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Introduction. This paper focuses primarily on functions F, holomorphic or
harmonic on the open unit disc U, for which the radial limit function

F*(¢&)= lim F(r{)
r—1—
exists finitely for almost every ¢ € dU. For example, F could be a holomorphic
function of bounded characteristic, or it could be the Poisson integral of a mea-
sure on the boundary. Our goal is to study the relationship between the cluster
set of F and the essential range of F*.

Clearly the cluster set contains the essential range. We want to know when they
coincide. Obviously they do if F extends continuously to the boundary of U, but
consideration of the “unit singular function” F(z) =exp{(z+1)/(z—1)} shows
that they need not, even if F is bounded and holomorphic on U.

We are going to prove that cluster set and essential range coincide whenever F
is the Poisson integral of a function of vanishing mean oscillation. This class con-
tains all harmonic functions which extend continuously to the boundary, some
which do not, and even some which are unbounded. Our result shows that every
function of vanishing mean oscillation has connected essential range; it recov-
ers the well-known fact that among the inner functions, only the finite Blaschke
products can have boundary function of vanishing mean oscillation [21, §3]; and
it has consequences for the algebra QC of quasi-continuous functions on the
unit circle.

These results emerge from a distance estimate: If F is the Poisson integral of a
Junction of bounded mean oscillation, then the distance from F* to the space of
Sfunctions of vanishing mean oscillation is bounded below by the Hausdorff dis-
tance between the cluster set and the essential range (in plain English: the largest
distance by which you can avoid every point of the essential range, while staying
in the cluster set). Examples show that this estimate is sharp.

Our proofs work as well for the unit ball B of C” with n > 1. A feature peculiar
to higher dimensions is the fact that the sets on which a holomorphic function
has constant value “propagate” to the boundary: every value is a cluster value.
Our results therefore show that if 7, holomorphic on B, is the Poisson integral of
a function of vanishing mean oscillation on 9B, then the essential range of F™*
contains F(B).
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Rudin [14, §19.1.12] originally focused attention on this phenomenon by ask-
ing if it might be exhibited by the class of bounded holomorphic functions on B.
If so, then B could not support inner functions (nonconstant bounded holomor-
phic functions F with |F*|=1a.e. on dB). However, thanks to the efforts of Ha-
kim and Sibony [8] and Lgw [12], and (independently) of Aleksandrov [1], we
now know that inner functions do exist on B. For historical comments and fur-
ther developments, see [14], [15], and [17].

It is known that the cluster set of an inner function on B must be the entire
closed unit disc ([14, §19.1.3]; [15, Thm. 2.1]; [13, §3]), so our results show that
the boundary function cannot have vanishing mean oscillation. Such conclusions
have been obtained for other classes of functions, not comparable to our “ana-
lytic VMO,” by Rudin [17, Ch. 18] and Tamm [22].

We also consider the effect of composing a BMO function with (the boundary
function of) an inner function. We show that such a composition has the same
norm as the original BMO function, but cannot lie in VMO. It must, in fact, be
located as far as possible from VMO.

Here is a more detailed outline of the paper. After setting out some terminol-
ogy and notation in Section 1, we devote Section 2 to a local form of the lower
distance estimate (Theorem 2.1), which implies the global one stated above. The
third section treats higher-dimensional generalizations, while the final one dis-
cusses compositions of BMO functions with inner functions.

I would like to take this opportunity to thank my colleagues Sheldon Axler,
Paul Bourdon, Wade Ramey, Paula Russo, and Bill Sledd for many informative
discussions about the material in this paper. I am also indebted to the referee,
who, in addition to carefully proofreading the paper, called my attention to ref-
erence [16] and made a number of thoughtful suggestions which improved the
exposition.

1. Preliminaries.

1.0. NOTATION. S denotes the Riemann sphere, U is the unit disc, and o is
normalized Lebesgue measure on dU, the unit circle. If A4 is a subset of S, then
the closure of A4 in S is denoted by A. The letters I and J, possibly with sub-
scripts, denote closed arcs on dU, possibly all of dU. The capital letters F, G, and
H represent continuous (usually harmonic or holomorphic) functions on U for
which the radial limit functions, as defined in the Introduction, exist o-a.e. on
some arc. We denote the radial limit function of F by F*. Lower-case letters f, g
denote measurable functions that are integrable with respect to ¢ over some arc
of aU.

