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Introduction

Our initial setting is a metric space X, which you can, if you wish, take to be a subset
of Rn, or even of the complex plane (with the Euclidean metric, of course). These
notes discuss ways in which X can be thought of as “being just one piece.” We start
with what is perhaps the most intuitive such notion—that of arcwise connectedness.

1 Arcwise connectedness

1.1 Definition. We say X is arcwise connected if any two of its points are joined
by an arc that lies entirely in X. More precisely: given p, q ∈ X there exists a
continuous function γ : [a, b]→ X such that γ(a) = p and γ(b) = q.

In this definition, [a, b] is a finite, closed subinterval of R, which without loss of
generality you may take to be the closed unit interval [0, 1] (Exercise).

1.2 Examples. These are all (mostly simple) exercises:

(a) The image of a continuous curve in X is arcwise connected.

(b) Convex subsets of Rn are arcwise connected, and more generally so are subsets
that are starlike with respect to some point.1

(c) Suppose X is the union of any pair of nonvoid disjoint open subsets in Rn. Then
X is not arcwise connected.

(d) The topologist’s sine curve

X = {(x, sin 1

x
) ∈ R2 : 0 < x ≤ 1}

⋃
{(0, y) ∈ R2 : |y| ≤ 1}

is not arcwise connected.

2 Connectedness

2.1 Definition. To say that X is disconnected means that X is the union of two
nonvoid open subsets U and V of X that are disjoint. When this happens, we say
the pair {U, V } disconnects X. If X is not disconnected, we say it is connected.

2.2 Examples. Once again, the proofs of these statements are left as exercises.

(a) Every disjoint union of nonvoid open subsets of Rn is disconnected.

(b) Any finite or countable set in Rn (e.g., the rationals in R) is disconnected

1X ⊂ Rn is said to be starlike with respect to a point p ∈ X if for every q ∈ X the line segment
from p to q lies entirely in X.
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(c) The Cantor Middle Thirds set—discussed in Math 828, and hopefully, in your
undergraduate real analysis course—is disconnected. We will see shortly (in
§3.4) that these last two examples are “maximally disconnected.”

Here is a useful sufficient condition for connectedness:

2.3 Theorem. Every arcwise connected metric space is connected.

Proof. Suppose X is a metric space that is arcwise connected. We will show that
it cannot be disconnected. Suppose to the contrary, there is a pair of nonvoid open
sets U and V in X that disconnect it, i.e., whose union is X and whose intersection
is empty. Since neither U nor V is empty we can choose a point p ∈ U and another
point q ∈ V . By arcwise connectedness, there is a continuous map γ : [a, b]→ X with
γ(a) = p and γ(b) = q. Let τ be the supremum of all the numbers t ∈ [a, b] such that
γ(t) ∈ U . Then by the continuity of γ and the definition of τ , γ(τ) is a limit point of
both U and V . Since X = U ∪ V , and both U and V are open in X, they are both
also closed in X, so γ(τ) belongs to both U and V , contradicting the disjointness of
these sets. Thus there can be no such disconnection of X. ¤

2.4 Corollary. Every convex, or even starlike, subset of Rn is connected. In par-
ticular, intervals of the real line are connected.

This corollary, along with the next result, shows that every continuous curve in a
metric space is connected.

2.5 Theorem. If X and Y are metric spaces with X connected, and if f : X → Y
is a continuous mapping, then f(X) is connected.

Proof. If f(X) is disconnected then there exist open sets {U, V } that disconnect it.
By the continuity of f both of the sets f−1(U) and f−1(V ) are open, hence—as you
can easily check—the pair {f−1(U), f−1(V )} disconnects X. ¤

Although arcwise connectedness provides a convenient sufficient condition for con-
nectedness, it is not necessary, as the following result shows.

2.6 Exercise. The topologist’s sine curve of §1.2 is connected.

That was the bad news: connectedness is not, in general, equivalent to arcwise
connectedness. The good news is that for open subsets of Rn the two notions of
connectedness are equivalent:

2.7 Theorem. Every open, connected subset of Rn is arcwise connected.
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Proof. Suppose X ⊂ Rn is open and connected. Fix x0 ∈ X (there is nothing to
prove if X is empty) and let U be the set of points x in X for which there exists an
arc in X from x0 to x. U is not empty, because it contains x0 (Why?). We will be
done if we can show that U = X.

To this end let V = X\U . We will show that both U and V are open in X, so
because X is connected, V will have to be empty (otherwise the pair {U, V } would
disconnect X, leading to a contradiction). To see that U is open, note that, because
X is open in Rn, each x ∈ U is the center of an open ball B in Rn with B ⊂ X. Now
every point p of B can be joined to x by a line segment, and by definition, x0 can
be joined to x by an arc γ. Thus x0 can be joined to p by the arc in X you get by
first following γ from x0 to x and then going from x to p via the line segment.2 Thus
B ⊂ U , so U is open.

