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COMPACT COMPOSITION OPERATORS ON SPACES
OF BOUNDARY-REGULAR HOLOMORPHIC FUNCTIONS

JOEL H. SHAPIRO

ABSTRACT. We consider holomorphic functions ¢ taking the unit disc U into
itself, and Banach spaces X consisting of functions holomorphic in U and con-
tinuous on its closure; and show that under some natural hypotheses on X: f
¢ induces a compact composition operator on X, then ¢(U) must be a relatively compact
subset of U. Spaces X which satisfy the hypotheses of this theorem include the
disc algebra, “heavily” weighted Dirichlet spaces, spaces of holomorphic Lip-
schitz functions, and the space of functions with derivative in a Hardy space
H? (p > 1). It is well known that the theorem is not true for “large” spaces
such as the Hardy and Bergman spaces. Surprisingly, it also fails in “very small
spaces,” such as the Hilbert space of holomorphic functions f(z) = Zanz"
determined by the condition )  |an|? exp(y/n) < co. The property of Mdbius-
invariance plays a crucial and mysterious role in these matters.

1. Introduction. Throughout this paper ¢ denotes a nonconstant holomorphic
function on the open unit disc U of the complex plane, with ¢(U) C U. Thus ¢
induces on H(U), the space of functions holomorphic on U, a composition operator
Cy defined by the equation Cyf = fo¢ (f € H(U)). There has been growing
interest in the study of composition operators on Banach spaces of functions holo-
morphic on U, the idea being to connect the behavior of the operator Cy4 with the
function theoretic properties of ¢. The most popular setting for this research has
been the Hardy space HP, but more recently the weighted Bergman and Dirichlet
spaces have begun to assert themselves (see (7, 15], for example). Recent work on
composition operators in these spaces includes studies of spectra [4], algebras gen-
erated by composition operators [3, 9], and compactness of composition operators
(7, 14, 15].

In (7] the study of compact composition operators on various Bergman and
Dirichlet spaces led to phenomena which, in addition to their intrinsic interest, also
shed considerable light on the Hardy space situation. Here we carry the study of
compactness a step further, into the realm of “small” Banach spaces X consisting of
holomorphic functions in the unit disc which extend continuously to the boundary,
have norm stronger than the sup norm, and contain the polynomials.

In §2 we prove (Theorem 2.1) that: If such a space X 1is invariant under com-
posttion with all conformal automorphisms of U, and if Cy acts compactly on X,
then ¢(U) must be a relatively compact subset of U.
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Examples of spaces to which this result applied include:

(1) The disc algebra A, consisting of all f € H(U) which extend continuously to
the closed unit disc.

(2) The heavily weighted Dirichlet spaces D, consisting of all f € H(U) whose
complex derivative f’ is square integrable over U with respect to the measure
(1 - |2|?)*dzdy for -1 < a < 0.

(3) The Lipschitz spaces Ay, 0 < a < 1, consisting of all f € H(U) which obey
a Lipschitz condition with exponent a.

(4) The spaces SP, p > 1, consisting of all f € H(U) for which f’ € HP.

(5) The “integrated space” X; consisting of all f € X for which f’ € X, where X
satisfies our hypotheses, and is preserved by multiplicatin by functions holomorphic
in a neighborhood of the closed unit disc.

Special cases of this theorem have appeared before, the first instance having been
observed by H. J. Schwartz [13] for the disc algebra (and also for H*, the space of
bounded analytic functions on U). His proof is worth noting, since it is so simple,
and since it does not generalize in any obvious way to the other spaces in our list.
If Cy4 is compact on A, then a straightforward argument shows that it must take
any sequence in A that is convergent pointwise on U to zero into a sequence that
is norm convergent to zero. In particular the monomials (2": n > 0) form such
a sequence, for which the image sequence is (¢™: n > 0). Thus [|¢"|ec — 0, so
[Blloo < 1.

The weighted Dirichlet spaces D, are studied in [7] where, although it is the
range « > 0 that is of primary interest, the main results are proved for all a >
—1. In particular, a Carleson measure characterization of compact composition
operators is obtained there (Proposition 5.1), but it is not mentioned, nor is it at
all obvious, that when o < 0 this characterization is equivalent to the requirement
|#llcc < 1. For purposes of orientation, the reader should notice that D, is the
classical Dirichlet space when o = 0, the Hardy space H2 when o = 1, and a
weighted Bergman space when a > 1. We wish to emphasize that when a > 0,
the case we are not considering here, D, contains unbounded functions, and does
support compact composition operataors Cy for which ||@||oc = 1. Indeed, the
study of such operators is the main object of the papers (7, 14 and 15].