1.1. ESSENTIAL RANGE. Suppose f is a (finite) complex-valued measurable
function defined a.e. on I. The essential range of f over I will be denoted by
R(f,I), or just R(f) if I=09U: it is the set of points w e S for which

o{f I (WV)NI}>0

for every open S-neighborhood V of w.
Finally, if { e dU, then R(f, ¢), the essential range at ¢, is defined to be the
intersection of all the sets R(f, J) where J runs over all intervals centered at ¢.
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Possibly such a J may extend outside 7, in which case we take the definition of
essential range to be: R(f,J)=R(f,JNITI). It is easy to check that each R(f,J)
is a nonvoid compact subset of S, hence so is R(f, ¢).

1.2. PROPOSITION. For I and f as above: R(f,I)=U{R(f, {): ¢el}.

Proof. 1t is clear from the definition that R(f, ) CR(f,I) for every {el.
Conversely, supose we R(f,I). We must find ¢ €7 such that we R(f, {). Split
the arc I into two closed subarcs J; and J, of equal length. An easy exercise shows
that R(f,I)=R(f, J1)UR(f, J;), hence w belongs to R(f,J;) or R(f,J»). Let
I; denote the lucky interval and repeat the subdivision process with 7; in place of
I. Keep going, to obtain a nested sequence of closed intervals 7,, with lengths tend-
ing to zero. These intervals intersect at a point { e 7 (Z is closed, recall). Let J,
be the smallest interval containing 7, and centered at {. The length of J, is no
more than twice that of 7,,, so N J,={¢}. Thus R(f,)=NR(S,J,). But we
R(f,J,) for every n,sowe R(f, {). O

1.3. CLUSTER SETS. The cluster set C(F, ¢) of F at { is the set of points we S
such that there exists a sequence (z,) in U converging to { for which F(z,) - w.
Equivalently: if Q(¢, r) is the intersection of U with the open disc of radius r cen-
tered at ¢, then C(F, ¢) is the intersection of the closures of the sets F(Q({, r)) as
r ranges through positive values. It follows immediately from this formulation
of the definition that C(F, ¢) is a nonvoid compact subset of the Riemann sphere,
which, by the continuity of F on U and by the compactness of the sphere, is con-
nected. The global cluster set C(F') is just the union of the sets C(F, ) as ¢ runs
over the unit circle. Equivalently, C(F') is the intersection of the closures of the
sets F(A,), where A, is the annulus U\rU and 0 <r <1. As before, C(F) is a
compact, connected subset of S. Clearly R(F*, ¢) C C(F, ¢) for each ¢ e aU, and
R(F*) C C(F). For more material on cluster sets, see [3].

1.4. MEAN OSCILLATION. By L” we mean L”(0¢), where (as above) o denotes
normalized Lebesgue measure on aU. For fe L! and I a subinterval of 3U, we
write: )

1= 55 |, S e,
and if fe L?, we define:

|fli=sup I[|f—ILf1]%1,

where the supremum ranges over all 7 C dU. BMO denotes the collection of all
S for which | f]«<eo: each such fis said to be of bounded mean oscillation. By
VMO (for vanishing mean oscillation) we denote those functions fe BMO for
which

lim sup I[|f—I[f]|*1=0.

620+ o(l)<$6
If we identify functions which differ a.e. by a constant, then | |, is a norm mak-
ing BMO into a Banach space, and VMO is a closed subspace in which the con-
tinuous functions on dU are dense. Also, BMO contains L*, and is contained
within L” for every 0 < p < oo (see [19] and [6] for details).
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1.5. GARSIA NORM. For z e U let u, denote the Poisson measure on dU for
the point z, that is:

1—|z[?
|1—¢z|?
For fe L', write P[f] for the Poisson integral of f:

dpz($) = do($).

Pl =| fdp. (zinU).