A similar argument shows that V is also open; if V 6= ∅ you fix a point y ∈ V and
let B be an open ball in X centered at y. Claim: B ⊂ V . If not then there would be
a point x ∈ B that lies in X\V = U . Then we could join x0 (the “base point” of U)
to x by an arc (definition of U), and then by following the line segment from x to y
we could get an arc in X from x0 to y. This would put y in U , a contradiction. Thus
U is open, and the proof is complete. ¤

2.8 Remark. The proof works word-for-word in any locally arcwise connected met-
ric space: I leave it for you to make up a suitable definition for this property, and to
observe that the topologist’s sine curve fails to have it.

2.9 Connected subsets. Every subset of a metric space is itself a metric space
in the original metric. If this new “subset metric space” is connected, we say the
original subset is connected. More precisely:

A subset S of a metric space X is connected iff there does not exist a
pair {U, V } of nonvoid disjoint sets, open in the relative topology that S
inherits from X, with U ∪ V = S.

The next result, a useful sufficient condition for connectedness, is the foundation
for all that follows here.

2.10 Theorem. Let I be any index set and {Xi : i ∈ I} a collection of connected
subsets of the metric space X. If

⋂
i∈I Xi 6= ∅ then

⋃
i∈I Xi is connected.

Proof. We may suppose without loss of generality that X =
⋃
i∈I Xi. Suppose X is

disconnected. Our goal is to show that some Xi is disconnected.
We are given open sets U and V that disconnect X, and a common point p that

lies in every Xi. Since X = U ∪ V the point p lies in U or V—let’s say it’s in U .

Then Ui
def
= U ∩Xi 6= ∅ for every index i (since p ∈ Ui), and because V isn’t empty,

Vi
def
= V ∩Xi 6= ∅ for some index i. For this lucky index i, the pair {Ui, Vi} disconnects

Xi. ¤
2Exercise: make this rigorous.
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2.11 Corollary. Suppose E is a connected subset of a metric space X and F a
subset of the limit points of E. Then E ∪F is connected; in particular, the closure of
E is connected.

Proof. By Theorem 2.10 it’s enough to prove the result for F = {p}, a singleton.
Suppose p is a limit point of E and E ∪ {p} is not connected. We will show that E
is not connected. We are given a pair {U, V } of sets that are open in E ∪ {p}, and
which disconnect it. So p is in one of those sets—say in U . Then, by disjointness,
V ⊂ E.

Claim: U = {p}.
If this were not so then U would intersect E, hence the open sets U\{p} and V would
disconnect E, contradicting the hypothesis that E is connected.

Thus the singleton {p} is (relatively) open in E ∪ {p}, so there is an open subset
G of X whose intersection with E ∪ {p} is just {p}. This shows that p is not a limit
point of E. ¤

2.12 Exercise. Suppose that the closure of E is connected. Must E itself be
connected?

3 Decomposition into Components

In this section we show that even if a metric space is disconnected, it can be written
as a disjoint union of maximal connected pieces. These are called components.

3.1 Components. If X is a metric space and x ∈ X, let C(x) be the union of all
the connected subsets of X that contain x. C(x) is not empty because x ∈ C(x) (the
singleton {x} is a connected set), and clearly C(x) is the largest connected subset of
X that contains x. Theorem 2.10 tells us that:

(a) C(x) is connected, and

(b) if y ∈ X does not lie in C(x), then C(y) is disjoint from C(x) (else C(x)∪C(y)
would be a connected set that contains x and is larger than C(x), contradicting
the maximality of C(x)).

The set C(x) is called the connected component , or just the component , of x. We
have just shown that:

Every metric space is the pairwise disjoint union of its components.

3.2 Exercise. Suppose a pair {U, V } of open sets disconnects the metric space X.
Show that if u ∈ U and v ∈ V then u and v lie in different components of X.
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3.3 Examples. Based on the previous exercise, the you can easily supply exam-
ples of component decompositions by drawing disjoint collections of arcs and other
connected figures in the plane. What is perhaps more interesting is to notice that
components can be just single points.

(a) If X is a finite or countable subset of Rn, with the Euclidean metric, then
C(x) = {x} for any x ∈ X.

(b) The same is true for the Cantor Middle-Thirds set in [0, 1].