Rather complicated characterizations of boundedness and compactness for com-
position operators on SP and A, were obtained by Roan [11, 12]. However, as
MacCluer (8] has recently observed, there are errors in [11] leading to examples of
maps ¢ which purport to induce compact composition operators on SP, but which
in fact do not. In the same paper MacCluer uses the device of Carleson measures
to prove the SP case of Theorem 2.1, thus clarifying and correcting Roan’s results
on compactness.

The proof of Theorem 2.1 occupies the next section. An interesting feature is
the role played by the apparently heavy-handed assumption that X be Mobius-
invariant: one is tempted to try to replace it by the more natural requirement of
rotation-invariance. Further motivation for such an improvement comes from a
natural example: The space of power series absolutely convergent in the unit disc
is rotation-invariant, but not Mobious-invariant [1, 5]. Schwartz’s original proof
works here also, so the conclusion of Theorem 2.1 continues to hold in this setting.
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We will see in §3, however, that mere rotation-invariance does not guarantee
the conclusion of Theorem 2.1: If enough boundary smoothness is required of the
functions in X, then there will exist compact composition operators Cy on X with
[4lloo = 1.

Thus, the situation can be summed up roughly as follows. If X is too large, in
that it admits unbounded functions, or too small, in that too much smoothness is
required of its boundary functions, then C, may be compact on X even though
||#llco = 1. However this cannot happen for spaces whose boundary functions have
smoothness moderated in some mysterious fashion by the requirement of Mobius-
invariance.

I would like to thank Carl Cowen for showing me an example that led to The-
orem 3.4, and to thank Roy Erickson and Wade Ramey for helpful conversations
regarding this theorem. In particular, Ramey first suggested that a result of this
sort might be true, and Erickson pointed out Hoeffding’s inequality which plays
a crucial role in its proof. I would also like to thank Lech Drewnowski for his
insightful observations regarding generalizations of Theorem 2.1.

2. Compactness implies ||¢|o < 1. In this section X will denote a Banach
space of functions holomorphic in U which satisfies the following axioms.

(X1) Boundary regularity: every function in X extends continuously to the closed
unit disc.

(X2) Naturality of norm: Every convergent sequence in X must converge to the
same limit function uniformly on compact subsets of U.

(X3) Nontriviality: X contains the holomorphic polynomials.

(X4) Mébius-invariance: if v is a conformal automorphism of U and f € X, then
foyeX.

It follows from (X1), (X2), and the Closed Graph Theorem that the topology
of X is stronger than the sup norm topology. Similarly, any composition operator
taking X into itself must actually be continuous on X. In particular, by (X4) the
conformal automorphisms of U induce (topological) isomorphisms of X. We can
now state our main result.

2.1. THEOREM. If ¢ induces a compact composition operator on X, then
[4lloo < 1.

Before proceeding with the proof, let us observe that axiom (X3) guarantees
that the identity function u (u(z) = z) belongs to X, hence the same is true of
¢ = Cypu, and more generally of its nth iterate ¢, = pogpo---0¢ (n times). In
particular, ¢ and all its iterates are continuous functions on the closed unit disc,
and can therefore be evaluated without apology on the boundary. Incidentally, this
is the only essential use made of axiom (X3).

It will be convenient to isolate the main body of the proof as a lemma.

2.2. LEMMA. Suppose ¢(0) =0 and Cy 1s compact on X. Then |[¢n|lcc — 0.

PROOF. Let Xy denote the subspace of X consisting of functions which vanish
at the origin. Axiom (X2) implies that Xy is a closed subspace of X. It is clearly
invariant under Cj, and is nontrivial since it contains u as well as ¢ and all its
iterates. Our proof depends on showing that the restriction T' of Cy to Xo has
spectral radius p(T) < 1.
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To this end, suppose A is a nonzero spectral point of T. Being the restriction
of a compact operator to an invariant subspace, T is also compact, hence A is an
eigenvalue. Fix f € Xy, an eigenfunction of T for the eigenvalue \. Thus T'f = Af,
and there is a point a € U for which f(a) # 0. Let A denote the open disc of radius
(1 + |a|)/2, centered at the origin. Now ¢ is not a rotation (if it were, then Cy
would be an isomorphism, contradicting its compactness), so the Schwarz Lemma
asserts that ¢(A) is a relatively compact subset of A. A second application of the
Schwarz Lemma, this time to the (suitably normalized) restriction of ¢ to A, shows
that ¢n(a) — 0. Thus