So P[f1*=f a.e. on 3U. For f e L?, the (possibly infinite) Garsia norm | f|¢ is
defined by the equation:

| fl1E= SugP[If—P[f](z)lzl(z)-

It is well known that f€ BMO if and only if | f|¢ <<c; and f € VMO if and onlyif
f€BMO and P[|f—P[f1(z)|*1(z) = 0 as |z| = 1—. Moreover, the Garsia norm
really is a norm on BMO, and it is equivalent to the one defined in the previous
section (see [18, Thm. 1] and [19, §4, p. 36]).

The idea behind this equivalence is that if z = re‘® e U, then dp, is a probability
measure on dU that behaves very much like the measure x; do/o([I), where I is
the subarc of normalized length 1—r centered at e‘?, and x; is its characteristic
function. If this measure is substituted for du; in the definition of Garsia norm,
then the original norm | |, results.

The Garsia norm, being conformally invariant, is often better suited to appli-
cations involving function theory. For the rest of this paper it is the only norm
we will consider on BMO.

1.6. HAUSDORFF DISTANCE. We extend the Euclidean metric to an “infi-
nite-valued metric” on S through the conventions: |co —z| =00 for z finite, and
|oo —oo|=0.

If B is a closed subset of the Riemann sphere S, and a € S, the (possibly infi-
nite) distance from a to B is:

dist(a, B)=inf{|a—b|: b € B}.
If A4 is another closed subset of S, write
po(A, B)=sup{d(a,B):aec A}.

This quantity answers the question “How far can you get away from every point
of B, while remaining in 4?” Finally, the Hausdorff distance between A and B is
defined by:

dist(A4, B) = max{p(A4, B), p(B, A)}.

This last definition, when restricted to the compact subsets of the finite plane, re-
sults in an honest metric [9, §28, pp. 166-172].

In this paper, A will always be a cluster set, and B the corresponding essential
range; hence B C A, so dist(A4, B) = p(A, B). Our results will show that for Pais-
son integrals of BMO functions, these quantities are actually finite.
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2. BMO distance estimate. For f € BMO, denote by dist(f, VMQ) the distance
from f to the closed subspace VMO as measured in the Garsia norm:

dist(f, VMO) =inf{|f—g|c: g € VMO}.
Here is the main result of this section. We will see in Section 3 that it is sharp.
2.1. THEOREM. Suppose f€ BMO and F=P|[f]. Then

dist(f, VMO) = sup{dist(R(F*, {), C(F, {)): S e aU}
= dist(R(F*), C(F)).

Proof. Recall that f=F* a.e., that R(F*, {)C C(F, ¢) for every { € dU, and
that both are nonvoid, compact subsets of S. Thus if C(F, )= {o}, then the
same is true of R(F*, ¢); and the distance between the two sets is zero, by our
convention about |co — .

So we need only consider those ¢ € dU for which C(F, ¢) # {o}. For such a
point ¢, fix a finite point we C(F, ¢) and let 6(J) = dist(w, R(F*,I)) (possidbly
zero), where I is an interval centered at (. Thus:

(1) S(I)Tdist(w, R(F* ¢)) aslength (/)10,
and
2) |f—w|=6() a.e.onl.

Note that since f is finite valued a.e. on dU, the quantity 6(/) is finite. Since we
C(F, ¢), there exists a sequence (z,) in U with z,,— ¢ and F(z,) = w. Thus, for
each n we obtain from (2):

PIf=PLA1G)P @) = 1/~ Fz)|* dpe,

U

= |f—F@n)dp,

= (f=wl=|w=F@z))*d,

= (8(1)—|w—F(za)|)p, ()
—8(I)? as n— o,

since u,(I)—1 as z — ¢, because ¢ is in the interior of 7. From this follows the
(apparently foolhardy) estimate:

|flc=6(T),

which becomes, upon letting the length of 7 tend to zero, using (1), and then tak-
ing the supremum of the right side of the resulting inequality over all w e C(F, ¢):

3) |fle = dist(R(F*, §), C(F, {)).

