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Abstract. A hypercyclic operator is one that has a dense orbit.
The backward shift B on the Bergman space A2 of the unit disc has
this property, and we ask here: “Which operators that commute
with B also have it?” It is known that each operator on A2 that
commutes with B has a natural representation of the form ϕ(B)
where ϕ is a multiplier of the Dirichlet space. In this setting we
show that our problem reduces to the case where ϕ is a self-map of
the unit disc, and that for such maps the question of hypercyclic-
ity for ϕ(B) depends on how closely the ϕ-images of points in the
unit disc are allowed to approach the boundary. This contrasts
sharply with what is known for the Hardy space H2, where the
backward shift is not hypercyclic (it is a contraction), and the hy-
percyclic operators that commute with it are easily described (see
§1.3 below). In further contrast with the H2 setting our present
work leads into diverse issues concerning multipliers of the Dirichlet
space, Carleson sets, and regularity of outer functions. The results
we obtain bear an intriguing resemblance to certain phenomena
involving composition operators.

1. Fundamentals

In this section we introduce the spaces of functions analytic on the
unit disc that form the infrastructure of our work. These are the
Bergman space A2, the Dirichlet space D and its pointwise multipliers,
and the Hardy space H2. We indicate why the commutant hypercyclic-
ity problem is interesting for the backward shift on the Bergman space,
and show how it reduces to the consideration of geometric properties
of multipliers of the Dirichlet space that map the unit disc into itself.

1.1. The Bergman space. Our primary setting is the Bergman space
A2 of the open unit disc U. This is the space of functions f that are
holomorphic on U, and whose moduli are square integrable with respect
to Lebesgue area measure on U. A2 is a closed subspace of L2(dλ),
where dλ is Lebesgue area measure on U, normalized so as to have unit
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mass. Therefore A2 is a Hilbert space in the L2(dλ)-norm ‖ · ‖ defined
by

‖f‖2 =

∫
U
|f |2 dλ (f ∈ A2).(1.1)

A2 and its norm can be described as well by Taylor coefficients. A
straightforward computation shows that if f(z) =

∑∞
n=0 f̂(n)zn is holo-

morphic on U, then ∫
U
|f |2 dλ =

∞∑
n=0

|f̂(n)|2
n+ 1

,(1.2)

where now the value ∞ is allowed. Thus f belongs to A2 if and only if
the series on the right converges, in which case the sum of this series
is equal to ‖f‖2.

We study bounded linear operators on A2 that commute with the
backward shift B. This is the operator on A2 defined by

Bf(z) =
f(z)− f(0)

z
=
∞∑
n=0

f̂(n+ 1)zn (f ∈ A2, z ∈ U).

B gets its name from the fact that it shifts the Taylor coefficient se-
quence of f one unit to the left (and drops off the constant term). An
easy calculation using the Taylor coefficient description of the Bergman
norm shows that B is a bounded operator on A2 with ‖B‖ =

√
2.

1.2. Hypercyclicity. A bounded linear operator T on a Hilbert space
(or a Banach space, or even a topological vector space) is called hy-
percyclic if it has a dense orbit. A vector x for which the orbit {T nx}
is dense is called a hypercyclic vector for T . Hypercyclicity is a very
strong form of cyclicity that bears the same relationship with invariant
subsets that cyclicity has with invariant subspaces. While it may seem
remarkable there are any hypercyclic operators at all, the truth is that
many commonly occurring examples have this property, the backward
shift on A2 being one of them (see [14], [22, §7.4, Exercise 2] and the
remarks following the statement of Theorem 2.8 below).

Work of Godefroy and Shapiro [15] suggests that operators behaving
like backward shifts tend to transfer hypercyclicity (if they have it) to
appropriate operators in their commutants. The word “appropriate”
here must be interpreted properly, since the commutant will always
contain nontrivial operators that are not hypercyclic (e.g. scalar mul-
tiples of the identity, and for Hilbert or Banach spaces, contractions).
For Banach spaces, Carol Kitai proved in her 1982 Toronto dissertation
[12] that a necessary condition for an operator to be hypercyclic is that
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every component of its spectrum must intersect the unit circle. This
spectral condition is clearly not sufficient (e.g. the identity operator,
whose spectrum is the singleton {1}, is not hypercyclic), but for some
classes of operators a stronger spectral intersection condition does suf-
fice. Consider for example the following result due to Godefroy and
Shapiro about the backward shift on the Hardy space H2 [15, Theorem
4.9]:

1.3. Theorem. If T is a bounded operator on H2 that commutes with
the backward shift, then the following statements are equivalent:

(a) T is hypercyclic on H2.
(b) The interior of the spectrum of T intersects ∂U.

The sufficiency part “(b)→ (a)” of this result holds for very general
spaces of analytic functions, in particular for the Bergman space [15,
Theorem 4.5]. However the converse “(a)→ (b)” fails for the Bergman
space, as is shown by the backward shift itself, which is hypercyclic,
but whose spectrum is well known (and easily seen) to be the closed
unit disc.

Note that according to Theorem 1.3 operators in the commutant of
the H2-backward shift having the same spectrum also display the same
hypercyclic behavior. For the Bergman backward shift the commutant
hypercyclicity problem is much more delicate. We just mentioned that
B itself is hypercyclic on A2 and that its spectrum is the closed unit
disc, but in Section 3 below we will present an example of an operator
that commutes with B and has spectrum equal to the closed disk, but is
not hypercyclic. Thus in the Bergman setting the spectrum alone does
not provide sufficient information to resolve the issue of hypercyclicity.

As a further complicating factor, the commutant of the Bergman
backward shift is a more subtle object than the corresponding Hardy
space commutant. It is known that any operator commuting with B
has the form ϕ(B), where ϕ is a Dirichlet space multiplier (see §1.7–
§1.9 for the details). By contrast, the corresponding representation for
the Hardy space commutant involves the full algebra H∞ of bounded
analytic functions.

As we will explain in §1.10–§1.11, the problem of understanding the
hypercyclic behavior of ϕ(B) reduces to that of understanding the spe-
cial case where ϕ(U) is a subset of U whose closure intersects the unit
circle. After that we consider only this case, for which our results in-
dicate that whether ϕ(B) is hypercyclic or not depends on how closely
the points ϕ(z) are allowed to approach the unit circle as |z| → 1−.

We will see, for example, that if ϕ(U) lies in a disk internally tangent
to the unit circle, then ϕ(B) cannot be hypercyclic (see Corollary 4.3).
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Thus, for example, the operator (I + B)/2 is not hypercyclic on A2.
In the other direction, we will show that ϕ(B) is hypercyclic whenever
ϕ has radial limits of modulus one on a set of positive measure (The-
orem 2.8). Although sufficient, this positive-measure condition is not
necessary; we show this in §2.12 by constructing a Dirichlet multiplier
ϕ : U → U for which for which ϕ(B) is hypercyclic on A2, yet ϕ has
radial limit of modulus one at just a single point of ∂U.

These results bear some similarity with certain problems involving
composition operators. We say more about this matter in §5. In §4
we show that there is a certain precision to our “positive-measure”
sufficient condition for hypercyclicity by giving examples of Dirichlet
multipliers ϕ that map the unit disc into itself such that ϕ(B) is not
hypercyclic, yet for which ϕ has radial limits of modulus one on a set
of Hausdorff dimension one.

1.4. The Hardy and Dirichlet spaces. Two Hardy spaces of ana-
lytic functions arise during the course of our work. First there is H2,
the space of functions f holomorphic on U for which

‖f‖2
2

def
=

∞∑
n=0

|f̂(n)|2 <∞.

The norm ‖ · ‖2 makes H2 a Hilbert space. Next there is the collection
H∞ of bounded analytic functions on U, which is a Banach algebra in
the “supremum norm”

‖f‖∞ def
= sup{|f(z)| : z ∈ U} (f ∈ H∞).

The commutant of the Bergman backward shift is intimately con-
nected, via duality, with yet a third space: the Dirichlet space. This is
the collection D of functions holomorphic on U whose first derivatives
have square integrable modulus over U. The norm ‖ · ‖D defined by

‖f‖2
D = ‖f‖2

2 +

∫
U
|f ′|2 dλ(1.3)

makes D into a Hilbert space. The calculation used to establish (1.2)
shows that for each f holomorphic on U,

‖f‖2
D =

∞∑
n=0

(n+ 1) |f̂(n)|2,(1.4)

where again the value ∞ is allowed. Thus D emerges as the space of
functions holomorphic on U whose power series coefficients make the
sum on the right-hand side of (1.4) finite.
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Neither of the spaces D nor H∞ contains the other, but letting X
denote either space, and letting H(U) denote the space of all functions
holomorphic on U , endowed with the topology of uniform convergence
on compact subsets of U, we have the inclusions

X ⊂ H2 ⊂ A2 ⊂ H(U),

where all the embedding maps are continuous. In particular, a se-
quence that converges in any of these spaces also converges uniformly
on compact subsets of U.