A" f(a) =T" f(a) = f(¢n(a)) — f(0) =0
as n — o0o. Since f(a) # 0 we must therefore have |A\| < 1. The compactness of T'
also forces its spectrum to consist of the point 0 along with an at most countable
set of eigenvalues which can cluster only at 0. Thus the spectral radius of T is the
magnitude of the largest eigenvalue of T, which we have just seen to be < 1. The
spectral radius formula now shows that

lim |T"|Y" = p(T) <1 (n— o),

so in particular || T"| — 0.
Let || ||x denote the norm of X, and recall that ¢, = T"u € X. Thus,

Iénlx = 1T ullx < [T ulx =0  (n— o).

As we remarked at the beginning of this section, the topology of X is stronger than
the one induced by the sup norm, hence ||¢n|ococ — 0. O

2.3. PROOF OF THEOREM 2.1. Suppose initially that Cy is only assumed
to be a bounded operator on X, and that ¢(0) = 0. If ||¢|lcc = 1, then there is a
rotation p such that ¢ = po ¢ has a fixed point on the unit circle. Thus ||9)|/c =1
for all n, so by Lemma 2.2 the operator Cy, cannot be compact.

Since Cy, = C4C,, where C, is an isomorphism of X, it follows that Cy is not
compact either. What we have just proved can be restated as follows: uf ¢(0) =0
and Cy 1s compact on X, then ||¢||c < 1.

Now suppose that ¢(0) = a # 0. Let v be the conformal automorphism of U
taking a to 0, and set 1) = o ¢. Recall that C, is a bounded operator on X as a
consequence of axioms (X4) (used for the first time) and (X2). Thus Cy = C4C, is
compact on X, so by the result of the last paragraph, ||9|c < 1. Thus ||¢|c < 1,
and the proof is complete. 0O

2.4. REMARKS. (a) As mentioned in the Introduction, we will see in the next
section that Theorem 2.1 does not hold if the automorphism group is replaced in
axiom (X4) by the group of rotations.

(b) In all the examples listed in §1 (and in the Hardy and Bergman spaces as
well), the converse of Theorem 2.1 holds in the following form: « ¢ € X and
|lloo < 1, then Cy 1s compact on X. It would be of interest to know if this result
holds for all spaces X satisfying axioms (X1)-(X4). In §4 we will see that there are
rotation-invariant spaces satisfying (X1)—(X3) for which this is not true.

(c) As we mentioned earlier, the nontriviality axiom (X3) is used only in the
weaker form: “X contains the identity function on U.” Lech Drewnowski has
pointed out that, upon properly reorganizing the proof of Theorem 2.1, it is enough
to assume only that X contains a nonconstant function. Drewnowski also observes
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that under the original axioms (X1)-(X4), the functions in X need not be assumed
to be holomorphic (as long as ¢ is holomorphic).

(d) We do not know if the boundary continuity axiom (X1) can be replaced by
the requirement that each f € X be merely bounded on U.

3. Compactness does not imply | @] < 1. In this section we show that
hypothesis (X4), the Mobius-invariance required of the spaces X of the last section,
cannot be weakened to “rotation-invariance.” The main result, Theorem 3.4, yields
a large class of rotation-invariant spaces which satisfy hypotheses (X1)-(X3), yet
which support compact composition operators Cy with ||¢|lcc = 1. These are “ex-
tremely small” spaces composed of functions holomorphic in U with exceptionally
high boundary regularity. They are constructed by using a coefficient multiplier to
modify the elements of an initial space of “moderate size.”

3.1. Notation. If n is a positive integer, and f € H(U), then we write f (n) for
the nth Taylor coefficient of f in its expansion about the origin, and define the nth
coefficient functional )\, on H(U) by A.(f) = f(n).

3.2. Imitial spaces. In what follows, Y will always denote a Banach space of
functions holomorphic on U, with norm || ||, satisfying the following hypotheses.

(Y1) Y contains all the holomorphic polynomials.

(Y2) Y is rotation-invariant: if f € Y and p is a rotation of U (p(z) = wz for
some complex number w of modulus 1), then fop€eY.

(Y3) There exists a constant M < oo such that |f(n)| < M||f|| for every f € Y
and every nonnegative integer n.

(Y4) The sequence of monomials (2™: n > 0) is bounded in Y.

Such a space Y will be called an initial space. Typical examples are, for 1 <
p < oo, the Hardy space HP, and the space of functions f € H(U) with Taylor
coefficient sequence (f(n): n > 0) in IP.