Note that (3) asserts that whenever C(F, {) # {oo}, then the Hausdorff distance
from essential range to cluster set is finite, hence R(F*, {) # [eo}. In other words,
C(F, ¢)={oo} if and only if R(F™*, ) = {oo].
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In inequality (3) we can replace the norm of f by its distance from VMO by
exploiting the translation-invariance of Hausdorff distance, and the density in
VMO of the continuous functions on dU. To this end, suppose g is continuous
on dU, and set G=P[g]. Then

R(F*—G* {)=R(F*¢)—g(§) and CWF-G,{)=C(F,{)—g().
Since the Hausdorff distance is translation invarant,
dist(R(F*—G*, §), C(F—G, ) =dist(R(F*, §), C(F, ).

Thus f may be replaced by f—g in (3) without changing the right-hand side of
the inequality. The first inequality to be proved now follows upon taking the in-
fimum of the left side of the resulting inequality over all functions g continuous
on dU.

As for the second inequality, suppose w e C(F)\R(F*) (if C(F)=R(F*) then
there is nothing to prove). Then we C(F, {) for some ¢ € dU, and by Proposi-
tion 1.2, we¢ R(F*, ¢). Thus the various definitions of distance yield:

dist(w, R(F*)) = dist(w, R(F*, {)) = dist(C(F, {), R(F*, {)),

from which the desired result follows upon taking the supremum of the left-hand
side over all we C(F)\R(F*). A

2.2. COROLLARY. Suppose F= P[f], where f€ VMO. Then

(@) forevery {€dU: C(F,$)=R(F* ¢), hence R(F*, {) is a connected
subset of S.

(b) C(F)=R(F*), hence R(F*) is a connected subset of S.

There is also a result intermediate between (a) and (b) above: If 7 is a closed
subarc of aU, then C(F,I)=R(F*, I). Therefore, since C(F, ) is connected,
so is R(F*1T).

2.3. RANGE VS. ESSENTIAL RANGE. Paul Bourdon has pointed out that the
previous results also contain information about a third set associated with the
boundary behavior of F, namely its range F*(oU), which we define in the obvious
way to be the set of all finite or infinite radial limit values F*({) where ¢ ranges
over those points of dU at which such limits exist. Clearly:

1) R(F*) C F*(aU) C C(F).
If F is the unit singular function mentioned in the Introduction:
F(z)=exp{(z+1)/(z—1)},

then R(F*)=9dU; but F*(3U) = F*(dU) = aUU {0}, hence the essential range
need not coincide with the closure of the range, even for bounded holomorphic
functions.

However the inclusions (1) above and Corollary 2.2(b) show that: if fe VMO
and F = P[ f], then the closure of the range of F* coincides with the essential
range of f, and both are connected subsets of the Riemann sphere.
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2.4. REMARKS ON QC. The intersection LN VMO is denoted by QC (for
“qQuasi-continuous”). Sarason [18] observed that QC is a Banach subalgebra of
L. Sheldon Axler has pointed out that Corollary 2.2 can be derived for QC
functions by Banach algebra methods. The key to his proof is the fact that QC
functions, regarded as functions on the maximal ideal space of H* [6, Ch. 5,
p. 218, Problem 16], are constant on the support sets of representing measures.
Now just as in the case of H®, the maximal ideal space of QC can be decom-
posed into “fibers,” one for each point of the unit circle. Axler also points out
that Corollary 2.2, along with some standard arguments about restriction alge-
bras, shows that each of these QC-fibers is connected.

2.5. DISCS IN CLUSTER SETS. In [2, Thm. 1.4] Axler and the author showed
that if F is a bounded holomorphic function on U then

dist(F*, VMO) < sup V= ! Area C(F, {).
fedlU

This estimate has since been extended by Gamelin [5] to the setting of strictly
pseudoconvex domains in C”, and generalized by Stanton [20] to holomorphic
functions that are Poisson integrals of BMO functions. Along with Theorem 2.1
it implies that the cluster set of a bounded holomorphic function F has positive
area whenever it differs from the essential range of /*. In fact much more is true,
and in greater generality, as seen in the following.

THEOREM. Suppose F, holomorphic on U, has a finite radial limit at almost
every point of an arc I C dU with center . Then oC(F, ) CR(F*, {).