1.5. Duality. For f ∈ A2 and g ∈ D, define

〈f, g〉 def
=

∞∑
n=0

f̂(n) ĝ(n).(1.5)

The coefficient descriptions (1.2) and (1.4) of A2 and D respectively,
along with the Cauchy-Schwarz inequality, show that the sum on the
right-hand side of this definition converges absolutely. The result is a
bilinear pairing between the two spaces with respect to which each is
isometrically the dual of the other. For example, a linear functional Λ
on A2 is continuous if and only if there is a function g ∈ D such that
Λ(f) = 〈f, g〉 for each f ∈ A2. Moreover, the norm of Λ is precisely
the D-norm of g.

This way of representing the dual space of A2 is more natural for
studying the backward shift than is the usual self-dual Hilbert space
representation. In the representation above the adjoint of B : A2 →
A2, is easily seen to be the forward shift Mz : D → D defined by
(Mzf)(z) = zf(z) for z ∈ U and f ∈ D (the notation “Mz” employs a
standard abuse of functional notation which will show up again later
on). More precisely,

〈Bf, g〉 = 〈f, Mzg〉 (f ∈ A2, g ∈ D).

In the same way B is the adjoint of Mz. By contrast, if we represent
the dual of A2 in the standard way, as A2 itself acting through the
Bergman space inner product

〈f, g〉A2
def
=

∞∑
n=1

f̂(n)ĝ(n)

n+ 1

then the adjoint of B on A2 becomes the operator

f →
∞∑
n=1

n+1
n
f̂(n− 1)zn,

i.e. Mz followed by a coefficient multiplier.
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1.6. Multipliers and commutants. The answer to the question:
“What is the commutant of the Bergman backward shift?” emerges,
not in terms of the Dirichlet space itself, but in terms of its multipliers.
A complex valued function ϕ on U is said to be a multiplier of D if
the pointwise product ϕf is in D for every f ∈ D. We use M(D) to
denote the collection of multipliers of D.

If ϕ ∈ M(D) then, because ϕ = ϕ · 1 and the constant function
1 belongs to D, we see that that ϕ ∈ D. Moreover, Banach algebra
considerations show that each multiplier is bounded on U [24, Theorem
10(iii), page 74], but it is known that there are bounded functions in D
that are not multipliers of D [27, Theorem 9]. ThusM(D) is a proper
subset of D ∩ H∞. We will say more about membership in M(D) in
the §1.8.

Each ϕ ∈ M(D) induces a linear transformation Mϕ : D → D
defined in the obvious way:

Mϕf = ϕf (f ∈ D).

A standard argument using the closed graph theorem, along with the
fact that convergence in D implies uniform convergence on compact
subsets of U, shows that Mϕ is a bounded operator on D. In the
resulting operator norm, M(D) is a commutative Banach algebra.

The following result characterizes the commutant of the Bergman
backward shift in terms of Dirichlet multipliers. It is well known, but
in order to keep our exposition reasonably self-contained we give a
proof. In this proof, and indeed for the rest of this paper, we adopt the
convention that if S is a bounded linear operator on D then S∗ denotes
the adjoint of S, computed with respect to the bilinear form (1.5). More
precisely, S∗ is that bounded operator on A2 defined by:

〈S∗f, g〉 = 〈f, Sg〉 (f ∈ A2, g ∈ D).(1.6)

As a particularly important special case of this: (Mz)
∗ = B.

1.7. Theorem. A bounded operator T on A2 commutes with the back-
ward shift B if and only if T = M∗

ϕ for some ϕ ∈M(D).

Proof. We prove the equivalent dual statement:

A bounded operator T on D commutes with the forward shift
Mz if and only if T = Mϕ for some ϕ ∈M(D).

Only one direction deserves attention. Suppose T commutes with Mz;
we claim that T = Mϕ where ϕ = T (1). An induction shows that T also
commutes with (Mz)

n = Mzn for each positive integer n, from which it
follows that T (zn) = zn ϕ, and then by linearity that Tf = ϕf for any
holomorphic polynomial f . Now if f ∈ D then its Taylor polynomials
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{fn} (center at the origin) converge inD to f , hence by the continuity of
T and our observation about the polynomial case, ϕfn = Tfn → Tf in
D, and therefore uniformly on compact subsets of U. Since ϕfn → ϕf
uniformly on compact subsets of U, we see that Tf = ϕf , hence ϕ is a
multiplier of D and T = Mϕ.

The result above has more general formulations; see [24, Theorem
3(b), page 62] for one that deals with weighted shift operators.

1.8. Sufficient conditions for multipliers. The previous result un-
derscores the importance of knowing just when a function holomorphic
on U is a Dirichlet multiplier. Characterization of these functions is a
significant problem to which much effort has been devoted. To illus-
trate the difficulty involved we note that Cochran, Shapiro and Ullrich
[9] have shown that for each f ∈ D the power series

∑∞
n=0±f̂(n)zn is a

Dirichlet multiplier for “almost every choice of sign ±.” Thus Dirichlet
multipliers cannot be characterized by any condition that involves only
the moduli of Taylor coefficients.

In 1980 Stegenga [26] gave a Carleson-type capacitary condition char-
acterizing the multipliers of D. Subsequently Brown and Shields stud-
ied the connection between Dirichlet multipliers and cyclic vectors of
Mz acting on D. Among their results is this one ([2, Corollary 7, page
70] and [6, Proposition 19, page 300]):

If ϕ is holomorphic on U with ϕ′ ∈ H1+ε for some ε > 0,
then ϕ ∈M(D).

It is interesting to note that this result fails if ε = 0: in [2] Axler and
Shields give an example of a Jordan domain with rectifiable boundary
for which the Riemann map (which necessarily has derivative in H1) is
not a Dirichlet multiplier.

Axler and Shields [2, Theorem 3] gave further interesting geometric
results about univalent multipliers of D. One of the most useful for our
purposes is this:

Every univalent mapping taking U onto a bounded starlike
domain is a Dirichlet multiplier.

(A domain G is “starlike” means that there is a point w0 ∈ G such
that for any w ∈ G the entire line segment joining w0 to w lies in G.)

1.9. A functional calculus for B. It follows quickly from the equa-
tion B = M∗

z that p(B) = M∗
p for any holomorphic polynomial p.

More generally it is easy to check that ‖Bn‖ =
√
n+ 1, from which it

follows that if
∑

n

√
n |ϕ̂(n)| < ∞ (a condition that is fulfilled if, for

example, ϕ has C2-smoothness on the closed unit disc) then the series



8 PAUL S. BOURDON AND JOEL H. SHAPIRO∑
n ϕ̂(n)Bn converges in the operator norm of A2 to a bounded linear

operator which deserves to be called ϕ(B). The operator-norm con-
vergence just noted insures that the MacLaurin series of ϕ converges
in the norm of M(D), so ϕ ∈ M(D), and all this norm convergence
makes it easy to check that once again ϕ(B) = M∗

ϕ.
Something like this argument works in full generality, but with the

weak operator topology replacing the norm topology. If ϕ is any function
in M(D), let ϕn denote the n-th arithmetic mean of the sequence
of Taylor polynomials of ϕ (center at the origin). It is known that
Mϕnf → Mϕf for every f ∈ D [24, Theorem 12, page 90]. Thus for
every f ∈ A2 and g ∈ D,

〈ϕn(B)f, g〉 = 〈f, Mϕng〉 → 〈f, Mϕg〉 = 〈M∗
ϕf, g〉

as n→∞. In other words, ϕn(B)→M∗
ϕ in the weak operator topology

of A2. This justifies the following all-encompassing definition of our
functional calculus for B:

ϕ(B)
def
= M∗

ϕ ∀ϕ ∈M(D).(1.7)

The next result, which is well known, asserts that the functional
calculus defined by (1.7) behaves as it should relative to spectra. For
the reader’s convenience we sketch a proof.

1.10. Spectral Mapping Theorem. If ϕ ∈M(D) then the spectrum

of ϕ(B) is ϕ(U), the closure of ϕ(U) in C.