Metric spaces in which all the components are single points are called totally
disconnected spaces. They are, in some sense, the most disconnected spaces possible.3

3.4 Theorem. The components of a metric space are closed.

Proof. If C is a component of X then it is the largest connected subset of X that
contains any of its points. But Corollary 2.11 asserts that the closure of C is also
connected, so by maximality, C equals its closure, and so is itself closed. ¤

In general the components of a metric space need not be open: the space of
rational numbers, in the relative topology of R, furnishes a striking example of this
disappointing phenomenon. However, as was the case with arcwise connectedness,
open subsets of Euclidean space behave better.

3.5 Theorem. Suppose G is an open subset of Rn. Then every component of G is
open in Rn.

Proof. Suppose C is a component of G. Let p ∈ C. Since G is open there exists an
open ball B in Rn, centered at p and contained entirely in G. We’ll be done if we can
show that B ⊂ C. But if this were not the case then B ∪ G would be connected by
Theorem 2.10, and strictly larger than C, thus violating the maximality of C. ¤

Note that the proof works in any metric space that is locally connected in the
sense that: for every point of the space, every neighborhood of that point contains
a further neighborhood (of the same point) that is connected. For such a space the
components are therefore both open and closed.

3.6 Corollary. An open subset of Rn can have at most countably many components.

Proof. By Theorem 3.5 the components of an open set form a disjoint family of open
subsets of Rn. But no such family can be more than countable, since each contains
a point, all of whose coordinates are rational, and the collection of such points is
countable. ¤

3It’s actually possible to be even more disconnected than this: A space is called extremally
disconnected if the closure of every open set is open (or equivalently, if the topology has a basis of
sets that are both closed and open). The rationals don’t have this property, but any space with no
limit points (e.g. a finite set) does have it.
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3.7 Remark. Closed subsets of Rn may have uncountably many components, how-
ever. The Cantor set in R1 is such an example; according to §3.3(b)), the only com-
ponents are the one-point subsets, and there are uncountably many of these.

4 Plane Domains

In this section G always denotes a domain (i.e. and open, connected set) in the
complex plane. We study the complement of G in the Riemann Sphere Ĉ. The
component that contains ∞ is, for obvious reasons, called the unbounded component
of Ĉ\G. The other components are bounded, and these are called, again for obvious
reasons, holes (draw some pictures!). Since Ĉ\G is closed in Ĉ, so are its components
(by Theorem 3.4 and the fact that a relatively closed subset of a closed set is closed
in the ambient space). In particular: The holes of a plane domain G are closed and
bounded, and therefore compact.

4.1 Exercise. Give examples to show that, if one works only in C, rather than in
Ĉ, a plane domain can have many (even infinitely many) unbounded components. In
Ĉ, of course, all these components would be glued together into one by the point at
infinity.

4.2 Boundary. Recall that the boundary of a subset A of a metric space X is the
set of points p ∈ X such that every neighborhood of p contains both points of A and
points of X\A.

4.3 Lemma. If C is any component of Ĉ\G, then

(a) ∂C ⊂ ∂G, and

(b) G ∪ C is connected.

Proof. (a) Suppose p ∈ ∂C were not a boundary point of G. Then there would be
an open disc ∆ centered at p that did not intersect G. But because p is a boundary
point of C, ∆ intersects some point not in C, thus making C ∪∆ strictly larger than
C, entirely contained in the complement of G, and connected (by Theorem 2.10). But
this would violate the maximality of C. Thus every boundary point of C must be a
boundary point of G.

(b) By the open-ness of G and part (a), ∂C is a set of limit points of G. Since G is

connected, so is G1
def
= G ∪ ∂C, by Theorem 2.11. Since C is closed, it contains its

boundary, so G1 ∪ C = G ∪ C, hence the latter set is connected. ¤

In general, G ∪ C needn’t be open, as shown by taking G to be the unit disc and
removing both the origin and a sequence converging to the origin. Then C = {0} is
a component of Ĉ\G, but G ∪ {0}, while connected, is not open. However if we “fill
in all the holes” then we do get a domain.
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4.4 Theorem. If G is a plane domain then the union of G and all of its holes is
again a domain.

Proof. By Lemma 4.3 the union of G with any of the bounded components of Ĉ\G
(a.k.a “holes”) is connected. Each of these new sets contains G, and the union of all
of them is, by Theorem 2.10, connected. Call this set Gb. Since the complement of
Gb in Ĉ is the unbounded component of Ĉ\G, which is closed, we see that Gb is open
in Ĉ, and therefore in G. Thus Gb is a domain. ¤

At this point we connect up with our textbook:

4.5 Definition. A domain G of the complex plane is called simply connected if
Ĉ\G has just one component (necessarily the unbounded one).

Using this definition we can rephrase Theorem 4.4 as follows:

The union of a domain and all of its holes is a simply connected domain.

-7-