This result follows directly from [3, Thm. 5.7, p. 98]. It implies that C(F, {)\
R(F™*¢) is an open subset of S, hence must have positive area whenever it is non-
empty.

2.6. EQUALITY IN THEOREM 2.1. Suppose F is the unit singular function.
Clearly F extends continuously to dU \ {1}. An elementary mapping exercise shows
that it takes: the unit disc into itself, every open arc in dU with an endpoint at
1 infinitely often onto dU, and UN{|z—1| <€} infinitely often onto U\ {0} for
every € >0. Thus R(F*,1)=0U, and C(F,1)=U. So Theorem 2.1 asserts that
dist(F*, VMO) =1, and the upper distance estimate of [2], stated in Section 2.5,
shows that this distance is exactly 1. This example shows that equality is possible
in Theorem 2.1.

More generally, any inner function F that is not a finite Blaschke product ex-
hibits the same kind of boundary behavior at every point of dU over which it
cannot by analytically continued ([3, Thm. 5.4, p. 95]; [23, Thm. 7.48, p. 281)).
In Section 4 we will give another proof of the fact that every such function lies
exactly one Garsia norm unit from VMO, and therefore achieves equality in The-
orem 2.1.

3. Higher dimensions. The arguments given in the previous sections for the
unit disc carry over almost without change to the setting of the unit ball B=B,,
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of C” for n> 1. Here we briefly indicate how this goes, and comment on the
“propagation” phenomenon that is special to the higher-dimensional situation.

We emphasize that in this section the complex dimension # is strictly larger
than 1. Let o denote normalized surface area measure on dB (the unit sphere of
2n—1real dimensions). The space BMO = BMO(dB) is defined exactly as in Sec-
tion 1.4, except that instead of intervals, 7 now runs over “non-isotropic caps” in
0B,, of the form:

(C€dB:|1—({, tod| <8} (fo€dB and 0<6<2)

(see [14, Ch. 5]). Here ¢, ) denotes the usual complex Euclidean inner product
on C”. Further information about BMO in this setting can be found in [4], [7],

and [11].
The Poisson-Szegd measure for z € B is defined by:
(1—|z*)"
d = d ,
rz($) =<z, P o($)

and the Poisson-Szegd integral P[f] of a function fe L! is defined as in Section
1.5. P[f] is no longer necessarily harmonic in the usual sense, but it is AM-har-
monic in the sense of Rudin [14, Ch. 4].

With this notation, the Garsia norm of a function f is defined just as in Sec-
tion 1.5. An argument entirely similar to the one used for the unit disc shows
that the Garsia norm characterizes both BMO and VMO, and induces on BMO
a norm equivalent to the original one. The relevant estimates for the Poisson ker-
nel (but not the proof of equivalence) can be found in Chapter 5 of [14].

With these conventions, Theorem 2.1 and Corollary 2.2 remain true when U is
replaced by B.

To this point we have emphasized the similarities between function theory in
the disc and in the ball. Here is a fundamental difference.

3.1. PROPOSITION. If Fis holomorphic on B, then F(B)=C(F).

Proof. If F extends to be a continuous function on the closed unit ball, then
F(B) C F(dB). This result is derived in the Introduction of [17] as an easy conse-
quence of the argument principle for functions of one complex variable, and the
simple connectivity of dB. For the general case, suppose 0 < r <1 and let F, be di-
late of F defined by F,(z) = F(rz). The previous result applied to F, asserts that,
for r > |z¢|, if zp € B is fixed then the value F(zo) is assumed by F on the sphere
|z| =r. Thus F(zo) € C(F). So F(B) is contained in C(F'), hence the same is true
of F(B). The definition of cluster set provides the opposite inclusion. J

The abbreviation BMOA (respectively VMOA) is frequently used to denote the
collection of functions holomorphic on B which are Poisson-Szegdo integrals of
functions in BMO (respectively VMO). Proposition 3.1 and the generalization to
B of Corollary 2.2 yield the following.