Proof. The spectrum of ϕ(B) = M∗
ϕ : A2 → A2 coincides with the

spectrum of Mϕ : D → D. Thus we have only to prove that the

spectrum of Mϕ is ϕ(U), and for this it is enough to prove that Mϕ is
invertible on D if and only if ϕ is bounded away from zero on U.

For this we note an easy consequence of the product rule for dif-
ferentiation: A holomorphic function on U is a Dirichlet multiplier if
and only if its derivative multiplies D into A2. Suppose, then, that
ϕ ∈ M(D) is bounded away from zero on U. Then (1/ϕ)′ is bounded
by a constant multiple of ϕ′, and since ϕ′ multiplies D into A2, so does
(1/ϕ)′. Thus 1/ϕ is a Dirichlet multiplier, so Mϕ is invertible on D,
with inverse M1/ϕ.

Conversely, suppose Mϕ is invertible on D. Let T be its inverse.
Then for every f ∈ D,

f = MϕTf = ϕTf

so 1/ϕ is a Dirichlet multiplier, and T = M1/ϕ. In particular, 1/ϕ is
bounded on U, i.e. ϕ is bounded away from zero.
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The previous results transform our commutant hypercyclicity prob-
lem for the Bergman backward shift into a study of holomorphic func-
tions ϕ that are multipliers of the Dirichlet space. Our spectral map-
ping theorem and Kitai’s necessary condition for hypercyclicity (§1.2)

show that if ϕ(B) is to be hypercyclic, then ϕ(U) has to intersect the
unit circle. If ϕ(U) itself intersects ∂U then the work of Godefroy and
Shapiro mentioned after Theorem 1.3 shows that ϕ(B) is hypercyclic on
the Bergman space. Thus we need only consider multipliers ϕ for which
ϕ(U) lies either inside U or outside U, and for which ϕ(U) ∩ ∂U 6= ∅.

One further reduction: if ϕ(U) lies outside U then ϕ(B) is invertible

(its spectrum ϕ(U) does not contain the origin) and the spectrum of
its inverse, namely the collection of reciprocals of points in the original
spectrum, lies in U. Since an invertible operator is hypercyclic if and
only if its inverse is hypercyclic (see Corollary 2.2 below) this reduces
the formulation of our problem to the following:

1.11. Reduced commutant hypercyclicity problem. For which
multipliers ϕ of D, with ‖ϕ‖∞ = 1, is ϕ(B) hypercyclic on A2?

We note that G. Herzog and C. Schmoeger [16] have considered the
question of hypercyclicity for f(T ) where T is a bounded operator on a
Banach space, f is holomorphic on a neighborhood of the spectrum of
T , and T generalizes the notion of backward shift in that it is surjective
and the union of the null spaces of its powers is dense. Herzog and
Schmoeger show that in this case, if f has no zero on the spectrum
of T and |f(0)| = 1, then f(T ) is hypercyclic. In the special case
where T is the backward shift on A2 these hypotheses imply that f ∈
M(D) and f(U) intersects the unit circle, so the hypercyclicity of f(T )
follows from the above-mentioned results in [15]. This emphasizes the
difference between the work of [16], where the point is the generality
of the operator T , and our work here, which aims for precise results
about functions of a very special operator.

2. Hypercyclicity for ϕ(B)

Since M(D) ⊂ D ⊂ H2, every Dirichlet multiplier ϕ has a radial
limit function ϕ∗ defined for a.e. ζ on ∂U by

ϕ∗(ζ)
def
= lim

r→1−
ϕ(rζ).

To avoid trivialities we will always assume our multipliers ϕ are non-
constant. Here and throughout the rest of our work, “almost every”
refers to Lebesgue measure m on the unit circle. We normalize m to
have unit mass.
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In view of our previous reduction of the commutant hypercyclicity
problem for B, we are concerned with multipliers ϕ of D for which
‖ϕ‖∞ = 1. In this section we explore the connection between hyper-
cyclicity for ϕ(B) and the size of the precontact set

Eϕ
def
= {ζ ∈ ∂U : |ϕ∗(ζ)| = 1}

of ϕ. We show that the condition m(Eϕ) > 0 is sufficient, but not
necessary, for ϕ(B) to be hypercyclic on A2.

The hypercyclicity of B itself is the special case ϕ(z) ≡ z of our
sufficient condition. More generally ϕ(B) is hypercyclic whenever ϕ
is any finite Blaschke product (these are the only inner functions that
belong to D—see [18, page 250] or [25, Theorem 3.4]).

In a more geometric vein suppose ϕ maps U univalently onto a star-
like Jordan domain G ⊂ U whose boundary is rectifiable and contacts
∂U in a set of positive measure (for example G could be the top half
of U). By the Axler-Shields “starlike” theorem mentioned in §1.8,
ϕ ∈ M(D). By Carathéodory’s extension theorem, ϕ extends to a
homeomorphism of U onto G. The rectifiability of ∂G insures that
ϕ′ ∈ H1, hence:

(a) The boundary function ϕ∗ is absolutely continuous on ∂U, with
derivative ieiθϕ′(eiθ) (see, for example, [11, Theorem 3.11, page
42]), and

(b) ϕ′(eiθ) cannot vanish on a set of positive measure.

Thus

0 < m(ϕ(Eϕ)) =

∫
Eϕ

|ϕ′(ζ)| dm(ζ),

which guarantees that m(Eϕ) > 0, hence ϕ(B) is hypercyclic on A2.

Our proof of sufficiency will require a number of preliminary lem-
mas and constructions, all heading toward application of the following
characterization of hypercyclicity (see [15, Theorem 1.2, page 233]).

2.1. Proposition. A bounded linear operator T on a Banach space X
is hypercyclic if and only if: for every pair V,W of nonempty open
subsets of X there is a non-negative integer n such that T n(V ) ∩W 6=
∅.

Actually no linearity is required for this result: it applies equally well
to continuous self-maps of complete metric spaces, in which context it
is known as Birkhoff’s Transitivity Theorem (see [19, §7.2, Theorem
2.1, page 245]). The Proposition says that there is a point in X whose
orbit is dense precisely when the orbit of every nonvoid open set is
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dense. The transition between orbits of points and orbits of open sets
is negotiated by the Baire Category Theorem.

Note that T n(V ) ∩W is nonempty if and only if the same is true
of V ∩ T−n(W ). Thus Proposition 2.1 has the following corollary,
which played an important role in the reduction argument that pre-
ceded §1.11:

2.2. Corollary. If T is invertible on X then T is hypercyclic if and
only if T−1 is hypercyclic.

Our proof that m(Eϕ) > 0 is sufficient for hypercyclicity depends
critically on the properties of an operator that intertwines ϕ(B) with
a certain multiplication operator acting on L2. Here is the notation
required for the discussion.

2.3. Notation. Recall that L2 = L2(m), wherem is normalized Lebesgue
measure on the unit circle, and that similarly L∞ = L∞(m). For f ∈ L2

and n ∈ Z we let f̂(n) denote the n-th Fourier coefficient of f :

f̂(n)
def
=

∫
∂U
f(ζ) ζ

n
dm(ζ).

Previously, when f denoted a function holomorphic in U, we used f̂(n)
to denote the n-th Taylor coefficient of f in its expansion about the
origin. In what follows we will use both conventions, allowing the
context to determine the meaning. In case f belongs to H2 and n is a
non-negative integer, then f̂(n) can be correctly interpreted either as
the n-th Taylor coefficient of f or the n-th Fourier coefficient of the
radial limit function f ∗.

In keeping with our setup for the Bergman-Dirichlet duality, we rep-
resent the self-dual nature of L2, not in the usual conjugate-linear fash-
ion involving the Hilbert space inner product, but instead through the
bilinear form

〈f, g〉 def
=

∞∑
n=−∞

f̂(n)ĝ(n) =

∫
∂U
f(ζ)g(ζ) dm(ζ) (f, g ∈ L2)(2.1)

(note that we use the same notation as for the pairing (1.5) between
A2 and D, relying upon the context to determine the meaning).

In what follows, subsets of ∂U are always assumed to be measurable.
For E ⊂ ∂U, we let L2(E) denote the subspace of L2 consisting of func-
tions that vanish almost everywhere off of E. Relative to the duality
pairing (2.1) the dual space of L2(E) is L2(E), where E denotes the
set of complex conjugates of points in E.
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It is easy to check that if ψ ∈ L∞ then, relative to the pairing
(2.1), the adjoint of the multiplication operator Mψ : L2 → L2 is the

multiplication operator induced by the function ζ → ψ(ζ). In the spirit
of conserving notation we simply refer to this reflected function as ψ(ζ),
letting the context determine whether we are discussing the function
or one of its values. Thus: (Mψ)∗ = Mψ(ζ).

