1]. The null space
of this non-extendable functional is closed in E, but not weakly closed (ef.
{5, Theorem 17]), so the last statement can be rephrased as follows:

Theorem E. A non-locally conver F-space with a basis connot have encugh
continuous linear funclionals fo separate points from closed subspaces.

Tt is not known if this phenomenon occurs in every non-locaily convex F-space
(see [16] for related results). The arguments in {21, p. 645] and Theorem B
show that it does occur in every closed, non-locally convex subspace of a locally
pseudo-convex F-space with a basis.

Since all the non-locally convex spaces of Section 2 have bases, none of them
have enough continuous linear funetionals to separate points from elosed
subspaces. However the next result shows that an amusing vestige of the Hahn-
Banach theorem may still remain.

Proposition 3. The spaces £ (0 < p < 1) have enough continuous linear
functionals Lo separate points from closed, bounded, convexr subsels.

Proof. By Corollary 2, every closed, bounded, convex subset of £ is compact;
hence weakly compact (the weak topology is Hausdorff and weaker than the
norm topology). The result now follows upon applying the Hahn-Banach
theorem to £, taken in the weak topology.

The proof shows, for example, that any space satisfying the hypotheses of
Theorem 2 has enough continuous linear functionals to separate points from
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closed, bounded, convex subsets. In fact, all we are really saying is that if the
dual of a linear topological space separates points from each other, then it
separates points from compact, convex sets.

Additional notes. After this paper was submitted for publication, we learned
from Professor N. J. Kalton that the hypothesis of bounded completeness is
not needed in Theorem 2, Kalton uses Lemma 3 {Bection 3) to show that the
condition:

{C) for each regular block basis (.} for (e,) the series z t.f. diverges for
some (&) & £,
implies that every coordinatewise convergent sequence whose convex hull is
bounded must also be norm convergent. Thus the norm topology agrees with «
on every closed, norm bounded, convex set; so every such set is compact. Kalton
also pointed out that eondition (C) above is the non-locally eonvex analogue
of Definition 5.2 of [8].

We also learned that Theorem 3 has been proved independently by W. J.
Stiles in his paper On local converity tn F-spaces [Collog. Math., to appear}.

Added in proof. TPhilippe Turpin has answered Question 1. He shows that
any space £° of type 1 has a subspace isomorphic to £'. In addition he shows
that there exist £* spaces of type 0 (i.e. not locally bounded) which also contain
subspaces isomorphic to £'. Question: ean this happen when 0 < #{®) < 17
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