3.2. COROLLARY. If Fe VMOA, then F(B)=R(F™).
3.3. COROLLARY. If F is an inner function on B, then F¢ VMOA.
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Rudin [17, Ch. 18] obtained similar results with BMOA replaced by the “Lumer-
Hardy spaces,” and VMOA replaced by the closure in these spaces of the holo-
morphic polynomials. Tamm [22] obtained analogues of Corollaries 3.2 and 3.3
for a class of bounded holomorphic functions which obey an additional mean
smoothness condition. Neither of these classes contains, nor is contained in,
VMOA. As we mentioned in the Introduction, the existence of inner functions
on B shows that Corollary 3.2 does not hold for the class of bounded holomor-
phic functions.

It is well known that if F is an inner function on B, then C(F, ¢) = U for every
point ¢ € dB ([14, §19.1.3]; [13, §3]). Our next result shows that a vestige of this
property persists under considerably weaker assumptions.

3.4. THEOREM. Suppose F, holomorphic on B, has a finite nontangential lim-
it F*({) at a.e. point ¢ € dB. If:

(@) |F*|=1a.e. on 8B, and

(b) FBNU=Z,
then C(F, ) DU for some ¢ € 0B.

The proof of this result depends on a one-variable lemma that can be viewed as
a “nonlocal” version of [3, Thm. 5.7].

3.5. LEMMA. Suppose F is holomorphic on U, with:
(@) lim,_,_ |F(rn)|=1a.e. on aU, and
(b) FLUNU#= . Then UC F(U).

Proof. Suppose first that F satisfies only hypothesis (a). If a € U\ F(U), then
the function G = (F—a)~! is bounded on U, so hypothesis (a) yields:

G*=(1—|a )"' a.e. on aU.
|G|

Thus G has the same bound over U. In particular, if we F(U) then |w—a|=
(1—]a]); that is, the disc D, centered at ¢ and tangent to the unit circle is dis-
joint from F(U).

To finish the proof of the lemma, suppose now that F also satisfies hypothesis
(b). Then 0 € F(U). For if not, then by the result above Do = U must be disjoint
from F(U), contradicting (b). Once 0 is in F(U), then all of 1+U must be there
too. For if some point a could belong to JU \F(U), then D, could not intersect
F(U). But by the last step 0 € F(U), and clearly 0 € D,, so D, does intersect F{(U).
The rest of the argument follows by induction, the next step being to conclude
that 23U C F(U). We omit the details. O

Proof of Theorem 3.4. Fix we F(B)YNU. Then by Proposition 3.1 there exists
a sequence of points (zx) of B, such that F(z;) =w, and |zx| — 1. By selecting a
subsequence if necessary, we may assume that (z;) converges to some point of
dB,,, which without loss of generality we may assume to be the “east pole” e;. We
are going to show that C(F, e;) D U. It will be convenient to adopt the notation:
z=(z’,z") for points of C", where z’e C"~ ! and z” e C. For z’€ B,,_; write

G\ z)=F@E ,\N1-|z'|HY?) (\eU).
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For z’ fixed, G(\, z’) is holomorphic for A € U. It should be regarded as the re-
striction of F to the one-dimensional disc

D(z')={(z, N1 —|z’|>)*): N e U}.

We claim that for a.e. (with respect to volume measure on B, _,) fixed z’€ B, _;:
the function G(\, z’) has radial limit F*(z’, (1 — ]z’lz)l/z) for a.e. we dU.

To this end, let £ denote the set of points on 3B, at which the nontangential
limit of F exists finitely. By hypothesis, ¢(£) =1. By standard integration tech-
niques [14, §1.4]:

1=0(E) = SaB Xg(§' §7) do(§)
_ 2T r S0 sn ﬂ
_SaB,, So xp(§'e7¢ )27r ()
= [ [ xe e VTP o dio(s)
oB, Jo XE\S 7 2T

27 .
where the next-to-last line follows from the translation-invariance of Lebesgue
measure on the unit circle and where the last line follows from [14, §14.5, formu-
la (1)], since the integrand depends only on ¢’. Here v is normalized Lebesgue
measure on B"~1, so for a.e. 2’ € B,_; (henceforth, the “good” points of B, _;),
the inner integral in the last line is 1, hence the section of E at z’ defined by

Ey={0edU: (2, w(l—|2’|)?) e E}

has full measure in dU. Fix one of the good points z’, and fix w € E;-. Then F has
a nontangential limit F*({) at ¢ = (z, w(1 — |z’|?)"/?). Now the linear segment
{(z/, ro(1—]|z’|2)/2): 0 < r <1} from the center of the disc D(z’) to the point ¢
on its boundary, lies in a cone in B,, with vertex {, so F approaches F*({) as 2
tends to ¢ through this segment. Thus G(\, z’) has limit F*({) as A approaches
w radially.