3.3. Final spaces. Here w = (w(n): n > 0) denotes an increasing sequence of
positive numbers. For f € H(U), let f,, be the formal power series > w(n) f (n)2".
For each initial space Y we define Y,, to be the collection of functions f € H(U) for
which f,, represents a member of Y. The natural norm || ||,,, defined for f € Y,
by ||fllw = || fwl|, makes Y, into a Banach space isometrically isomorphic to Y.

It is easy to check that every such “final space™ Y,, is rotation invariant and
satisfies axioms (X2) and (X3) of §2. The “naturality” axiom (X2) follows from
the corresponding property of Y, which in turn follows from (Y3) and a normal
families argument. As for (X3), it is clear that since Y contains all the holomorphic
polynomials, so does Y,,. We can now state the main result of this section, the first
part of which has just been proved. In what follows, [t|] denotes the integer part of
the real number ¢.

3.4. THEOREM. For any wnitial space Y, the final space Y, 1is rotation-
wnvariant and satisfies azioms (X2) and (X3) of §2. If, in addition, there exists
0 < a <1 such that

(3.4.1) > w(lan])/w(n) < oo,

n=0

then Yy, also satisfies aziom (X1), but supports a compact composition operator C
with ||P|loo = 1.
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3.5. EXAMPLES. Take Y = H2, so Y, is just H%(w), the space of functions f
holomorphic on U for which [|f]lw = {3 |f(n)w(n)|?}/? < cc.

(a) Fix R > 1 and set w(n) = R™. Then (3.4.1) is satisfied. This example is
the prototype for Theorem 3.4, in fact it is easy to see directly that the function
#(z) = (1+ 2)/2, for which ||¢||cc = 1, induces a compact composition operator on
H?(w). H?(w) is just H?(RU), the Hardy space of the disc of radius R, and ¢(RU)
is a relatively compact subset of RU; so the result follows by transferring to RU the
well-known fact that any map taking the unit disc into a relatively compact subset
of itself induces a compact composition operator on H2(U) (see, for example, (14,
Theorem 3.1]). This example, and the above proof, were shown to me by Carl
Cowen.

(b) Let w(n) = exp(n®) for some 0 < a < 1. Then (3.4.1) is satisfied, but in
contrast with the last example, each space H?(w) contains functions not continuable
across any point of the unit circle. Note that if a > %, then, by a result of Carleson
[2], H?(w) is a quasi-analytic class on the closed unit disc.

(c) Some nonezamples. Let w(n) = n® for a > 1. Then (3.4.1) is not satisfied.
In fact it is not difficult to check that these spaces H?(w) satisfy the hypotheses
of Theorem 2.1, hence for them the conclusion of Theorem 3.4 is false. Note that
if 7 < a < 1, then a calculation with power series shows that H 2(w) is one of the
“heavily weighted Dirichlet spaces” of example (2) in §1.

3.6. PROOF OF THEOREM 3.4. We are assuming that Y is an initial space
and that the sequence w satisfies (3.4.1) for some positive a < 1.

We first show that Y,, satisfies the continuity axiom (X1). It follows from hy-
pothesis (Y3) that each coefficient functional A, is bounded on Y, with norm
estimated by

(3.6.1) [Anll < M/w(n),

where M is a constant independent of n. Since w is a positive, increasing sequence,
it follows from (3.4.1) that >_ w(n)~! < oo, so by (3.6.1) we have for each f € Y,,

ST <1l D 1Al <MD w(n)™ < oo

Thus the Taylor expansion of each f in X converges absolutely on the closed unit
disc, so Y, satisfies (X1).
To construct the desired composition operator, fix @ < u < 1 and set

() =(1-p)+uz (2€0).

Thus ¢ maps the unit disc into itself, with ||¢|lcc = 1. We claim that ¢ induces a
compact composition operator on Y.
For this purpose, a natural representation for Cy on H(U) is

(3.6.2) Cof =Y Mal(f)g"  (feH(U)),

which exhibits Cy as a limit of finite rank operators T defined by

N
Tnf = A(f)$"  (f€HU)).
1
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The Tn'’s operate on Y,,, since each power ¢", being a polynomial, belongs to
Y.,. We will show that

(3.6.3) Y 1Al 1™lw <00 ([ Anll = norm on Yy,).

Granting this, it follows immediately that T,, — Cy in the operator norm of Y.
Being the norm limit of finite rank operators, Cy is therefore compact on Y, (in
fact, by (3.6.3), it is actually nuclear [14, p. 476]).