Finally, we will no longer use a special notation for radial limits of
functions in the Hardy or Dirichlet spaces. Thus for such a function
f , the notation f(z) will denote the value of f at z if z ∈ U, and the
radial limit of f at z if z ∈ ∂U. In other words, we regard f to be
extended to almost every point of the unit circle via radial limits. If
there is any danger of confusion we will write “f |∂U” to denote this
radial limit function.

2.4. The complex Riesz projection. This is the operator Q : L2 →
A2 defined by

Q[f ](z)
def
=

∞∑
n=0

f̂(n)zn (f ∈ L2, z ∈ U),(2.2)

so that Q̂[f ](n) = f̂(n) for all integers n ≥ 0. While not itself a
projection, Q is related in an obvious way to the usual Riesz projection
which takes L2 orthogonally onto the subspace of boundary restrictions
of H2-functions.

2.5. Lemma: Properties of Q.

(a) Q is a compact operator L2 → A2.
(b) Q∗ : D → L2 is the map g → g|∂U.
(c) For E ⊂ ∂U the adjoint of Q : L2(E) → A2 is the operator
D → L2(E) given by:

Q∗g = (g|∂U)χE (g ∈ D).

Proof. (a) Q is the composition of itself, viewed as an operator from
L2 into H2 (clearly a bounded operator—in fact, a contraction) and
the identity map from H2 into A2, which is easily seen to be compact.

(c) Suppose f ∈ L2(E) and g ∈ D. From (2.1) and the fact that f
vanishes a.e. off E we have:
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〈f, Q∗g〉 def
= 〈Qf, g〉 =

∞∑
n=0

f̂(n)ĝ(n)

=

∫
∂U
f(ζ)g(ζ) dm(ζ)

=

∫
∂U
χE(ζ)f(ζ)g(ζ) dm(ζ)

=

∫
∂U
f(ζ)(gχE)(ζ) dm(ζ)

= 〈f, (g|∂U)χE〉,
which is the desired result.

(b) This is the special case E = ∂U of (c).

2.6. Corollary. If E ⊂ ∂U has positive measure then the image of
L2(E) under Q is a dense subspace of A2.

Proof. It is enough to prove that the adjoint of Q : L2(E) → A2 is
one-to-one. By Lemma 2.5 this is the operator that takes g ∈ D to
χE(g|∂U). If this latter function is identically zero, then g must vanish
identically on E. Since g ∈ D ⊂ H2 and E has positive measure, g
must vanish identically on U. Thus the operator in question is one-to-
one.

The next result shows that for each Dirichlet multiplier ϕ, the Riesz
projection Q intertwines ϕ(B) with the multiplication operator Mϕ(ζ) :

L2 → L2 (a bounded operator on L2 because ϕ ∈ H∞). The special
case ϕ(z) ≡ z is particularly easy to understand since the operator in
question is now Mζ , which simply performs a leftward shift on Fourier

coefficients of L2 functions.

2.7. Proposition. ϕ(B)Q = QMϕ(ζ) for each ϕ ∈M(D).

Proof. For each g ∈ D:

(Q∗Mϕ)(g) = Q∗(ϕg) = (ϕg)|∂U = Mϕ(ζ) (g|∂U) = (Mϕ(ζ)Q
∗)(g),

where the second and the last equalities follow from part (c) of Lemma
2.5, and the symbol Mϕ(ζ) denotes the operator of multiplication by
ϕ|∂U, acting on L2. Thus Q∗Mϕ = Mϕ(ζ)Q

∗, from which the desired



14 PAUL S. BOURDON AND JOEL H. SHAPIRO

result follows upon taking adjoints (recalling that the adjoint of Mϕ(ζ)

is Mϕ(ζ), and that of Mϕ is, by definition, ϕ(B)).

We can now complete the proof of our sufficient condition for hyper-
cyclicity. For reference we restate it as:

2.8. Theorem. Suppose ϕ ∈M(D) and ‖ϕ‖∞ = 1. If Eϕ has positive
measure then ϕ(B) is hypercyclic.

Proof. We are assuming that ϕ is a Dirichlet multiplier mapping U
into itself whose precontact set Eϕ has positive measure. To simplify
notation for the rest of this proof, let T = ϕ(B). To prove that T is
hypercyclic we will use Proposition 2.1, i.e. we will show that for each
pair V,W of nonvoid open subsets of A2 there is a non-negative integer
n such that T n(V ) ∩W 6= ∅.

Fix such a pair of open sets. Let Eϕ denote the set of complex con-
jugates of points in Eϕ—also a subset of ∂U having positive measure.
By Corollary 2.6 there exist functions F and G in L2(Eϕ) such that
Q[F ] ∈ V and Q[G] ∈ W . Since the bounded functions in L2(Eϕ) are
dense and the operator Q is continuous, we may assume further that
F and G are bounded. For n a non-negative integer let

fn
def
= Q[ϕ(ζ)nF (ζ)]

and note that f0 = Q[F ] ∈ V . Our intertwining relationship (Proposi-
tion 2.7) now shows that Tfn = fn+1 for each n, i.e. that {fn} is the
T -orbit of f0.

We claim that ‖fn‖ → 0 as n → ∞. For this observe that, since ϕ
is a self-map of the unit disc, ϕn → 0 uniformly on compact subsets
of U as n → +∞. Since the sequence {ϕn : n ≥ 0} is uniformly
bounded on U it is bounded in H2. Because of this and the uniform
convergence on compact sets, ϕn → 0 weakly in H2, and therefore the
corresponding sequence of boundary functions converges weakly to zero
in L2. Because F ∈ L∞ the same holds for the sequence {ϕn(ζ)F (ζ) :
n ≥ 0}, and therefore for the reflected sequence {ϕn(ζ)F (ζ) : n ≥ 0}.
This reveals the sequence {fn} as the Q-image of a weakly null sequence
in L2, and since Q : L2 → A2 is compact (Lemma 2.5), fn → 0 in the
A2-norm as n→∞.

Informally speaking, we have produced a “forward null-orbit” {fn},
with initial point in V . A similar argument yields a “backward null-
orbit” with initial point in W . Let

gn
def
= Q[ϕ(ζ)−nG(ζ)],
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(so that, in particular, g0 = Q[G] ∈ W ) and note that, since ϕ(ζ) has
modulus one on Eϕ, the function ϕ(ζ)−n is, on Eϕ, just the complex

conjugate of ϕ(ζ)n. By the same arguments we used above, Tgn = gn−1

for each n > 0, and ‖gn‖ → 0 as n→∞.
To complete the proof, for each non-negative integer n let hn =

f0 + gn. Recalling that gn → 0 we see that hn → f0, hence hn ∈ V for
all sufficiently large n. Now the “orbit” properties of {fn} and {gn},
along with the fact that fn → 0, imply that

T nhn = fn + g0 → g0 (n→∞),

hence T nhn ∈ W for all sufficiently large n. So if n is large enough
then T nhn is in both T n(V ) and W , and our proof is complete.

The converse of Theorem 2.8 is not true. This is a consequence of
Theorem 2.12 below, which produces a Dirichlet multiplier ϕ : U→ U
with Eϕ a single point, yet for which ϕ(B) is hypercyclic on A2. Once
a few prerequisites have been set out, the construction is simple and
intuitive; it was suggested to us by Fedor Nazarov.

2.9. Smoothness classes. Suppose n is a non-negative integer. We
say a holomorphic function f on U is of class C(n) if its n-th complex
derivative f (n) has a continuous extension to U (in this context we use
the notation f (0) for f itself). We let H(n)(U) denote the collection
of all such functions. It is easy to check that the classes H(n)(U) de-
crease as n increases, and that H(n)(U) is the collection of functions f
holomorphic on U and continuous on U for which f(eit) has n continu-
ous derivatives with respect to t. We denote the intersection of all the
classes H(n)(U) by H(∞)(U) (not to be confused with the space H∞ of
bounded holomorphic functions on U).

There is a natural metric topology on H(∞)(U) in which a sequence
of functions converges if and only if each derivative converges uniformly
on U (or equivalently, on U). A metric that does the job is:

d(f, g) =
∞∑
n=0

2−n
‖f (n) − g(n)‖∞

1 + ‖f (n) − g(n)‖∞
(f, g ∈ H(∞)(U)).