So far we have proved that, for every good point z’,

lim |G(rw,z’)|=1 for a.e. we dU.

r—l1—
Now recall the sequence (z;) of F-preimages of w e F(B,)N U converging to e,.
For a given k, the projection z; € B, _ lies in the closure of the good points (since,
having full measure in B, _;, the good points are dense). Thus, we can alter the
sequence (2x), if necessary, without disturbing its convergence to e;, so that now
z4 is “good” for each k and |F(zx)| is still <1. The result is that for each k, the
functions G(\, z4) now satisfy the hypotheses of Lemma 3.5, hence the closures
of their images all contain U.

In the language of the function F, we have shown that for each &, the closure

of F(D(z})) contains U. Since the discs D(z;) converge to e;, we obtain the de-
sired result: C(F, e;) contains U. J
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Along with Theorem 2.1 (for the unit ball), this result yields the following.

3.5. COROLLARY. Suppose Fe BMOA, with F(B)NU # & and |F*|=1 a.e.
on dB. Then dist(F*, VMO) = 1.

4. Composition with inner functions. In this section ¢ is an inner function on
B = B,,, where we allow the possibility that » might be 1 (in which case B = U).
Then ¢ takes B, into U, and ¢* acts as a Borel measurable transformation of
dB, onto dU that respects sets of Lebesgue measure zero. That is, if fand g are
measurable functions on 8B, then f=g a.e. if and only if fep*=geep* a.e. In
fact, if ¢(0) =0 then ¢* is measure-preserving, where both domain and range are
equipped with the appropriate normalized Lebesgue measure ¢ [17, Thm. 1.3].
This last fact means that the composition map f— fe¢* is an isometry taking
L?(3U) into L?(8B) (0 < p <o0). The next result shows that: (a) this result per-
sists if L7 is replaced by BMO, taken in the Garsia norm; and (b) unless n =1 and
¢ is a finite Blaschke product, composition with ¢* takes any BMO(dU) function
as far as possible from VMO(dB).

4.1. THEOREM. Suppose ¢ is an inner function on B=B,,, where n=1. Then
for every fe BMO(3U):

(@) fop*e BMO(3B) and | fo¢*|c=|flc-
Moreover, if n>1, or if n=1 and ¢ is not a finite Blaschke product, then:

(b) dist(fee*, VMO(3B))=|f|c-

In order to efficiently present the proof of this theorem, we require some pre-
liminaries.

4.2. NOTATION. If he L'(dB) and ze B, let G[h](z)*> = P[|h—P[h])(z)|*1(2),
where P[h] denotes the Poisson-Szegd integral of A.

Thus each functional G[-](z) is a seminorm on BMO, and the entire collec-
tion determines the Garsia norm: |h|g=sup{Gih](z): z € B}.

The crucial step in the proof of Theorem 4.1 is a lemma well known to inner-
function enthusiasts (see, e.g., [16, Thm. 3.1]). We present its proof solely in the
interests of completeness.

4.3. LEMMA. Ifz e B and fe L (3U), then:
(@) fee*eL'(3V),

(b) P[fe0*1(z)=PLf1(¢(2)), and

©) Glf¢*1(z)=GCG[f1(¢(z)).