To establish (3.6.3) it is enough, in view of (3.6.1), to prove that }_ ||¢"|/w(n) <
0o. To estimate the norm of ¢™, apply successively the binomial theorem, the
properties of norms, and hypothesis (Y4), which implies that sup{||z"|,/w(n): n >
0} = M < co. The result is

19"l < MZC(n k)u (1= )™ *w(k),
k=0
where C(n, k) is the appropriate binomial coefficient, and M is independent of both
n and p. From this and the discussion above it follows that (3.6.3), and hence the
compactness of Cy, will be established if we can prove

(3.6.4) D wmn)™t Y Cn, k)uF(1 - p)Fw(k) < oo.
n=0 k=0

To this end, let (Xj;: j > 1) be a sequence of independent random variables,
each taking the value 1 with probability u, and 0 with probability 1 — u. Let
Sp = X1+ X2 + -+ + X,, so that for each integer 0 < k< n

Prob{S, = k} = C(n, k)u*(1 — u)" k.

It follows that the inner sum in (3.6.4) is just E{w(S,)}, the expectation of the
random variable w(S,). So the target estimate (3.6.4) can be rewritten,

(3.6.5) ZE{w )} w(n) <

The key to the proof of (3.6.5) is an inequality due to Hoeffding {10, p. 191,
which states that if &1, &2,..., &, are independent random variables with zero means
and bounded ranges, say a; < &; < bj;, then for each A >0

Prob{£1+£2+~~+fn2/\}Sexp{—?)\z/z (b; — ay) }

Upon applying this inequality to the centered random variables ¢; = X; — u, we
obtain after some rearranging

(3.6.6) Prob{S, > A} < exp{—2(A — nu)?/n} for all XA > npu.

To employ this inequality, write

n

E{w(S Z k) Prob{S, =k} = Zl + 22,

k=0
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where 21 denotes the sum taken over 0 < k < [an], and )_, the sum over the
remaining k’s. Since the sequence w is increasing and the events {S, = k} are
mutually exclusive, it is clear that ), < w([an]).

In estimating the second sum it will be convenient to write p()) for the left side
of inequality (3.6.6), and e()) for the right side. Note that p(A) = 0 for A > n.
Thus for 0 <k <n

Prob{S, = k} = p(k) — p(k + 1).

We substitute this into the expression for ) _,, sum by parts, use estimate (3.6.6)
(which applies because o > p, so the values e(k) decrease for k in the range of
summation), and sum by parts again. The result is

Z <Z,wk e(k) —e(k + 1)) (Zl:sumover[an]<k§n)
w(n )Z (e(k) —e(k + 1)) (since w is increasing)
w(n)(e([an] + 1) — e(n + 1))
w(n)e(an) (since e()) | for A > un)

w(n) exp{~2(a — p)*n}.

These inequalities for ), and ), yield

E(w(Sn)) =) +)_, <w(lan]) + w(n) exp(-2(a - u)*n),

which, along with hypothesis (3.4.1) and the fact that a > pu, yields (3.6.5) and
completes the proof of the theorem. El

3. 7 REMARKS. (a) The case a < § of Theorem 3.4 can be handled by setting
u = +. In this case the sequence (¢;) of random variables employed in the proof is a
Rademacher sequence, and the corresponding special case of Hoeffding’s inequality,
is contained implicitly in Kahane’s monograph [6, Chapter VI, §2].

(b) A slight modification of the argument given above shows that the function ¢
analyzed there induces a Hilbert-Schmidt composition operator on H 2(w) whenever

[ee)

> (w(lan])/w(n))* < co.

n=0
The original proof, of course, shows that Cy is in the trace class.

4. Final remarks. (a) Regarding Remark 2.4(b), the space H%(w) = H*(RU)
of Example 3.5(a) (w(n) = R™ for some R > 1) has another interesting property:
It supports a noncompact Cy for which ||¢|loo < 1 (cf. Remark 2.4(b)). In fact, the
mapping ¢(z) = 22/R clearly induces such an operator. It would be of interest to
know which of the spaces Y,, support such operators.

(b) Theorem 2.1 and the main result of [7, Theorems 5.2 and 5.3] give an easy
proof of the following necessary condition for the boundedness of composition op-
erators on the heavily weighted Dirichlet spaces of example (2) in §1. If [[¢[lo = 1
and Cy is bounded on D, for some —1 < a < 0, then ¢ must have a finite angular
derivative at some point of the unit circle. For example, ¢ cannot have norm 1
and map the unit disc into an inscribed polygon if it wishes to induce a bounded
operator on one of these spaces.
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