Similarly one can define a metric on the space C(∞)([−1, 1]) of infinitely
differentiable functions γ : [−1, 1] → C (where differentiability at the
endpoints is defined in terms of one-sided limits); we leave the details
to the reader. From now on we take it for granted that the spaces
H(∞)(U) and C(∞)([−1, 1]) are topologized by these metrics.
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2.10. Jordan domains. The plane region interior to a Jordan curve
is called a Jordan domain. For definiteness we will always parameterize
Jordan curves by functions defined on [−1, 1]. For 0 < n ≤ ∞ we say
a Jordan domain is of class C(n) if its boundary is parameterized by a
function in C(n)([−1, 1]). Such a parameterizing function is character-
ized within C(n)([−1, 1]) by the fact that it is one-to-one on (−1, 1] and
both the function and its derivatives through order n take the same
values at the endpoints −1 and 1.

Suppose G is a Jordan domain and ϕ a univalent (holomorphic) map
of U onto G. A famous result of Carathéodory asserts that ϕ extends
to a homeomorphism of U onto the closure of G (see [20, §14.18–14.20]
for example). Earlier Painlevé, proved the existence of this extension
for Jordan domains G of class C∞, in which case he showed that ϕ
belongs to H(∞)(U). For more on the history of this result, see the
interesting expository paper [4] of Bell and Krantz.

We are going to consider the class J (∞) of C∞ Jordan curves γ :
[−1, 1] → C that surround the origin. Let Gγ denote the Jordan do-
main with boundary γ (so 0 ∈ Gγ), and let ϕγ be the Riemann map of
U onto Gγ (ϕγ(0) = 0 and ϕ′γ(0) > 0). We assume without change of
notation that ϕγ is extended by the theorem of Painlevé-Carathéodory

to U. Thus the map γ → ϕγ takes J (∞) into H(∞)(U). It will be
important for our purposes to know that this map is continuous. This
is the content of the

Stability Theorem. [3, Theorem 26.1, page 112].The map γ → ϕγ is

continuous when both J (∞) and H(∞)(U) have their natural C∞ topolo-
gies.

2.11. The connection with multipliers. The work of §1.9 shows
that the identity map embeds the smoothness class H(2)(U) into the
space M(D) of Dirichlet multipliers, and that this embedding is con-
tinuous if each space is given its natural norm. Recall that the map
ϕ → Mϕ is an isometry of M(D) into L(D), the space of bounded
operators on D, and that the adjoint map is an isometry on L(H) for
any Hilbert space H. Taken together, these observations show that
the map γ → ϕγ(B) takes the space J (∞) of C∞ Jordan curves that
surround the origin continuously into the (normed) space of bounded
operators on A2.

With these preliminary results in hand we proceed to the construc-
tion of our example. Here is the official statement of our result.



HYPERCYCLIC OPERATORS 17

2.12. Theorem. There is a holomorphic map ϕ that takes U univa-
lently onto a C∞ starlike Jordan subdomain of U such that Eϕ is a
single point, yet ϕ(B) is hypercyclic on A2.

Proof. We break the proof into several steps.

Step I: Choose a basis. Fix a countable basis of open subsets for the
topology of A2, and enumerate the pairs of these basis elements as
{(Vj,Wj)}∞0 (so, in this list of pairs, each of the original basis elements
will show up infinitely often in both the first and second positions).

For each index j choose an open subset W̃j of Wj that has its closure
contained in Wj.

Step II. Some starlike Jordan domains. Suppose ρ : [−1, 1] → [1
2
, 1]

is a C∞ function with ρ(n)(−1) = ρ(n)(1) for each n = 0, 1, 2, . . . . We
associate to ρ the C(∞) Jordan curve γρ defined by:

γρ(t) = ρ(t)eiπt (t ∈ [−1, 1]).

Then γρ bounds a C∞ Jordan domain

Gρ = {reiθ : 0 ≤ r < γρ(θ)}
that contains the origin, with respect to which it is starlike. The ex-
ample we are going to construct will be the Riemann map onto just
such a domain.

Step III. An induction. Fix a strictly decreasing sequence {θn}∞0 of
positive numbers with 0 < θn ≤ 1, θ0 = 1, and θn → 0.

We are going to produce:

(a) A sequence {ρn}∞0 of functions as in Step II such that for each n:
(i) ρn(t) = 1 ⇐⇒ t ∈ [−θn, θn],
(ii) ρn+1 ≤ ρn pointwise on [−1, 1],

(iii) d(ρn, ρn−1) < 1/2n, where d is the metric on C(∞)([−1, 1]) as
defined in §2.9.

(b) A sequence of positive integers {νn}∞0 and a sequence of vectors
{fn}∞0 in A2 such that for each index n we have fn ∈ Vn and

ϕn(B)νjfj ∈ W̃j ∀ 0 ≤ j ≤ n,

where ϕj = ϕρj is the Riemann map of U onto the C∞ starlike
Jordan domain Gj = Gρj defined as in Step II.

The argument is by induction. For n = 0 let ρ0(t) ≡ 1, so that
G0 = U and ϕ0 is the identity map of U. Then ϕ0(B) = B is hypercyclic
on A2, so by Proposition 2.1 there exists a non-negative integer ν0

such that ϕ0(B)ν0(V0) ∩ W̃0 6= ∅, i.e. there exists f0 ∈ V0 such that

ϕ0(B)ν0f0 ∈ W̃0.
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Suppose n ≥ 0 and that we have produced the appropriate C(∞)

functions ρ0, . . . ρn, the positive integers ν0, . . . νn, and the A2-functions
f0, . . . fn. To get to the next stage, fix a non-negative C(∞) function h
on [−1, 1], whose values and all of whose derivatives coincide at both
+1 and −1, and whose zero-set is the interval [−θn+1, θn+1]. For ε > 0
let ρn+1 = ρn − εh, where ε remains to be chosen. For ε sufficiently
small ρn+1 has the three properties (a) listed above, with n+1 in place
of n (the third of these comes from the fact that scalar multiplication
is continuous in the “C(∞) topology”). Let ϕn+1 = ϕρn+1 (a map which
also depends on the still-to-be-chosen parameter ε).

By the discussion of §2.10 the map ρ → ϕρ(B) is continuous from
C(∞)([−1, 1]) into L(A2), hence by choosing ε sufficiently smaller we
may insure that ϕn+1 is sufficiently close to ϕn so that ϕn+1(B)νjfj ∈
W̃j for 0 ≤ j ≤ n. Now ϕn+1(U)∩∂U is the arc {eit : |t| ≤ θn+1}, hence

(because ϕn+1 is a homeomorphism on U), the precontact set E(ϕn+1)
is also an arc of ∂U. Thus ϕn+1(B) is hypercyclic on A2 by Theorem
2.8, so there exists a vector fn+1 ∈ Vn+1 and a positive integer νn+1

such that ϕn+1(B)νn+1fn+1 ∈ W̃n+1. This completes the induction.

Step IV. Passing to the limit. We have arranged matters so that the
sequence {ρn} converges in C(∞)([−1, 1]) to a function ρ ∈ C(∞)([−1, 1])
with values in the interval [1

2
, 1], and which takes the value 1 only at the

origin. Let G = Gρ, a C(∞) Jordan sub-domain of U that contains the
disc {|z| < 1

2
}, is starlike with respect to the origin, and whose closure

touches ∂U only at the point 1. Let ϕ be the Riemann map taking U
onto G, so ϕ is non-constant and extends to a C(∞) homeomorphism
taking U onto the closure of G. Thus Eϕ = ϕ−1(G ∩ ∂U) = ϕ−1(1) is
a single point.

The stability results of §2.10 show that ϕn(B)→ ϕ(B) in the norm of
L(A2), so by (b) of Step III, for each non-negative integer j the vector

ϕ(B)νjfj belongs to the closure of W̃j, and therefore to Wj. Thus for
each j we have fj ∈ Vj and ϕ(B)νjfj ∈ Wj, so ϕ(B) is hypercyclic, by
Proposition 2.1. This completes the construction of our example.

We close this section with a subordination theorem that reinforces
the connection between geometric properties of ϕ and hypercyclic be-
havior for ϕ(B). It shows, for example, that if G is a simply connected
subdomain of U that contains the one promised by Theorem 2.12, and
if the Riemann map ψ of U onto G is a Dirichlet multiplier (e.g. if ∂G
is sufficiently smooth, or G is starlike), then ψ(B) will be hypercyclic
on A2.
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2.13. Theorem. Suppose ϕ and ψ belong toM(D), both are univalent
self-mappings of U, and ϕ(U) ⊂ ψ(U). If ϕ(B) is hypercyclic on A2

then so is ψ(B).