Proof. (a) Let a = ¢(0), and for Ae Uset y,(\) = (A—a)/(1—a\). Theny,isa
conformal automorphism of U. It is easy to check that composition with ¢, pre-
serves L1(aU), as well as the class of inner functions. Thus ¢, = y,° ¢ is an inner
function on B which takes the origin of B to the origin of U. By our previous re-
mark, ¢ induces a measure-preserving transformation dB — dU, hence an iso-
metry from L!(8U) to L'(8B). It follows that ¢*= ¢,°y, induces a bounded
operator taking L!(dU) into L!(dB). Thus fe L}(dU) implies fop*e L (3B),
as desired.
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(b) To prove the identity between Poisson integrals, we first consider f to be a
trigonometric polynomial. Since both sides are linear functions of f, it is enough
to prove the identity for monomials f(\) = A%, where & is an integer. If £ = O then,
just as in the proof of [17, Thm. 1.3]:

PLfoo*I1(N) =Ple* 1N = *N) = PLAI(p(N)),

where the middle identity expresses the fact that a bounded holomorphic func-
tion is the Poisson-Szegd integral of its radial limit function. Upon taking com-
plex conjugates on both sides of this identity, and using the fact that ¢*= 1/¢*
a.e. on dB, we obtain the same result for n < 0, hence for all trigonometric poly-
nomials f.

Now if fe L!(dU), then there is a sequence of trigonometric polynomials f;
which converge to f in the norm of L!(dU). By the first paragraph of this proof,
Sfre@* converges to fep* in L1(B). Thus the corresponding Poisson-Szego inte-
grals converge at each point of B:

Plfee*I(N) =lim P[ freo*1(N) =Hlm P[f1(¢(N\) = PLf1(e(N),

yielding the desired result.
Identity (c) is an immediate consequence of (b). U

Proof of Theorem 4.1. Fix fe€ BMO(aU).
(a) Since ¢ is inner, its image is dense in U (by Proposition 3.1 and Corollary
3.4, for example), so the continuity of G[f] on U yields:

|foe*|lc=sup{G[fe¢*](N): N € B}
=sup{G[fl(w):we ¢(B)} [by Lemma 4.3(c)]
=sup{G[f]l(w): we U} [density of ¢(B) in U]
=|fle>

as desired.
(b) By part (a) and the definition of distance to a subspace,

dist(f+¢* VMO(3B)) < | fe¢*|6 = | flo-

To prove the opposite inequality, fix e > 0, and use the density of ¢(B) in U to
choose w e ¢(B) so that G[ f]1(w) > | f|c—e. Suppose for the moment that the
complex dimension # of the domain is >1. Then by the propagation phenom-
enon of Section 3, there exists a sequence (A\x) of points in B with |\¢| — 1, and
o(A\ig)=w for each k.

Fix a function g continuous on dB. By the seminorm nature of G, there is a
reverse triangle inequality:

Glfee*—gl(A) =Gl o0 1(M) — Glg1 (M)

for each k. Since g is continuous on dB, its Poisson-Szegd integral extends it
continuously to B [14, Thm. 3.3.4], hence G[g](N\x) — 0 as k — co. This fact and
the last inequality show that: '
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| fep*—glc=limsup G[fop*—gl(\)
=lim sup G[fo¢*]( k)
= G[f1(e(A\g)) [by Lemma 4.3(c)]
=G[f]1(w)
=|flc—e.

Since e is an arbitrary positive quantity, we conclude that | fe¢*—g|c=|.f|c for
every continuous function g on dB. Upon taking the infimum over all such func-
tions g, and recalling that they form a dense subset of VMO, we obtain the de-
sired result when the dimension 7 is larger than 1.

In case n =1 and ¢ is not a finite Blaschke product, then the same proof works
without change, since the values taken on infinitely often by ¢ form a dense sub-
set of U [3, Thm. 2.1.4, p. 35]. O

We observed in Section 2.5 that if ¢ is an inner function on U that is not a finite
Blaschke product, then ¢* lies exactly one Garsia norm unit away from YMO.
Theorem 4.1 yields the following direct proof.

4.4. COROLLARY. Suppose ¢ is an inner function on B. Then:

@ |e*lc=1, and

(b) ifn>1, orif n=1 and ¢ is not a finite Blaschke product, then
dist(¢*, VMO(9B)) =1.

Proof. Let u denote the identity function on aU: u(¢) = ¢. In view of Theorem
4.1, we need only show that |u]g=1. We leave it to the reader to show that, for
weU, Glul(w)=1— ]w]z, whereupon:

lu|g=sup{Glul(w): |w|<1}=1. O
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