Proof. ω = ψ−1◦ϕ is a univalent self-map of U, so it induces a bounded
composition operator Cω : D → D defined by:

Cωf = f ◦ ω (f ∈ D).

A little calculation shows that CωM
n
ψ = Mn

ϕCω for each non-negative
integer n hence, upon taking adjoints,

ψ(B)nC∗ω = C∗ωϕ(B)n (n = 0, 1, 2, . . . ).(2.3)

Now Cω is one-to-one on D so its adjoint, viewed as an operator on A2,
has dense range. Thus if f ∈ A2 is hypercyclic for ϕ(B) then equation
(2.3) shows that C∗ωf is hypercyclic for ψ(B).

3. Non-hypercyclicity and degree of contact

In this section we give a criterion for ϕ(B) to be non-hypercyclic, and
we apply it to show that if the closure of ϕ(U) touches the boundary of
the unit circle at just finitely many points, and approaches those points
in a certain “exponentially limited” way, then ϕ(B) is not hypercyclic.
This limitation holds if, for example, ϕ(U) lies in a subdisc of U that is
tangent to ∂U at a single point; hence our result shows, in particular,
that the operator (I + B)/2 is not hypercyclic on A2. Note that we
have already seen an extreme case of this phenomenon: if ϕ(U) does
not approach the unit circle at all, i.e. if ‖ϕ‖∞ < 1, then ϕ(B) is
not hypercyclic because its spectrum (the closure of ϕ(U)) does not
intersect the unit circle.

Our argument hinges on the following simple observation:

3.1. Lemma. Suppose X is a Banach space and T a bounded linear
operator on X. If there exists Λ 6= 0 in X∗ such that the orbit {T ∗nΛ}∞0
is bounded in X∗, then T is not hypercyclic.

Proof. Our assumption is that there is a positive number M such that
‖T ∗nΛ‖ ≤M for every non-negative integer n. Let x be any vector in
X. Then

|Λ(T nx)| = |(T ∗nΛ)(x)| ≤ ‖T ∗nΛ‖‖x‖ ≤M ‖x‖,
i.e. the sequence of complex numbers {Λ(T nx)}∞0 is bounded. Thus the
orbit {T nx}∞0 is not dense in X, so x cannot be a hypercyclic vector
for T . Since x is arbitrary, T is not hypercyclic.

This lemma leads to a useful sufficient condition for non-hypercyclicity
of operators in the commutant of B.
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3.2. Theorem. Suppose ϕ ∈ M(D) with ‖ϕ‖∞ = 1, and that there
exists a function f ∈ D\{0} and a positive number β such that

|f(z)| ≤ β(1− |ϕ(z)|) ∀z ∈ U.(3.1)

Then ϕ(B) is not hypercyclic on A2.

Proof. We will show that the orbit {Mn
ϕf}∞0 is bounded in D, from

which the non-hypercyclicity of ϕ(B) = M∗
ϕ on A2 will follow from

Lemma 3.1. The argument begins with a simple estimate that is easily
derived from the chain rule, the Cauchy-Schwarz inequality, and the
fact that ‖ϕ‖∞ = 1:

‖ϕnf‖D ≤ 2‖f‖D + n

(∫
U
|ϕ|2(n−1)|f |2|ϕ′|2 dλ

)1/2

.

This, along with condition (3.1), yields

‖ϕnf‖D ≤ 2‖f‖D + β n

(∫
U

[
|ϕ|n−1(1− |ϕ|)

]2 |ϕ′|2 dλ)1/2

≤ 2‖f‖D + β ‖ϕ‖D,
where the last inequality follows from the fact that xn−1(1−x) < 1/n for
0 ≤ x ≤ 1. Thus the Mϕ-orbit of f is bounded in D, as promised.

Our first application of Theorem 3.2 requires some descriptive ter-
minology. Suppose G is a subset of U and η ∈ ∂U lies in the closure
(in C) of G. Then we say G contacts the unit circle at η. Suppose
h : [0, 2] → [0,∞) is a non-negative, continuous, strictly increasing
function with h(0) = 0. We say G has h-contact with the unit circle at
η if there exists an open disc ∆ with center at η such that

h(|η − w|) ≤ 1− |w| ∀w ∈ G ∩∆.(3.2)

The faster h approaches 0 as x→ 0+, the more closely G is allowed
to contact the unit circle at η. For example, if G is confined to a
triangle in U with a vertex at η then it will have h-contact with ∂U
at η for h(x) = Cx, for some C > 0. If, instead, G lies in a proper
sub-disc of U whose boundary is tangent to ∂U at η, then h(x) = Cx2

will work for some C > 0. If, more generally, G has h-contact with ∂U
at η for h(x) = cxα for some C > 0 and α ≥ 1 we say G has finite order
contact with ∂U at η. Significantly closer approach to the boundary
results from the function h(x) = β−1 exp(−α/xγ) where α, β, and γ
are positive, in which case we say G has exponential contact with ∂U
of order ≤ γ at η.
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3.3. Corollary. Suppose ϕ ∈ M(D) with ‖ϕ‖∞ = 1 and that ϕ(U)
contacts the unit circle at only a finite number of points. If, at each of
these points, ϕ(U) has exponential contact with the circle of order < 1,
then ϕ(B) is not hypercyclic.

Proof. Suppose first that ϕ(U) contacts U at just one point, which
without loss of generality we may assume is the point 1. Then our
hypothesis on ϕ is that there exist positive numbers α and β, and
0 < γ < 1, such that

exp

{ −α
|1− ϕ(z)|γ

}
≤ β(1− |ϕ(z)|) ∀z ∈ U.(3.3)

We claim that for a suitable a > 0 the function f defined below belongs
to D and satisfies inequality (3.1):

f
def
= exp

{
− a

(1− ϕ)γ

}
.

The key here is that Re (1 − z)−1 > 0 (in fact it is > 1/2) for each
z ∈ U . Thus the same is true of Re (1 − ϕ(z))−1, and so for the
argument of this last quantity we may choose a unique value t(z) in
the open interval (−π/2, π/2). Consequently every z ∈ U ,

Re
1

(1− ϕ(z))γ
=

cos(γt(z))

|1− ϕ(z)|γ ≥
cos(γπ/2)

|1− ϕ(z)|γ ,

whereupon

|f(z)| = exp

{
Re

−a
|1− ϕ(z)|γ

}
≤ exp

{−a cos(γπ/2)

|1− ϕ(z)|γ
}
.(3.4)

Upon using the chain rule to compute f ′, taking absolute values, and
then substituting inequality (3.4) into the result, we obtain:

|f ′(z)| ≤ |ϕ′(z)| a

|1− ϕ(z)|γ+1
exp

{−a cos(γπ/2)

|1− ϕ(z)|γ
}

for each z ∈ U. Since ϕ ∈ D we have ϕ′ ∈ A2. Note that on the
right-hand side of the last inequality, the term that multiplies |ϕ′(z)|
is bounded on U. Thus also f ′ ∈ A2, i.e. f ∈ D for every a > 0.

Finally, set a = α/ cos(γπ/2) and observe that thanks to (3.3) and
(3.4) the function f now satisfies condition (3.1). Thus all the hypothe-
ses of Theorem 3.2 are satisfied, and therefore ϕ(B) is not hypercyclic.

Suppose now that ϕ(U) contacts ∂U at just the n points η1, η2, . . . , ηn.
Then we can choose α, β > 0, γ < 1, and open discs ∆1, . . . ,∆n, with
∆j centered at ηj, so that if h(x) = β−1 exp(−α/xγ), then for each j,

h(|ηj − ϕ(z)|) ≤ 1− |ϕ(z)| ∀z ∈ ∪nj=1∆j.
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Let

fj = exp

{ −a
(ηj − ϕ)γ

}
,

where, as before, a = α/ cos(γπ/2). Then by the previous argument,
each fj has derivative with modulus that is bounded on U by a constant
multiple of |ϕ′|, so the same is true of

f
def
= f1f2 · · · fn

(because each fj is bounded on U). Thus f ∈ D. Finally, for each
index j we know that |fj| < 1 on U, and that fj satisfies (3.1) whenever
ϕ(z) ∈ ∆j. Since ϕ(z) is bounded away from the unit circle for z in the
complement of ϕ−1

(
∪nj=1∆j

)
, it follows that f satisfies (3.1) on all of

U, possibly with different constants. Thus once again f and ϕ satisfy
the hypotheses of Theorem 3.2, so ϕ(B) is not hypercyclic.

In case ϕ is analytic in a neighborhood of a point ζ0 of its precontact
set, then there is this dichotomy: either ϕ(U) has finite order contact
with ∂U at ϕ(ζ0), or |ϕ| ≡ 1 on some arc centered at ζ0.

To see why this is so, suppose (without loss of generality) that ζ0 = 1,
and that ϕ(U) does not have finite order contact with ∂U at ϕ(1).
We are assuming that ϕ is analytic in a disc ∆ centered at 1. Let
I = ∆ ∩ ∂U, and for eit ∈ I set g(t) = 1 − |ϕ(eit)|2. Then g is real-
analytic on I, and our contact hypothesis guarantees that for each
fixed positive integer n there exists a real sequence tj → 0 such that
|g(tj)| = o(|ϕ(eitj)−ϕ(1)|n) as j →∞. Since ϕ is analytic at 1 we know
in addition that |ϕ(eit) − ϕ(1)| = O(|t|) for eit ∈ I with t → 0, hence
|g(tj)| = o(|tj|n) as j → ∞. Thus the n-th derivative of g vanishes at
0. Since n is an arbitrary positive integer and g is real-analytic on I,
this shows that g is constant on I. But also g(0) = 1, so g ≡ 1 on I,
as promised.

3.4. Corollary. Suppose ϕ ∈ M(D) is a holomorphic self-map of U
for which Eϕ is a finite set at each point of which ϕ is analytic. Then
ϕ(U) makes finite order contact with ∂U at each point of ϕ(Eϕ), and
therefore ϕ(B) is not hypercyclic.

Proof. If ϕ(U) does not make finite order contact with ∂U at ϕ(ζ0) for
some ζ0 ∈ Eϕ then we saw above that |ϕ| ≡ 1 on an arc of ∂U about
ζ0, contradicting the hypothesis that Eϕ is finite.

We have an even stronger dichotomy in case ϕ is analytic across
every point of the unit circle.
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3.5. Corollary. If ϕ ∈ M(D) is a self-map of U that is analytic in a
neighborhood of the closed unit disc, then ϕ is hypercyclic on A2 if and
only if ϕ is a finite Blaschke product.

Proof. If ϕ is a finite Blaschke product then it is analytic in a neigh-
borhood of U and therefore a multiplier of D. Since |ϕ| ≡ 1 on ∂U it
follows from Theorem 2.8 that ϕ(B) is hypercyclic.

Conversely, if ϕ(B) is hypercyclic then by Corollary 3.4 Eϕ must
have infinitely many points, hence the function g(t) = 1 − |ϕ(eit)|2,
which is now real-analytic on the whole real line, vanishes on a set
having a finite limit point, and therefore on all of R. Thus |ϕ| ≡ 1 on
∂U, so in view of its analyticity across the entire unit circle, ϕ must be
a finite Blaschke product.

To this point we have shown that limited geometric contact between
ϕ(U) and ∂U leads to non-hypercyclicity. Thus limited contact between
the spectrum of ϕ(U) and ∂U leads to non-hypercyclicity. The next
result shows that, even if ϕ is univalent the geometry of the spectrum
of ϕ(B) cannot tell the whole story.

3.6. Example. There exists a univalent Dirichlet multiplier ϕ : U →
U such that ϕ(U) is dense in U (so that the spectrum of ϕ(B) is U ),
yet for which ϕ(B) is not hypercyclic on A2.

Proof. First we need another sufficient condition for non-hypercyclicity.
Suppose that ϕ ∈M(D) maps U into itself, and that∫

U

|ϕ′(z)|2
(1− |ϕ(z)|2)2

dλ(z) <∞.(3.5)

We claim that ϕ(B) is not hypercyclic on A2.
For this it is enough to show, by Lemma 3.1, that the orbit {(Mϕ)n1} =
{ϕn} is bounded in D. The calculation proceeds along the lines of the
proof of Theorem 3.2. For each positive integer n we have from the
definition (1.3) of the norm in D and the chain rule:

‖ϕn‖2
D = ‖ϕn‖2

2 + n2

∫
U
|ϕ|2(n−1)|ϕ′|2 dλ

= ‖ϕn‖2
2 + n2

∫
U

[
|ϕ|(n−1)(1− |ϕ|2)

]2 |ϕ′|2
(1− |ϕ|2)2

dλ

≤ 1 + 4

∫
U

|ϕ′|2
(1− |ϕ|2)2

dλ,
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where in the last line we have used the fact that xn−1(1 − x2) ≤ 2/n
for 0 ≤ x ≤ 1. Thus the orbit {Mn

ϕ1} is a bounded subset of D, as
promised.

Now we can give our example; this one comes directly from [5], where
it is used to construct a compact composition operator on the “little
Bloch space” for which the image of the inducing map is dense in U.
Let {ωk : k = 1, 2, . . . } be a countable dense subset of ∂U, and let
{hn} be a sequence of positive numbers less than (say) 1/2, such that∑∞

k=1 hk <∞. For each positive integer k let Ek denote the open region
in the right-half disk bounded between the curve y = hk(x − 1)2 and
its reflection in the x-axis. An easy estimate using polar coordinates
based at the point 1 shows that∫

Ek

dλ(w)

(1− |w|2)2
= O(hk) as k →∞.(3.6)

Set G =
(

1
2
U
)
∪ (∪∞k=1ωkEk) , and observe that G is star-like with

respect to the origin. Thus G is simply connected, and upon letting ϕ
denote a univalent mapping of U onto G we see from [2, Theorem 3]
that ϕ ∈ M(D). Now G contains the ray {rωk : 0 ≤ r < 1} for each
k, and since {ωk} is dense in ∂U it follows that G is dense in U.

Nevertheless, we claim that ϕ satisfies the integrability condition
(3.5) above, so that that ϕ(B) is not hypercyclic on A2. To see this,
use the univalence of ϕ to effect a change of variable that begins the
following chain of estimates:∫

U

|ϕ′(z)|2
(1− |ϕ(z)|2)2

dλ(z) =

∫
G

dλ(w)

(1− |w|2)2

≤
(∫

1
2
U

+
∑
k

∫
ωkEk

)
dλ(w)

(1− |w|2)2

≤ 1

3
+ const.

∑
k

hk

< ∞,
where the next-to-last line follows from (3.6), and the last one from the
choice of the sequence {hk}.

We remark that condition (3.5) asserts that ϕ(U) has finite hyperbolic
area, where the multiplicity of the mapping is figured into the calcu-
lation. This same condition is easily seen to characterize the Hilbert-
Schmidt composition operators on the Dirichlet space.
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4. Non-hypercyclicity with large precontact sets

In this section we construct a class of non-hypercyclic ϕ(B)’s where
the precontact set of ϕ is, in the sense of Hausdorff dimension, as large
as possible.

Recall that in Theorem 2.8 we saw that if ϕ ∈M(D) with ‖ϕ‖∞ = 1,
and if the precontact set Eϕ has positive measure, then ϕ(B) is hyper-
cyclic on A2. We will show below (Theorem 4.3) that in this result
the condition “m(Eϕ) > 0” cannot be replaced by “Eϕ has Hausdorff
dimension one.” Our construction depends on Carleson’s characteri-
zation of the boundary zeros of analytic functions in U that extend
smoothly to the boundary, and on the following corollary of Theorem
3.2.

4.1. Proposition. Suppose ϕ ∈M(D) and∫
∂U

log(1− |ϕ∗|) dm > −∞.(4.1)

Let F denote the outer function whose modulus on ∂U coincides a.e.
with 1− |ϕ∗|. If F ∈ D, then ϕ(B) is not hypercyclic on A2.

Proof. In view of Theorem 3.2 it will be enough to show that

|F (z)| ≤ 1− |ϕ(z)| ∀z ∈ U.(4.2)

Let a ∈ U be arbitrary and let ψa be the self-inverse automorphism of
U defined by

ψa(z) =
a− z
1− āz .

Because F is outer, so is F ◦ ψa (if F ◦ ψa had an inner factor I, then
F would have an inner factor I ◦ ψa). Thus,

|F (a)| = |(F ◦ ψa)(0)| = exp

(∫
∂U

log |(F ◦ ψa)∗| dm
)
.

Now apply Jensen’s Inequality and the fact that (F ◦ψa)∗ = 1−|ϕ∗◦ψa|
almost everywhere on ∂U to obtain

|F (a)| ≤
∫
∂U

(1− |ϕ∗ ◦ ψa|) dm.

Observe that the integral on the right of the preceding inequality is
less than or equal to 1 − |(ϕ ◦ ψa)(0)| = 1 − |ϕ(a)|; thus we have
F (a) ≤ 1 − |ϕ(a)|. Since a ∈ U is arbitrary (4.2) holds and the proof
is complete.
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The question of how to determine the regularity of an outer func-
tion F from the regularity of its modulus has drawn much attention.
Carleson [7] has given a condition on |F ∗| that is necessary and suf-
ficient for F ∈ D. Although Carleson’s condition is often difficult to
verify, Aleksandrov, Džrbašjan, and Havin [1] succeeded in using it to
show that if h : ∂U→ [0,∞] has integrable logarithm and is absolutely
continuous on ∂U with derivative in L2(m), then the outer function
with boundary-modulus equal to h lies in D. This result, along with
Proposition 4.1, yields the following:

4.2. Corollary. Suppose ϕ is a holomorphic self-map of U that obeys
the logarithmic integrability condition (4.1). If, in addition, ϕ′ ∈ H2

then ϕ ∈M(D) and ϕ(B) is not hypercyclic on A2.

Proof. Recall from §1.8 that the condition ϕ′ ∈ H2 guarantees that ϕ
is a Dirichlet multiplier. It also renders the radial limit function ϕ∗

absolutely continuous on ∂U, with derivative in L2. Thus the same is
true of 1 − |ϕ∗|2, so the result of Aleksandrov, Džrbašjan, and Havin
guarantees that the outer function F with boundary-modulus 1−|ϕ∗|2
lies in D. The argument we gave to prove Proposition 4.1 goes through
almost word-for-word to show that |F | ≤ 1−|ϕ|2 ≤ 2(1−|ϕ|) at every
point of U. Thus the non-hypercyclicity of ϕ(B) follows once again
from Theorem 3.2.

We remark in passing that condition (4.1) characterizes those func-
tions ϕ on the unit sphere of H∞ that are not extreme points of the
closed unit ball (see [11, Theorem 7.9, page 125], for example).

4.3. Theorem. There exists ϕ holomorphic on U with ‖ϕ‖∞ = 1 and
ϕ′ ∈ H2 such that Eϕ has Hausdorff dimension one, yet ϕ(B) is not
hypercyclic on A2.

The proof of this result depends critically on the structure of zero
sets of holomorphic functions possessing significant boundary smooth-
ness. Such sets were characterized by Carleson in [8]. Suppose E is a
closed subset of ∂U and that E has Lebesgue measure zero. Then the
complement of E is a disjoint union of at most countably many open
subarcs {In}. If ∑

n

m(In) logm(In) > −∞

then E is called a Carleson set. Not every set of measure zero has this
property—non-Carleson sequences can be easily constructed. Never-
theless, the Cantor middle-thirds set is Carleson, and by varying the
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ratio of dissection properly one can produce Carleson sets of Hausdorff
dimension d for any 0 ≤ d ≤ 1.

Carleson showed that the sets bearing his name are precisely the
boundary zero-sets of functions that are analytic on U and extend
to be Lipschitz on U, or even Cn-differentiable there (n = 1, 2, . . . )
[8, Theorem 1]. Most important for our purposes is this part of his
argument:

Given any Carleson set E there is an outer function F that
extends C2 to U, and vanishes precisely on E.

Other investigators later refined Carleson’s construction to produce
outer functions with infinite differentiability on U having E as zero-
set, but we will not need this extra precision. Carleson’s outer function
provides the crucial step in the following result, from which Theorem
4.3 follows immediately.

4.4. Theorem. Suppose E ⊂ ∂U is a Carleson set. Then there exists
ϕ holomorphic on U with ‖ϕ‖∞ = 1 and ϕ′ ∈ H2 such that Eϕ = E
and ϕ(B) is not hypercyclic on A2.

Proof. Let F denote a “Carleson” outer function with C2-smoothness
on U that vanishes precisely on E. Upon multiplying by an appropriate
constant, if necessary, we may additionally assume that

|F (z)| ≤ 1/
√

2 ∀z ∈ U.(4.3)

In what follows it will be convenient to retain the notation F ∗ for
the restriction of F to ∂U. The boundary-smoothness of F guarantees
that |F ∗|2 ∈ C2(∂U), and because of (4.3) this smoothness transfers to

w
def
= log(1− |F ∗|2).

In particular, w is integrable on ∂U, so we may form the outer function
ϕ with boundary-modulus ew = 1 − |F ∗|2. We claim that ϕ furnishes
the desired example.

For this, note that ϕ = eh where h is the holomorphic completion of
the Poisson integral of w, i.e. for each z ∈ U:

h(z) =

∫
∂U

ζ + z

ζ − zw(ζ) dm(ζ) = ŵ(0) + 2
∞∑
n=1

ŵ(n)zn,(4.4)

where ŵ(n) is the n-th Fourier coefficient of w. Now the values of the
function 1− |F ∗|2 all lie in the interval (0, 1], so its logarithm w is ≤ 0
on ∂U. It follows that

|ϕ| = exp(Reh) = exp(P [w]) ≤ 1 on U,
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with equality precisely when w = 0, i.e. on E. Thus we have established
that ϕ is a holomorphic self-map of U with precontact set Eϕ equal to
E.

The next order of business is to show that ϕ′ ∈ H2. For this recall
that since w ∈ C2(∂U) we know that

∑∞
−∞ |n ŵ(n)|2 < ∞, so by the

last equality of (4.4) we also have
∑∞

0 |n ĥ(n)|2 <∞, (where now ĥ(n)
is a Taylor coefficient), i.e. h′ ∈ H2. Thus |ϕ′| = |h′ϕ| ≤ |h′| on U, so
ϕ′ ∈ H2.

It remains to prove that ϕ(B) is not hypercyclic; for this we will
verify that ϕ satisfies the hypotheses of Proposition 4.1. To check log-
arithmic integrability, recall that ϕ is the outer function with boundary-
modulus 1− |F ∗|2, so 1− |ϕ∗| = |F ∗|2 on ∂U. Thus∫

∂U
log(1− |ϕ∗|) dm = 2

∫
∂U

log |F ∗| dm > −∞,

the integrability of log |F ∗| being a standard fact about analytic func-
tions with some boundary regularity (in fact, for this it suffices merely
to have F belong to some Hardy space, or even to the Nevanlinna class
[11, Theorem 2.2, page 17]).

At this point we could quote Corollary 4.2 to finish the proof, but
in order to keep the exposition as self-contained as possible we prefer
to use Proposition 4.1. For this it remains only to show that the outer
function with boundary-modulus 1− |ϕ∗| lies in D. Now the definition
of ϕ has been arranged so that 1−|ϕ∗| is the boundary-modulus of F 2,
so we need only know that F 2 is outer—obvious since F is outer—and
that F 2 belongs to D. This too is obvious: F has C2-regularity on
U, hence so does F 2, and this is more than enough to guarantee that
F 2 ∈ D.

5. Final Remarks

The results we have obtained here—especially Theorem 2.8, Corol-
laries 3.3–3.5, and the examples of §2.12 and §3.6—indicate that for
self-maps ϕ of U that are Dirichlet multipliers there is a theorem wait-
ing to be proved that gives a function-theoretic characterization of how
closely the images ϕ(z) must approach the unit circle in order for ϕ(B)
to be hypercyclic on A2. A similar question arises for composition
operators on the Hardy and Bergman spaces, both when one tries to
characterize which of these operators are non-compact (see [10, §3.2],
[21], [22]), and when one tries to characterize which ones are isolated
from the other composition operators in the operator-norm topology
(see [10, §9.3] and [23]). Our results on the commutant hypercyclicity
problem resemble most closely those obtained in [23] for the isolation
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problem, although why there should be such a connection remains mys-
terious.

Particularly striking is the association with extreme points of the
H∞ unit ball, which we recall are characterized for all bounded analytic
functions ϕ with ‖ϕ‖∞ = 1 by failure of the logarithmic integrability
condition (4.1). In [23] it is proved that if Cϕ is isolated from other
composition operators on on H2 then ϕ must be an extreme point (but
not conversely). We do not know if the analogous result holds for our
present problem:

If ϕ ∈ M(D) is a holomorphic self-map of U and ϕ(B) is
hypercyclic on A2, is ϕ an extreme point of the unit ball of
H∞?

Corollary 3.3 can be regarded as providing evidence in favor of an af-
firmative answer to this question: For the class of mappings considered
there, “exponential contact of order 1” can be thought of as a sort of
dividing line between extreme points and non-extreme points. Does it
also divide hypercyclic from non-hypercyclic? In this regard it would
be especially interesting to see if the construction of §2.12 could be
refined to produce a univalently induced hypercyclic example where
ϕ(U) has exponential order of contact 1 with the unit circle.
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